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Abstract

Theories for deep convection in the interior of major planets are reviewed. The focus is on
Busse’s theory, whose problems are critically analysed. The importance of the analogy and
differences with the Earth’s mantle convection and oceanographic convection are emphasised.

1. Introduction

Two major factors come into consideration of the general circulation of the
atmosphere of major planets. First, the atmospheres emit substantially more
energy by long-wave radiation than the energy they absorb from the Sun. It
means their atmospheres receive additional heat supply from the interior of the
planets. The energy ratio, i.e. the ratio of the total radiative energy emitted by
a planet to the total solar energy absorbed, is estimated to be 1 ·67 for Jupiter
(Hanel et al . 1981), 1 ·78 for Saturn (Hanel et al . 1983), and more than 2 ·3 for
Neptune (Pearl and Conrath 1991), but less than 1 ·14 for Uranus (Pearl et al .
1990). Hence, except for Uranus, the heat supply from the interior of the major
planets is more than half of that from the Sun. The second important factor is
the absence of the planet surface in these atmospheres. Standard models for the
interior (e.g. Hubbard 1981; Stevenson 1982; Hubbard and Marley 1989; Chabrier
et al . 1992) show that only a few tens of per cent of the planetary radius is
occupied by a solid core, which is immediately surrounded by the liquid metallic
hydrogen layer. The thickness of the atmospheric layer occupying immediately
above this metallic hydrogen layer is estimated as 20% and 50% of the radius of
Jupiter and Saturn, respectively.

Thermal convection was identified by earlier studies (Hubbard 1968) to be
the main mechanism to transport heat in those deep atmospheres because the
thermal diffusivity is too small for effective thermal diffusion and the opacity
is predicted to be too low for effective radiative transfer. Consequently, the
possibility of deep thermal convection comes into serious consideration for the
circulation of Jovian atmospheres. Busse (1976) originally hypothesised that such
deep thermal convection drives and maintains the dominant zonal winds (i.e.
longitudinally-directed winds) observed at the cloud-level of the atmosphere, and
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this hypothesis was later endorsed by Ingersoll and Pollard (1982), Yano (1987a,
1987b) and others. The recent Galileo probe’s in situ observation, showing that
the cloud-top level winds extend as deep as the 20 bar pressure-level (Atkinson
et al . 1996), appears to add extra credibility to Busse’s theory. Henceforth, the
present review also focusses on Busse’s hypothesis.

2. Pictures for Jovian Convection

Distinctively different pictures exist for thermal convection inside major
planets. One extreme picture is that thermal convection is completely random,
consisting of small-scale incoherent eddies. Hence, convection is best described
by a diffusion equation. Such an approach was taken by Ingersoll and Porco
(1978) to investigate the adjustment of the Jovian atmosphere by convection
against solar differential heating. Williams (1978, 1979, 1985) took this picture
to justify his shallow-dynamics approach. More recently, Smith and Gierasch
(1995) used this approach to investigate the thermal structure inside the major
planets.

The approach basically follows the classical view for the fully-nonlinear turbulent
system, in which the motions are completely random and incoherent so that a
statistical description (e.g. in terms of the diffusion) best suits this type of system.
Certainly, the Jovian interior is in this regime, which can justify the diffusion
description. However, such a classical picture for the turbulence is increasingly
disputed by recent direct simulations of fully-developed turbulence (e.g. Métais
and Lesieur 1989; McWilliams and Weiss 1994). These studies show that coherent
structures are more commonly developed in fully-developed turbulence.

Busse’s picture also assumes such a large-scale coherent structure for deep
Jovian convection, but it is mostly based on linear analysis. We examine this
picture more closely in the next three sections.

An alternative picture still exists, which is partially based on an analogy with
oceanographic convection. Such convection arises when the system is strongly
controlled by boundary forcings: cooling at the top of the atmosphere and/or
heating at the bottom of the deep atmosphere. Then convection is likely to take
an intermittent, plume-like structure rather than steady large-scale overturning.
This possibility is addressed in Section 6.

3. Busse’s Model: Linear Theory

Busse’s model for thermal convection in major planets follows a line of
thought in classical studies of Rayleigh–Benard convection under the Boussinesq
approximation (cf. Chandrasekhar 1961). Along this line, the first goal is to
define the Rayleigh number for the onset of convection by a linear stability
analysis. This problem is symbolically stated as(

∂

∂t
+ L

)
φ = 0 ,

where L is a linear operator, φ is a vector representing a set of dependent
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variables (velocity, temperature). The time derivative ∂/∂t can be, furthermore,
replaced by an eigenvalue σ, so that the problem reduces to

(σ + L)φ = 0 . (1)

The onset of convection is defined by

Re(σ) = 0.

In this formulation, we look for the minimum Rayleigh number (critical Rayleigh
number) R to satisfy this condition, and an accompanying eigensolution (i.e.
marginal convection).

The physically relevant asymptotic limit for Jovian convection is the limit
of rapid rotation, i.e. Ω → +∞, and low viscosity, i.e. ν → 0, where Ω is the
planetary rotation rate and ν the viscosity. In terms of the nondimensional
parameters, this means taking an asymptotic limit E → +0, where E ≡ ν/2Ωr2

0

is the Ekman number and r0 is the planetary radius.
The steady motion in this limit satisfies the geostrophic balance

2Ω× v = −∇π

in the absence of buoyancy, where v is the velocity, and the right-hand side
represents the pressure force.

By applying ∇× to the above, we obtain the Taylor–Proudman theorem (cf.
Pedlosky 1987, Sect. 2.7)

(Ω · ∇)v = 0,

or
∂

∂z
v = 0

by taking the z-coordinates in the direction of the axis of rotation. This theorem
implies that any motion in this limit is of columnar structure in the direction
of the axis of rotation, in which the fluid moves in alignment (i.e. the Taylor
column). This imposes a strong constraint to thermal convection in a rotating
sphere, because no motion away from the axis of rotation is possible by this
theorem for a spherical geometry.

The inclusion of buoyancy does not resolve this constraint (cf. Hirsching and
Yano 1994). Hence, in order to set thermal convection, this constraint must be
perturbed by either the viscosity ν, thermal diffusivity κ or unsteadiness of the
motion. Roberts (1968) showed by a systematic scale analysis that the system
overcomes this constraint by forming an internal viscous boundary layer of the
scale r0E

1
3 in the direction perpendicular to the axis of rotation, centred at a

certain distance (i.e. critical distance), say, s = s0 from the axis of rotation.
Hence, marginal convection takes a form of Taylor columns aligned to the inside
of this internal boundary layer confined to the cylindrical surface s = s0 (Busse
1970: see Fig. 1).
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Fig. 1. Busse’s schematic picture for Jovian thermal convection.
[Reproduced from Fig. 1 of Busse 1970.]

This configuration of marginal convection justifies seeking a WKBJ solution
confined to a cylindrical surface s = s0, i.e.

φ ∼ exp[ik(s− s0) + imϕ+ iωt] , (2)

where k is the local radial wavenumber, m the azimuthal wavenumber, ϕ the
coordinate in azimuthal direction and ω the frequency (ω ≡ Imσ).

By substitution of (2) into the linear equation (1) and by taking a determinant,
we obtain the complex dispersion relationship

L(s0, k,m, ω,R) = 0 , (3)

or by solving it in terms of the Rayleigh number

R = R(s0, k,m, ω).

The critical Rayleigh number is obtained by minimising the Rayleigh number
against s0, k and m. In particular, from the condition

∂R/∂s0 = 0,

we obtain, s0/r0 ' 0 ·5, i.e. convective Taylor columns are formed at approximately
half the planetary radius from the axis of rotation.

However, this WKBJ solution contains a very odd feature in that the critical
radial wavenumber k defined by ∂R/∂k = 0 becomes k = 0. Hence, no radial
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structure is defined to the leading order of the problem. Consequently, we have
to move to a higher order modulation equation to define the radial structure of
marginal convection. Soward (1977) showed that this modulation equation leads
to a radial structure whose amplitude exponentially increases outward from the
critical distance s = s0. This singular behaviour of the solution is evidently not
consistent with the original assumption of convection confined to a cylindrical
surface s = s0. Hence we have to conclude that the critical Rayleigh number
and critical convection defined by this method are incorrect.

A closer inspection of the modulation equation can show that the problem
stems from the fact that ∂R/∂s0 does not completely vanish at the critical
point defined by the above method. More precisely, although the extremum for
the Rayleigh number is defined along the real axis sr = Re(s0) of the critical
distance, i.e. ∂R/∂sr = 0, or Re[∂R/∂s0] = 0, its extremum is not yet taken
in the imaginary direction si = Im(s0) of the critical distance s0. Hence, it
still remains ∂R/∂si 6= 0, or Im[∂R/∂s0] 6= 0. In order to obtain a well-behaved
localised solution, ∂R/∂si = 0 must be also satisfied as well as ∂R/∂sr = 0.
In other words, we have to satisfy the condition ∂R/∂s0 = 0 on the complex
plane of s0. Hence, the critical distance s0 becomes a complex number for this
problem. Yano (1992) sought such a complex critical distance, which is defined
as the saddle point of critical Rayleigh number (i.e. already minimised against k
and m) on the complex s0 surface. Consequently, the critical Rayleigh number
defined by this new method becomes higher than the original one.

Finally, the radial structure of critical convection is obtained by substituting
the critical Rayleigh number in the dispersion relation (3) and solving it for
the radial wavenumber k along the real axis, i.e. Im(s0) = 0. As a result, we
obtain a complex radial wavenumber, which ensures an exponential confinement
of Taylor columns. The deviation of the complex critical distance from the real
axis increases with a decrease of the Prandtl number P = ν/κ, and hence, a
change of critical Rayleigh number from the original estimate. This increasing
tendency for the complex critical distance results in a larger deformation of the
Taylor columns in the radial direction (spiralling mode: see Zhang 1992)

However, this columnar-spiralling mode becomes a less efficient mechanism to
break the Taylor–Proudman constraint with a further decrease of the Prandtl
number by increase of the critical Rayleigh number. Eventually, this is taken over
by another mode (inertial mode) which uses the unsteadiness to break the Taylor–
Proudman constraint. This mode is named the wall-attached mode, because its
Taylor columns are attached to the equatorial outer wall (Zhang 1992). Physical
interpretations for the interplay of those marginal modes (columnar-spiralling,
wall-attached) were developed by Hirsching and Yano (1994).

4. Busse’s Zonal Flow Theory

By facing the afore-mentioned difficulty in determining the radial structure
of convection, Busse virtually gave up the effort to solve this problem properly,
and this attitude still remains the same with him (cf. Busse 1994). In order to
simplify the problem and to make it solvable, instead, Busse placed the side walls,
say, at s = s0±D/2 separated by a distance D. This enables the Taylor columns
to be isolated in the radial direction artificially. The mathematical treatment
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can be further simplified by taking the limit D/r0 ¿ 1, because the cylindrical
curvature no longer becomes a primary concern. The zonal flow theory for major
planets by Busse (1983) was constructed under this framework (Fig. 2).

Fig. 2. Schematics for the construction of Busse’s zonal flow theory for major planets. (a)
The leading order approximation, and (b) a correction to a higher order. The left frame
shows the top view (with the longitudinal coordinate shown horizontally), and the side view
with the rotation axis (z-axis) placed horizontally to the right side. (c) The resulting zonal
winds (top view): the westerly jet to the external side, and the easterly to the inside.

To first approximation, the curvature effect of the spherical boundary at the
top and bottom of the cylindrical channel is neglected and is replaced by a
constant slope (Fig. 2a). Circular Taylor columns drifting with a constant phase
velocity are obtained as a result. The curvature effect of the boundaries is
considered as a correction term to a higher order (Fig. 2b), which is mathematically
accomplished by adding higher harmonics to the leading order solution. This
leads to eastward-tilted columns in the direction away from the axis of rotation,
which results in an outward transportation of the westerly∗ momentum. The
generated zonal flow is computed by assuming a balance of its viscous dissipation
with the eddy momentum flux assuming a no slip boundary condition at the
side walls. This results in a pair of jets, westerly to the external wall side and
easterly to the internal wall side (Fig. 2c).

∗ By meteorological convention, westerly means the winds blow from the west, and easterly
those from the east.
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However, it is not quite clear how this calculation leads to a schematic of
multiple jets in Jovian atmospheres with a multiple cylindrical layer of Taylor
columns in Fig. 2 of Busse (1983) and the subsequent plots of the so-called
theoretical prediction of the zonal flows for Jupiter and Saturn in his Fig. 3. The
schematic obviously does not agree with the structure of theoretically predicted
critical convection. The latter only predicts a single cylindrical layer of Taylor
columns. However, Busse appears to believe that once the supercriticality is
increased, both the outer and inner sides of the Taylor-column cylindrical layer
are gradually filled by another Taylor-column cylindrical layer with accompanying
pair jets. Certainly, such a speculation is plausible but not substantiated.

Even the physical mechanism to obtain a pair of zonal jets with the cylindrical
channel configuration is not at all explained by Busse. This mechanism may be
understood in terms of the potential vorticity, i.e.

ζ + 2Ω
h

,

which is conserved along a movement of a parcel column, where ζ is the relative
vorticity, and where h is the total ‘depth’ (i.e. height) of the parcel column in

Fig. 3. Physical interpretation of Busse’s zonal flow theory for major planets. (a) A side
view of the planet depicting the conservation of the potential vorticity (ζ + 2Ω)/h along the
movement of the Taylor column. (b) The eastward propagation of the vortices due to the
β effect (top view). (c) The differential propagation of the vortices due to the increase of
β ∝ −dh/ds in the outward direction from the axis of rotation, which induces the tilt of the
vortices (top view).
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the direction of the axis of rotation, in which direction the motion of fluid is
almost aligned by the Taylor–Proudman theorem (Fig. 3a). As a result, the
relative vorticity decreases when a parcel is shifted outward (hence h decreases)
and vice versa. This leads to generation of a new vorticity anomaly to the east
of a vorticity anomaly and, hence, leads to an eastward drift of vorticity columns
(Fig. 3b). It also transpires that the drift speed is proportional to the slope dh/ds
of the boundary, which can be further interpreted as a topographic β effect but
with a negative sign (Pedlosky 1987, Sect. 3.17). Because the magnitude of the
slope |dh/ds| increases with the radial distance s, the outer part of a convection
column tends to move faster eastwards than its inner part (Fig. 3c). Such a
differential drifting of a Taylor column leads to an eastward tilting of columns
outward and generation of a westerly jet to the equatorial side. This whole process
may be contrasted with eddy dynamics on a rotating sphere. A similar argument
follows for the eddy momentum flux in this case as well. However, due to the
positive sign of the β effect, it leads to the generation of an equatorial easterly as
observed in the Earth’s atmosphere. This point is re-addressed in the next section.

5. Problems with Busse’s Theory

Various problems can be pointed out in Busse’s approach and model. At the
most technical level, the radial structure of convection is not properly determined
in Busse’s analysis. The problem and its remedy were already discussed in
Section 3. From a more practical point of view, Busse’s linear convection predicts
only a single cylindrical layer of Taylor columns and, hence, only a single pair
of jets is generated. It is not immediately clear how multiple jets in the major
planets are explained from this theory.

Nevertheless, the most serious defect of Busse’s theory is that it only deals
with the linear problem. In the fully-nonlinear regime, a completely different
convection mode can be developed. Or does Busse’s theory still qualitatively
apply in a fully nonlinear regime? The most recent laboratory (Manneville and
Olson 1996) and numerical (Sun et al . 1993) experiments at high supercriticalities
(700 and 50 times the critical Rayleigh numbers, respectively) appear to support
the second view. Both experiments show that the Taylor-column type structure
of convection is fairly well preserved in these highly nonlinear regimes, albeit
these columns are highly transient and seldom survive more than one turnover
time scale individually. Unlike the linear solution, these Taylor columns tend to
form multiple cylindrical layers (band structure on the surface) accompanied by
multiple jets. In the laboratory experiment (Manneville and Olson), the number
of bands appears to increase with supercriticality (see Figs 4 and 5). These results
as a whole suggest that the constraint by the Taylor–Proudman theorem in the
rapidly rotating convective system is so robust that quasi-two-dimensionality of
the flow is maintained even in the fully nonlinear regime. It further suggests that
deep convection in major planets may be idealised as two-dimensional turbulence
confined in a rotating sphere.

Numerical experiments by Cho and Polvani (1996) are very suggestive in
this respect: they performed two-dimensional turbulence simulations on the
sphere with the parameters for four major planets by using the shallow-water
model system. Surprisingly, they obtained mean zonal flows fairly similar to the
observations for Jupiter and Saturn, apart from a single defect that the flow is
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completely reversed in sign. Arguably, this is due to the fact that they used the
wrong sign for the β effect; it was pointed out at the end of the last section that
the sign of the β effect is reversed by considering the deep two-dimensional flow
confined inside the rotating sphere. On the other hand, remarkably, the results
for Uranus and Neptune agree qualitatively well including the sign of the zonal
flow. This implies shallow dynamics for these planets.

A further scepticism arises from Busse’s oversimplification of adopting the
Boussinesq approximation. Most distinctively, it neglects the strong density
stratification inside the planets (see e.g. Fig. 6 of Guillot et al . 1994a). Obviously,
it is hard to believe that a Taylor-column like motion is formed crossing many
density scale heights.

The McWilliams et al . (1994) experiment may be illuminating to partially
answer this objection. They performed a full three-dimensional simulation of the
quasi-geostrophic system (e.g. Pedlosky 1987) with a constant density stratification
initialised by a highly random initial condition. They found that this fully
nonlinear system settles into a Taylor-column like structure in its final stage.
This leads to a heuristic speculation that such a Taylor-column like structure is
relatively robust even under a fairly strong density stratification.

The ultimate limitation of Busse’s theory applying to the major planets is
the complexity of their internal structure, which has been more clearly realised
recently. Stevenson (1985) was probably the first to point out the possibility for
more heterogeneity in the internal structure of the major planets than previously
thought. He speculated that the Jovian atmospheres may not constitute a single
well-mixed layer as traditionally assumed, but instead might consist of multiple
mutually-nonpenetrable layers. As a result, convective mixing and convective
heat transfer are much more suppressed than previously thought.

Guillot et al . (1994a, 1994b) made a careful re-analysis of the opacity of the
Jovian gas and found that the Jovian atmosphere is likely to be transparent to
infrared radiation at the level of 1–42 kbar, which indicates that the vertical
stratification of the upper level of the molecular-hydrogen layer (or atmospheric
layer) is substantially different from the adiabatic lapse rate. Furthermore,
Ioannou and Lindzen (1993) concluded from their estimate of the tidal dissipation
rate for Jupiter that its interior must be mostly stably stratified.

6. Mantle Convection and Oceanographic Analogy

In considering the future direction for studies of Jovian convection, some lessons
may be learned from studies of the Earth’s mantle convection (cf. Davies and
Richards 1992). A vast difference between the two types of convection is certainly
evident. Earth’s mantle convection is in a highly viscous regime (and also in
the high Prandtl number limit): the planetary rotation (Coriolis effect) is of no
importance, and even the inertial term drops in the momentum equation. This
is strikingly contrasted with Jovian convection, where the viscosity is low (and
the Prandtl number is of order unity or less), and both the Coriolis effect and
the inertial effects must be fully taken into account in the momentum equation.

However, the complexity of the interior of major planets can be of similar
order as the Earth’s mantle, and we can certainly learn more from Earth mantle
studies in this respect. The viscosity is a strong function of temperature and
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Fig. 4. Laboratory experiments by Manneville and Olson (1996). Time lapse photos in UV
light show the band structure of thermal convection in rotating spherical shells. The left
side shows various thicknesses from bottom to top, with the inner/outer radius r = 0 ·76,
0 ·51, 0 ·34. The Rayleigh number is about 100 times the critical value. The right side shows
multiplication of bands with increasing Rayleigh number with r = 0 ·76: from top to bottom,
the Rayleigh numbers are −87, 102 and 775 times the critical value. [Reproduced from Fig. 1
of Manneville and Olson 1996.]
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Fig. 5. The same as Fig. 4 but showing interpretative sketches. [Reproduced from Fig. 2 of
Manneville and Olson 1996.]

pressure in the Earth’s mantle. It is estimated to change by a factor of 102–103

from the top to the bottom of mantle, and it is further speculated to change
by a similar order of magnitude within the thin low viscosity zone just below
the lithosphere. The thermal diffusivity and the thermal expansion coefficient
may also strongly depend on mantle temperatures and pressures. Similar high
temperature–pressure dependences are likely to be equally important in Jovian
convection.
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Furthermore, the rheology of mantle material is poorly constrained and likely
to be highly non-Newtonian, and hence, the Boussinesq approximation is only
marginally useful. The deep fluid interior of the Jovian atmospheres may be
closer to Newtonian, however, a non-Boussinesq treatment would certainly be
equally desirable.

In the Earth’s mantle convection, two types of heating contribute to the
two distinctively different convection modes. Internal heating by the decay of
remnant radioactive isotopes, which accounts for 80–90% of total heating, drives a
large-scale ‘laminar’ overturning-type convection. On the other hand, the surface
flux from the core–mantle boundary which accounts for the remaining 10–20% of
the heating (boundary forcing) generates plume-type convection. The latter type
of convection is expected to be intermittent in time. In contrast, no substantial
radioactive heating exists in Jovian atmospheres. It is rather mostly in a simple
cooling process from a primordial hot state of the planet, although some mass
differentiation such as helium precipitation may contribute to internal heating.
Hence, Jovian convection is mostly controlled by boundary forcing and it is
expected to be dominated by intermittent plume-type convection, rather than a
large-scale overturning.

This leads to a close analogy between Jovian convection and the Earth’s
oceanographic convection. Oceanographic convection, which often occurs at higher
latitudes, is known to be controlled by strong cooling due to the upward infrared
heat radiation at the top of the ocean. Both laboratory and numerical experiments
have been performed to understand this process. For example, Maxworthy and
Narimousa (1994) examined the evolution of a cold water mass initially placed
at the top of a rotating water tank. With a substantially slow rotation rate, the
intrusion of the cold mass into the lower layer creates a strongly turbulent interface
(their Fig. 2a). With an increase of the rotation rate, the turbulent interface
gradually turns into a more coherent, vertically aligned, filamental structure
(their Figs. 2b–2d). From the top view (their Fig. 3), it is seen that those
filamental structures in the vertical direction are accompanied by concentrated
vortical structures under the geostrophic balance. The vortical structures become
more and more compact on a horizontal plane with an increase of the rotation
rate. We call these filamental-vortical structures the Taylor plumes.

The detailed structure of these Taylor plumes may be more easily seen from
the numerical experiments by Julien et al . (1996). They investigated thermal
convection induced by a strong cooling by heat flux at the top of a rotating
system. As in the case of Maxworthy and Narimousa (1994), the horizontal
scale of Taylor plumes decreases with an increase of the rotation rate. A close
association of the plume–cold anomalies with the vorticity field is established,
implying a loose geostrophy (or more generally, cyclostrophic balance) of the
system.

This type of system was extended to the case with a topographic β effect (a
topographic analogy to reproduce the effect of the change of the Coriolis parameter
with latitude) by Condie and Rhines (1994) (see Fig. 6). Hot water in a rotating
bowl is rapidly cooled at the top free surface exposed to room temperature, which
induces plume-type convection (Fig. 6a). With the help of the topographic β
effect, or as a result of the secondary Hadley-type cell, multiple meandering jets
are generated (Fig. 6b). The authors claim that this laboratory system is a good
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analogue of the Jovian atmospheric circulation driven by thermal convection.
Such an oceanographic analogy to Jovian convection may eventually turn out to
be a more realistic picture than Busse’s theory.

Fig. 6. (a) Schematic side view of the experimental set up by Condie and Rhines (1994).
(b) An example of the surface flow in a rotating bowl cooled from above and insulated at
the sides. The flow is visualised by a streak photograph of floating aluminium powder. A
number of meandering jets travelling clockwise around the bowl are recognised. [Reproduced
from Fig. 1 of Condie and Rhines 1994.]
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