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Abstract

We employ a numerical inverse method of extracting the target–ion overlap, or normalised Dyson
orbital, directly from experimental electron momentum spectroscopy data by using a quantum-
mechanically constrained statistical fitting procedure. This method is used in conjunction
with the previously verified, for molecular targets, plane wave impulse approximation (PWIA)
reaction model. The present procedure was applied to previously measured momentum
distributions (MDs) for the 2e′ and 1e′ valence orbitals of cyclopropane, the 7ag orbital of
trans 1,3-butadiene, the 2e orbital of 1,2-propadiene and the 3a′1 orbital of [1.1.1]propellane.
We note that this is the first extensive application of the present method to organic molecular
systems. In each case the derived normalised Dyson orbital provided a superior representation
of the experimental MD than did the corresponding Hartree–Fock orbital. The ramifications
of this result are discussed in the text.

1. Introduction

A great deal of our knowledge pertaining to atomic, molecular, nuclear and
particle physics is information gathered from scattering experiments. Inferring
the structure of systems involved in the experiment or what is the interaction
between the particles, from the data measured in the scattering experiment, is the
so-called inverse problem. The quantum mechanical inverse scattering procedure
is a problem of long standing, the status and extent of the field being well
summarised in the review of Chadan and Sabatier (1989).

Of particular relevance to us is its development for application in electron–atom
and electron–molecule (Lun et al . 1994) scattering processes. Inverse scattering
techniques were first applied to electron–atom scattering by Bürger et al . (1983)
who used both fully quantal (Lipperheide and Fiedeldey 1978, 1981) and semi-
classical WKB (Allen and Burger 1984) inversion methods to obtain phase-shifts
and then local potentials for e–He scattering, from elastic cross section data
(Andrick and Bitsch 1975) for incident energies of 2 and 19 eV. These potentials,
obtained without any a priori assumptions about their analytic form, were in
agreement with our physical expectations both in the tail and at short range.
Namely, the incoming electron sees a polarisation potential at large distances
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and the Coloumb potential due to the nuclear protons at small distances. There
is also a weak energy dependence of the local potential at intermediate distances
which is a manifestation of the non-local exchange interaction.

Further developments to the quantum mechanical inversion procedure have
been made by Leeb et al . (1985), Allen (1986), Allen and McCarthy (1987),
Allen et al . (1987), Brunger et al . (1992) and Buckman et al . (1998), to whom
the reader is referred for further detail.

The process we apply is the exact analogue of the phase-shift analysis
discussed above for an atomic elastic-scattering experiment. We apply it to a
kinematically-complete ionisation experiment that is considered as a probe for
observing the Dyson orbitals of electrons in a molecule. This is electron momentum
spectroscopy (EMS). We employ a numerical inverse statistical fitting method to
unravel the probe properties from the experimental EMS data, thereby exposing
the Dyson orbital. The Dyson orbital is described by a finite set of parameters,
which we choose conveniently as an overall scaling factor, necessitated by the
fact that absolute (e, 2e) cross sections are not determined experimentally, and
the coefficients of a linear combination of orthonormal orbitals of the required
symmetry. The parameter fit is constrained by the requirement that all the
resulting orbitals must be orthonormal. This procedure, which is described in
more detail in the next section, is adapted from a method used by Weyrich and
colleagues (Schmider et al . 1990, 1992, 1993) for the reconstruction of density
matrices from Compton scattering data. We note that the present study reports
results for its first extensive application to organic molecular systems.

There are several aspects for the use of the orbitals determined by the fitting
procedure. Firstly, as they constitute a large fraction of the information that
characterises electronic structure, they can be used to derive the chemically
interesting molecular property information for the molecule in question. Further-
more, in principle, this molecular property information should be more accurate
than that correspondingly obtained from the Hartree–Fock basis. Secondly, the
method is also a way of checking the model used for the reaction mechanism.

In the next section we give brief details for the plane wave impulse
approximation (PWIA) reaction mechanism and a somewhat more detailed
account of the inversion procedure. In Section 3 a brief description of the
experimental momentum distributions (MDs) used in the present analysis is
provided. Our results and a discussion of them are given in Section 4 with
conclusions being drawn in Section 5.

2. Reaction Mechanism and Inversion Procedure Details

A full description of the PWIA reaction model, the weak-coupling approximation,
Dyson orbitals and the inversion procedure, all of which are relevant to this
study, can be found in Nicholson et al . (1998). Nonetheless, to ensure the present
article is to a large degree self-contained, a precis of the discussion in Nicholson
et al . (1998) is now presented.

EMS measures the momentum distribution σi(q) for states i of the residual ion
in an ionisation reaction where the measured incident and two outgoing electron
momenta are k0, kA, kB and

q = kA + kB − k0 , (1)
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where q is the recoil momentum of the target.
For molecular targets in the kinematic range relevant to EMS there is now

a large body of evidence (McCarthy and Weigold 1991; Brion 1992) supporting
the conclusion that the PWIA gives a quantitative relationship between the
measurements and the target–ion structure, represented by the electronic ground
states 0 of the target and i of the ion. We assume this validity of the PWIA
description for the reaction mechanism in this study.

The PWIA is

σi(q) = (2π)4 kAkB

k0

fee(4π)−1

∫
dq̂|〈qi|0〉|2 , (2)

where the structure amplitude is defined by

〈qi|0〉 = 〈kAkB i|0k0〉 (3)

and fee is the e–e collision factor which, in noncoplanar symmetric kinematics,
is essentially independent of momentum up to about 2 a.u. at E0 = 1000 eV.
Note that within the PWIA framework −q = p, where p is the momentum of
the struck electron at the instant of ionisation. Further, note that experimentally
we vary p by varying the out-of-plane azimuthal angle φ (see McCarthy and
Weigold 1991).

Further understanding of the structure amplitude comes from defining an
appropriate set of target orbitals. Note that 〈qi|0〉 is a one-electron function,
the Dyson orbital. It is useful to define a normalised Dyson orbital α by the
weak-coupling approximation (Nicholson et al . 1998),

〈qi|0〉 = (Sαi ) 1
2 〈q|α〉 , (4)

which assigns certain states i to an orbital manifold α, identified by identical
shapes of the momentum profiles for all i ε α, characteristic of the orbital
α. Here Sαi is the spectroscopic factor. Orbital manifolds are identified in
all EMS. They are due to the splitting of the one-hole ion state ᾱ, obtained
by annihilating an electron in the target orbital α, which is occupied in the
independent-particle configuration, by ion-state correlations. The correlations
are described in a configuration-interaction representation by admixtures of
determinantal configurations found by excitation of particles and holes in the
independent-particle configuration.

The momentum distribution is

σi(q) = (2π)4 kAkB

k0

fee(4π)−1Sαi

∫
dq̂|〈q|α〉|2 . (5)

The intensity for states i ε α is proportional to Sαi .
The weak-coupling approximation is confirmed experimentally by verifying two

of its consequences. These are the spectroscopic sum rule for manifold α∑
i

Sαi = 1 (6)
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and the similarity of momentum profile shapes for the states i ε α. In almost all
known cases the hypothesis that the relative normalisation of states i ε α is given
by the spectroscopic factor is confirmed by identifying enough states i to exhaust
the sum rule (equation 6) for different manifolds, which are then compared.

Until recently EMS analysis was performed in terms of orbitals obtained from
self-consistent-field (SCF) calculations of the target structure. In a fair number of
cases these orbitals were sufficient to describe profile shapes, but glaring exceptions
are known, for example the 1π manifold of hydrogen fluoride (Braidwood et al .
1993), which is essentially a one-state manifold but is not well described by a
Hartree–Fock orbital. Neither is it well described, for that matter, by a local
density approximation (LDA) level density-functional calculation (Duffy et al .
1994).

Here we consider the experiment as a probe for the normalised Dyson orbital
〈q|α〉 and we ask what function the experiment yields as an estimate of this
orbital. The data from the spectroscopic experiment to be used for the inversion
procedure consist of the ionisation cross section for the states i of the α orbital
manifold at data points µ ≡ (k̂A, k̂B), summed for a subset of these states in
the spirit of equation (4). Before doing the summation one can test the validity
of (4) by verifying the MDs have the same shape for all i ε α. One overall
multiplicative constant is undetermined by the EMS experiment. The absolute
outgoing momenta kA and kB are fixed. The numerical inversion procedure is
designed to unravel a single normalised Dyson orbital or an orthonormal set of
such orbitals from the MD data and is based on formulating it in terms of the
reconstruction of a quasiparticle density matrix (Nicholson et al . 1998).

For that purpose a normalised Dyson orbital α is expressed as a linear
combination of Mτ orthonormal basis orbitals β, whose symmetry τ is the same
as α, but whose principal quantum numbers are different,

|α〉 =
Mτ∑
β=1

|β〉Cβα . (7)

The experimental situation in the measurement of the (e, 2e) cross sections
(MDs) σαµ (e, 2e) [data points (α, µ) belonging to |α〉 at momentum qµ] is
simulated by including a description of the angular resolution in the theoretical
cross section σαµ . In the experimental conditions used for this spectroscopy the
finite energy acceptance has no effect. The theoretical cross section (equation 5)
is integrated over normalised weight factors WA and WB for k̂A and k̂B ,

σα(qµ) = σαµ

= (2π)4 kAkB

k0

fee(4π)−1Sαi G

∫
dq̂

∫
dk̂WA(k̂, k̂A)

∫
dk̂
′
WB(k̂

′
, k̂B)|〈q|α〉|2 ,

(8)
which can conveniently be written as

σαµ = (2π)4 kAkB

k0

fee(4π)−1Fα
∫
dq̂

∫
dk̂WA(k̂, k̂A)

∫
dk̂
′
WB(k̂

′
, k̂B)|〈q|α〉|2 . (9)
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The constant Fα in equation (9) is not measured by the experiment and is treated
as a fitting parameter. It is made up of a factor G due to the experimental
conditions and the sum Sα of spectroscopic factors appropriate to the states of
the orbital manifold that have been summed up in the experimental data. If all
the states are included, this sum is 1. The same experiment may determine data
for more than one orbital manifold. In this case the factor G is the same for
each, so that Sα is determined for each orbital manifold relative to the others.

The criterion for the best choice of the parameters (Cβα, Fα) is minimisation
of the weighted-least-squares functional χ2, defined by

χ2 =
∑
µ,α

Wα
µ [σαµ (e, 2e)− σαµ ]2 , (10)

where σαµ is given by equation (9). The normalised weight Wα
µ of each experimental

datum point (α, µ) is the inverse of the variance for (α, µ) (see Bevington and
Robinson 1992). Taylor expansion of the first partial derivatives of χ2 with respect
to the parameters and cut-off after terms linear in the parameter variations lead
to the Gaussian normal equations to be solved iteratively for these variations.
For the purpose of the density-matrix reconstruction in the extraction of atomic
orbital information from Compton profiles (Schmider et al. 1990, 1992, 1993)
it has turned out to be important to stabilise and to accelerate convergence by
inclusion of the terms quadratic in the parameter variations. In all of the examples
to be shown in the present paper fast convergence could thus be obtained.

The errors on the determined parameters Cβα and Fα were found in a
numerically valid way by adapting the ∆χ2 = 1 procedure of Bevington and
Robinson (1992) to the present application. A full discussion of this approach
can be found in Bevington and Robinson, to whom the reader is referred for
details.

The fitting is constrained by the unitarity of the transformation matrix Cβα,
which ensures that the resulting orbitals are orthonormal. The unitarity constraint
is achieved by parametrising the coefficients with the set of Jacobi-type planar
rotation matrices R(θj), which have the same dimensions as Cβα. The set θ
of fitting parameters comprises the rotation angles θj and the normalisation
constraint Fα. More details on this can be found in Nicholson et al . (1998).
Each fit determines Mτ orbitals α, including the ones relevant to the data fitted.

3. Momentum Distribution Measurements

All of the molecular MDs employed in conjunction with the current analysis
were measured with an EMS spectrometer (McCarthy and Weigold 1991) in
symmetric non-coplanar configuration (θA = θB = 45◦;EA = EB). The 2e MD
of 1,2-propadiene was measured at a total energy of 1500 eV and originally
reported in the work of Braidwood et al . (1994), to which the reader is referred
for details of the experimental measurements. Similarly, the 2e′ and 1e′ MDs
of cyclopropane were also measured at a total energy of 1500 eV. In this case
full details of the experiment can be found in von Niessen et al . (1994). The
measurement for the 3a′1 MD of [1.1.1]propellane is discussed in detail by Adcock
et al . (1997). Here, however, the total energy is now 1000 eV. Finally, a full
description of the technique employed in the measurement of the 7ag MD of
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trans 1,3-butadiene is reported in the recent paper of Brunger et al. (1998). We
note that the total energy in this study was once again 1500 eV.

The experimental MDs considered were chosen for a variety of reasons. These
included the ease of availability of the Flinders data over that from other groups,
the fact that in the respective binding energy spectra for the different molecules
the chosen orbitals were always quite well resolved from their nearest neighbours
and, whilst two of the organic species (1,2-propadiene and trans 1,3-butadiene)
were representative of the -diene family of compounds, the latter being a good
example of a conjugated -diene, the remaining molecules (cyclopropane and
[1.1.1]propellane) are excellent examples of highly-strained systems. In addition,
we had previously seen (Braidwood et al . 1994; von Niessen et al . 1994) that
the respective Hartree–Fock orbitals for the 2e state of 1,2-propadiene and the
2e′ state of cyclopropane did not give a very good representation of the relevant
measured MDs. Note that as the 1e′ orbital of cyclopropane is of the same
symmetry as the 2e′ orbital it was included in the present study to specifically
investigate the orthonormality constraint in the parameter fit. Finally, as the
respective Hartree–Fock level orbitals gave reasonable representations for the 3a′1
MD of [1.1.1]propellane (Adcock et al . 1997) and 7ag MD of butadiene (Brunger
et al . 1998) they were included to see whether this observation would be reflected
in the coefficients Cαβ derived in the application of the inverse method. Indeed,
for the numerical inverse method to be credible this observation must be reflected
in the dominance of the relevant 3a′1 or 7ag coefficient over those for the other
orbitals of like symmetry.

4. Results and Discussion

We study first the results of our numerical inverse procedure investigation into
the 2e′ and 1e′ orbitals of the highly-strained hydrocarbon cyclopropane. Von
Niessen et al . (1994) had previously seen that their individual PWIA momentum
distribution shapes were not well described by the appropriate Hartree–Fock (HF)
orbital. This observation is reproduced in Figs 1a and 1b for the respective 2e′

and 1e′ orbitals, where the results using Hartree–Fock orbitals due to Snyder
and Basch (1972) at the STO-14 level and GAMESS 92 (Schmidt et al . 1990)
at the STO-36 level are given.

Considering Fig. 1a, it is immediately apparent that the present estimate of
the normalised Dyson orbital, denoted as present orbital 1 (see Table 1 for the
coefficients), provides a much better fit to the experimental 2e′ MD data of von
Niessen et al. (1994) than does that obtained using the basis 2e′ orbital. This
is well reflected by the value of χ2 falling from 40, when the 2e′ HF STO-36
orbital is employed, to a value of 1 ·9 with the orbital derived using the inverse
procedure. As expected the basis 2e′ orbital dominates in the expansion for the
normalised Dyson orbital, the high-quality fit of Fig. 1a being achieved with only
about a 2% core, 1e′ and unoccupied orbital contribution (see Table 1).

A very similar story for the 1e′ state is also found in Fig. 1b. In this case
the present normalised Dyson orbital, again denoted as present orbital 1 (see
Table 1 for its coefficients), compared to that obtained using the basis 1e′ orbital,
provides a far superior fit to the experimental 1e′ MD data (see Fig. 1b). Here
the value of χ2 fell from 34, when the 1e′ HF STO-36 orbital was employed, to
a value of 11 with the derived normalised Dyson orbital. While it is clear from
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Fig. 1. A comparison of PWIA calculations with experiment for (a) cyclopropane 2e′ and (b) cyclopropane 1e′. The results using Hartree–Fock
orbitals due to Snyder and Basch (1992) at the STO-14 level and GAMESS 92 (Schmidt et al . 1990) at the STO-36 level are given.
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Fig. 2. A comparison of PWIA calculations with experiment for (a) cyclopropane 2e′ and (b) cyclopropane 1e′. The additional-constrained normalised
Dyson orbital is denoted as present orbital 2.
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Table 1 that the basis 1e′ orbital still dominates the expansion, to obtain the
very good fit of Fig. 1b a 20% core, 2e′ and unoccupied orbital contribution is
now required. This higher contribution may be a reflection of our PWIA reaction
mechanism description not being as exact for inner valence states as it is for
outer valence states.

Table 1. Fitting coefficients and their standard deviations for the 2e′ and 1e′

orbitals of cyclopropane

2e′ orbital le′ orbital
Present orbital 1 Present orbital 1

Orbital basis Coefficient Orbital basis Coefficient

Core −0 ·009±0 ·199 Core −0 ·203±0 ·055
1e′ −0 ·127±0 ·001 1e′ 0 ·895±0 ·002
2e′ 0 ·990±0 ·020 2e′ 0 ·388±0 ·045
Unoccupied 0 ·053±0 ·003 Unoccupied −0 ·080±0 ·014

The experimental MDs of von Niessen et al . were placed on an absolute
scale with a normalisation procedure fully described in that paper. Under these
circumstances G = 1 and the scaling factor Fα reduces to the spectroscopic
factor Sαi , for that i ε α as measured in the binding energy spectra in von
Niessen et al . Recall the spectroscopic sum rule (equation 6) at this time.
Application of the numerical inverse procedure to the 2e′ MD at the binding
energy (εf ) 10 ·9 eV gave S2e′ = 1 ·00±0 ·03, in good agreement with the result
of the third-order algebraic diagrammatic construction ADC(3) calculation in
von Niessen et al . (S = 0 ·91) and the Green function calculation (S = 0 ·95) of
Cederbaum et al . (1978). Similarly, for the 1e′ MD at εf = 19 ·9 eV we find S1e′

= 0 ·85±0 ·02, again in good agreement with the available ADC(3) (S = 0 ·82)
and Green function (S = 0 ·88) results.

Table 2. Fitting coefficients and their standard deviations for the 2e′ and 1e′

orbitals of cyclopropane

In addition to the usual orthonormality constraint we have applied the
restriction that χ2 (equation 10) must be minimised for both Dyson orbitals

simultaneously

2e′ orbital le′ orbital
Present orbital 2 Present orbital 2

Orbital basis Coefficient Orbital basis Coefficient

Core 0 ·116±0 ·067 Core 0 ·017±0 ·032
1e′ −0 ·371±0 ·005 1e′ 0 ·957±0 ·054
2e′ 0 ·921±0 ·042 2e′ 0 ·284±0 ·010
Unoccupied 0 ·033±0 ·008 Unoccupied −0 ·054±0 ·008

The 2e′ and 1e′ orbitals of cyclopropane are examples of orthonormal orbitals
of like symmetry, but whose principal quantum numbers are different. As such we
can not only constrain the fitting in the usual way by ensuring the orthonormality
of the transformation matrix Cβα but, additionally, we can also require that the
χ2 fit to the respective 2e′ and 1e′ MDs, to derive the normalised Dyson orbitals,
be minimised simultaneously. The results of this procedure are illustrated in
Fig. 2a for the 2e′ orbital and Fig. 2b for the 1e′ orbital. In both cases the
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additional-constrained normalised Dyson orbital is denoted as present orbital 2.
The fitting coefficients and their standard deviations for these normalised Dyson
orbitals are given in Table 2. Note that the errors on the derived coefficients are
generally small which reflects, at least in part, the statistical accuracy of the
experimental MD data from von Niessen et al . and the well-defined nature of
the experimental angular resolution.

The normalised Dyson orbitals (present orbitals 1 and 2 of Fig. 2a) derived
using the usual and more constrained forms of the numerical inverse procedure,
for the 2e′ MD, are seen to be very similar (see also Tables 1 and 2 for the
coefficients). This is, in addition, reflected in the similar χ2 values for the fit
using present orbital 1 (1 ·9) and present orbital 2 (5 ·1). Both lead to very good
agreement with the experimental 2e′ MD (see Fig. 2a) with the major difference
between them being that the MD from present orbital 2 peaks at a slightly
smaller value of φ (or p) compared to that for present orbital 1. For the 1e′

MD (see Fig. 2b) the relevant derived normalised Dyson orbitals (again denoted
as present orbitals 1 and 2) lead to MDs which are almost identical and which
are both in excellent agreement with the experimental momentum distribution.
Indeed the only major difference between them is that Present Orbital 2 gives a
1e′ MD which is slightly larger in magnitude at the peak of the cross section

Fig. 3. A comparison of PWIA calculations with experiment for [1.1.1]propellane 3a′1.
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compared to the result obtained with present orbital 1. This point is further
evidenced by the value of χ2 obtained from the fit with present orbital 1 (∼ 11)
being only slightly smaller than that obtained with present orbital 2 (∼ 15).

The similarity between the derived normalised Dyson orbitals, as determined
from the usual (see Section 2) and more constrained inverse procedures and as
reflected in their level of agreement with the experimental MDs for both the
2e′ and 1e′ states of cyclopropane, gives us further confidence in the underlying
soundness of the technique. The normalised Dyson orbitals we obtain are not
arbitrary artifacts of the fitting procedure we employ, the dominance of the
relevant 2e′ or 1e′ basis orbital in each respective expansion being a further,
clear, indication of this.

The numerical inverse procedures applied above, for both the usual (present
orbital 1) and more constrained (present orbital 2) fitting cases, were also used
in our study of the highest occupied molecular orbital (3a′1) of [1.1.1]propellane.
Here the core, 1a′1, 2a′1, 3a′1 and 4a′1 (unoccupied) basis propellane orbitals were
computed using GAMESS 92 with full details being found in Adcock et al .
(1995). The results for the fitting coefficients and their standard deviations,
for the normalised Dyson orbitals, can be found in Table 3 with the resultant
3a′1 MDs being illustrated in Fig. 3. Note that in this case the additional
simultaneous χ2 minimisation requirement is provided by the experimental 1a′1
MD data, although unlike our behaviour with cyclopropane these data are not
specifically presented here.

In Fig. 3 it is apparent that the current estimates (present orbitals 1 and 2) of
the normalised Dyson orbital provide a somewhat better fit to the experimental
3a′1 MD data of Adcock et al . (1997) than does that obtained using the basis 3a′1
orbital, a result consistent with what we found for cyclopropane. This point is
also reinforced by the χ2 values falling from 12 ·7 for the basis 3a′1 orbital to 8 ·8
when present orbital 2 is employed and 7 ·8 when present orbital 1 is used. There
is a little difference between the resultant 3a′1 MDs from the two normalised
Dyson orbitals, a point additionally reflected by their respective coefficients in
Table 3. In both cases the coefficient for the 3a′1 basis orbital dominates. In the
light of this result and those found earlier for cyclopropane, we will not apply the
more constrained numerical inverse procedure to our analysis of 1,2-propadiene
and trans 1,3-butadiene.

Table 3. Fitting coefficients and their standard deviations for the 3a′1 orbital
of [1.1.1]propellane

Present orbital 1 refers to the normalised Dyson orbital determined with the
usual orthonormality constraint (Section 2), while present orbital 2 denotes the
derived normalised Dyson orbital so determined with the additional restriction

provided by fitting the 1a′1 MD simultaneously and minimising both χ2

3a
′
1 orbital 3a

′
1 orbital

Present orbital 1 Present orbital 2
Orbital basis Coefficient Orbital basis Coefficient

Core 0 ·523±0 ·030 Core 0 ·412±0 ·047
1a′1 0 ·180±0 ·022 1a′1 0 ·051±0 ·016
2a′1 −0 ·239±0 ·005 2a′1 −0 ·129±0 ·002
3a′1 0 ·794±0 ·019 3a′1 0 ·898±0 ·021
Unoccupied −0 ·081±0 ·013 Unoccupied −0 ·058±0 ·011
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As the 3a′1 MD data, measured at εf = 9 ·74 eV, were already placed on an
absolute scale by normalisation, in the manner described by Adcock et al . (1997),
we note G = 1. Thus the derived scaling factor, which is identical for both present
orbital 1 and present orbital 2, provides a direct measure of the spectroscopic
factor for the 3a′1 orbital at that binding energy. We find S3a′1 = 0 ·88± 0 ·03, a
value which is in excellent agreement (S = 0 ·89) with that calculated by Adcock
et al . (1995) using an ADC(3) level formalism.

Fig. 4. A comparison of PWIA calculations with experiment for 1,2-propadiene 2e.

We next study the results of our numerical inverse procedure investigation into
the 2e orbital of 1,2-propadiene. Braidwood et al . (1994) previously noted that
its PWIA momentum distribution shape was not well described by a GAMESS
calculated (Schmidt et al . 1990) Hartree–Fock orbital at the STO-36 level. This
can clearly be seen in Fig. 4. Also shown in Fig. 4 is the present estimate
of the normalised Dyson orbital, denoted as present orbital 1 (see Table 4
for coefficients), which provides a much better fit to the experimental 2e MD
data of Braidwood et al . (1994) than does that obtained using the basis 2e
orbital. This is well reflected by the value of χ2 falling from 372, when the
basis 2e HF STO-36 orbital is employed, to a value of 2 ·3 when the normalised
is used. As expected the basis 2e orbital coefficient dominates the normalised
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Dyson orbital, the high-quality fit of Fig. 4 being achieved with only about a
6% 1e and unoccupied orbital contribution (see Table 4).

Table 4. Fitting coefficients and their standard
deviations for the 2e orbital of 1,2-propadiene

2e orbital
Present orbital 1

Orbital basis Coefficient

1e 0 ·085±0 ·016
2e 0 ·970±0 ·001
Unoccupied 0 ·229±0 ·007

The experimental 2e MD of Braidwood et al . was placed on an absolute scale
with a normalisation technique fully described in that paper. Thus, similar to the
circumstances for cyclopropane and [1.1.1]propellane, G = 1 and Fα reduces to
the spectroscopic factor S2e

i for the 2e orbital at the binding energy εf = 10 ·25
eV. The value of S2e = 0 ·89 ± 0 ·02 we found from the present analysis is in
excellent agreement with the ADC(3) result of Braidwood et al . (S = 0 ·89) and
in very good agreement with the Green function method calculation (S = 0 ·91) of
Cederbaum et al. (1978). Note that the 1,2-propadiene wavefunction employed in
the ADC(3) calculations (and the same is true for cyclopropane, [1.1.1]propellane
and trans 1,3-butadiene) used the large atomic natural orbital (ANO) basis set
of Widmark et al . (1990).

Finally we examine our results for the 7ag orbital of trans 1,3-butadiene. For
this molecule an extensive orthonormal basis consisting of the 1ag, 2ag, 3ag, 4ag,
5ag, 6ag, 7ag, 8ag and 9ag Hartree–Fock orbitals, all calculated with GAMESS

Fig. 5. A comparison of PWIA calculations with experiment for trans 1,3-butadiene 7ag.
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92 at the STO-36 level, was employed. However, it soon became clear that the
expansion coefficients (Cβα) for the 2ag, 3ag, 4ag and 5ag basis orbitals were
effectively 0 with their inclusion leading to no improvement to the value of χ2

in the fit. Consequently they were omitted in the final fit. It is apparent from
Fig. 5 that the determined normalised Dyson orbital leads to somewhat better
agreement with the experimental 7ag MD of Brunger et al . (1998) than that
obtained with the 7ag basis orbital alone. However, this improvement is not as
clear cut here as it was before with the value of χ2 only improving from about 1 ·3
to 0 ·9. The main reason for this is that the uncertainties on the 7ag experimental
MD are larger than any of the other molecules we have considered. This is due
to the 7ag state being in close proximity (in terms of εf ) to a couple of other
orbitals whose MDs have much larger cross sections. Thus the deconvolution
errors on it are significant (see Brunger et al . 1998). This effect is also evident
in the uncertainties on the coefficients of the basis orbitals for the normalised
Dyson orbital (see Table 5). Nonetheless the 7ag basis orbital still dominates
the expansion in the normalised Dyson orbital as one might intuitively expect.

Table 5. Fitting coefficients and their standard
deviations for the 7ag orbital of trans 1,3-

butadiene

7ag orbital
Present orbital 1

Orbital basis Coefficient

1ag 0 ·270±0 ·411
6ag 0 ·044±0 ·027
7ag 0 ·918±0 ·147
8ag −0 ·099±0 ·082
9ag 0 ·269±0 ·035

The independent normalisation by Brunger et al . (1998), of their 7ag MD, again
allows us to equate the derived scaling factor Fα directly with the spectroscopic
factor Sαi for this MD at the binding energy of its measurement (εf = 12 ·20 eV).
The value determined in the present analysis, S7ag = 0 ·79± 0 ·12, is consistent
with the ADC(3) level calculations of both Michalewicz et al . (1997) (S = 0 ·89)
and Holland et al . (1996) (S = 0 ·89).

5. Conclusions

We have applied our numerical inverse procedure to selected MDs of the organic
molecules 1,2-propadiene, trans 1,3-butadiene, [1.1.1]propellane and cyclopropane.
In each case the derived normalised Dyson orbital led to better agreement with
the measured MD than did that for the basis orbital alone, although we note
that the coefficient for this basis orbital dominated in the expansion, in each
case considered, for the respective normalised Dyson orbitals. The spectroscopic
factors determined in each application of the inverse procedure were also found
to be in very good agreement with those calculated using ADC(3) and more
general Green function approaches.

If we accept the proposition that the orbital wavefunction which best reproduces
the experimental MD is the most physically reasonable representation for that
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orbital then it follows that this wavefunction, when combined with others that
also make up the description of the molecule, should lead to more accurate
molecular property information for the molecule in question. The interfacing of
the output from our inverse technique program to UNICHEM (see Michalewicz
et al . 1997), a supercomputer based suite of programs that enables calculation
of molecular property information, is our next development so that we can test
this hypothesis.
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