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Abstract

A new approach to a plasma kinetic description is discussed, the beginnings of which were
published recently (Erofeev 1997a). It is shown that calculations of the three-wave collision
integral following this approach confirm the intensity and structure of the three-wave collision
integral obtained in the traditional theory. The reported kinetics extend the area of applicability
for the weak plasma turbulence theory: apart from waves it properly accounts for the effect
of various other plasma nonlinear structures of the type of solitons, drift vortices, collapsing
cavities and so on. Some directions for further studies are also discussed.

1. Introduction

The existing machinery for the kinetic description of plasma collective motions
is based on the Vlasov equation (Vlasov 1945). It is worth noting that the Vlasov
equation coincides, in its form, with the Klimontovich–Dupree equation (see
Klimontovich 1967 and Dupree 1963)— they differ only in the assumptions made
about the solution to this equation. Namely, the Vlasov theory implies a smooth
distribution function (the characteristic spatial scale of the function is large
compared with the mean interparticle distance), whereas the Klimontovich–Dupree
distribution consists of δ-functions corresponding to individual charged plasma
particles. Conceptually, the Klimontovich–Dupree equation operates with a mixture
of discrete charged particles, whereas the Vlasov equation operates eventually with
an imaginary continuous liquids for the electron and ion components. Naturally,
the substitution of the former by the latter may result in a diversity of opinion
regarding the physical picture of plasma evolution.

It is worth noting also that the substitution of the Klimontovich–Dupree
equation by the Vlasov equation is widely motivated by the assumption that
some mean field exists in a plasma, and that it is via the mean field that
the plasma particles influence each other. Meanwhile, the definition of a mean
electromagnetic field seems to be problematic enough in the situation of an actual
plasma with discrete charged particles, where the mean square of electromagnetic
field far exceeds the square of the mean electromagnetic field.

Bearing in mind the above ideas, the author has developed an approach to
a plasma kinetic description based on the Klimontovich–Dupree equation and
applied it to the calculation of the three-wave collision integral. In an earlier
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paper (Erofeev 1997a) I concluded that the three-wave collision integral in a
Klimontovich–Dupree collisionless plasma far exceeds its traditional analogue
(calculated for the Vlasov plasma). Based on this, it was stated (Erofeev 1997b)
that the difference in the intensities of the three-wave processes in Klimontovich–
Dupree and Vlasov plasmas plainly indicates the inadequacy of the method
of the Gibbsian probabilistic ensemble for studies on physical manifestations
of thermodynamically nonequilibrium systems. Note that the method of the
probabilistic ensemble is explicitly involved in some papers (via the substitution of
an actual mixture of discrete charged particles by the ensemble of such mixtures)
to justify the use of the Vlasov equation instead of the Klimontovich–Dupree
equation (see Klimontovich 1967).

In reality, the conclusion regarding the increase in the intensity of the three-wave
process turns out to be erroneous. A mistake was made at the last stage of
the calculation in Erofeev (1997a), and the actual intensity of the three-wave
process in a mixture of charged particles coincides with that of the traditional
weak plasma turbulence theory. Therefore, the declaration in Erofeev (1997b)
on the inadequacy of the method of Gibbsian probabilistic ensemble for evolving
inhomogeneous physical systems has lost its basis. However, this declaration still
corresponds to the usual physical commonsense, and it was an inadequate choice
of the situation for illustration of its consistency that lead the author to this
failure to substantiate this declaration.

Thus, our calculation (Erofeev 1997a) seems to have given nothing new:
it turned out to be one more substantiation of the well known weak plasma
turbulence theory. Nevertheless, one aspect of the kinetics in this calculation
is worthy of attention. Within the framework of the above kinetics it becomes
possible to generalise the notion of a weak plasma turbulent wave field. To show
the way in which this approach extends this notion, let us first recall the history
of the traditional weak plasma turbulence theory.

At the very beginning of plasma studies it was revealed that plasmas are
usually unstable with respect to generation of various types of plasma waves.
These waves in the leading order do not have an influence on distributions of
plasma particles or on each other, and the first efforts of plasma theorists were
spent on studies of different waves and their linear growth rates. Then an
understanding developed that in actual situations, with plasmas being essentially
far from thermodynamic equilibrium, the plasma waves lead to the quasilinear
diffusion of charged particles, i.e. they determine the plasma evolution. It is not
only that particle distributions define the growth (damping) rates of plasma waves,
but also the evolution of particle distributions depend on the wave amplitudes.
The plasma waves also interact, which complicates even more the problem of
a self-consistent description of plasma evolution. The means for solving this
problem were developed in the theory of weak plasma turbulence. The basis of
the plasma description within the framework of this theory can be outlined as
follows.

Suppose, for simplicity, that we have a homogeneous nonequilibrium plasma
with slightly excited plasma waves, and we let it faithfully follow the Vlasov
equation. Then the use of the Vlasov and Maxwell equations gives at least
a formal opportunity to calculate particle distributions and the distribution of
the electromagnetic field at any moment, provided the initial amplitudes of all
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plasma waves and initial distributions of plasma particles are known. But note,
on the one hand, one never has full information on the wave amplitudes (at
least one usually has no information on relative phase shifts) or on plasma
distributions. On the other hand, the full integration of the Vlasov–Maxwell
equations is technically problematic. In reality, a full knowledge of the plasma
electromagnetic field is not necessary. From a practical standpoint, the spectrum
of the turbulent wave field, i.e. the distribution of the energy density of plasma
waves with respect to their wavelength, is a perfectly adequate characteristic for
describing effects associated with the plasma waves. For instance, it is the wave
spectrum that defines the plasma quasilinear diffusion. Also, it is the spectrum of
drift waves that determines the plasma currents across the magnetic field due to
the interaction of charged particles with drift waves. Factually, all the practically
important aspects of nonlinear plasma evolution due to the development of a
weakly turbulent wave field and the interaction of its waves with particles and
other waves can be described in terms of the wave spectrum, i.e. in terms of
squared wave amplitudes.

Conceptually, the traditional weak plasma turbulence theory deals only with
slightly excited wave fields, when the actual electromagnetic field in the plasma
can be decomposed into plane waves that are supposed to have a typical time of
wave nonlinear interaction large compared with the time of wave separation in
phase. In this case, it is usually said that the plasma waves possess random phases,
and therefore to leading order the correlation in phases of the various waves can
be ignored. (This is the essence of the so-called random phase approximation.)

It should be stressed that only a sufficiently restricted class of nonlinear
phenomena in plasmas can be explored in this approximation. As a matter of
fact, with an increase in the amplitudes of partial waves one quickly comes to
a situation where the random phase approximation is violated (the phases of
different waves cannot be regarded as independent). Consider, for instance, a
soliton (solitary wave) in a plasma (Berezin and Karpman 1964, 1967; Krall
1969). It can be decomposed into plane waves, but the relative phases of its
components are fixed (entirely correlated), due to the nonlinear interaction of the
soliton spatial harmonics. To take another phenomenon, a drift plasma vortex
(Hasegawa and Mima 1977, 1978; Petviashvili 1977) cannot even be decomposed
into plane waves. Therefore, within the framework of the traditional weak plasma
turbulence theory it was impossible to consider either the effect of a mixture
of solitons, or that of a mixture of drift vortices. Meanwhile, from the same
practical standpoint, the effect of both the homogeneous mixtures of the solitons
and of the drift vortices on the macroscopic plasma evolution is similar to that of
the traditional turbulent wave field. (It is worth noting that the problem of the
influence of plasma solitons and drift vortices on the plasma macroscopic behaviour
was regarded as a motivating force for the theoretical exploration of these objects.)

The basis of the kinetics of Erofeev (1997a) makes no distinction in the
traditional weak turbulent wave field and homogeneous mixtures of solitons
and drift vortices. Moreover, if other exotic objects of the existing plasma
theory [for instance the phase space granulations of Dupree (1972, 1978) or the
phase density holes of Dupree (1982)] had been of any importance for plasma
physical manifestations, the effect of their homogeneous mixtures would have
been described in these kinetics on common ground with that of the waves.
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In the present paper we begin by briefly outlining the kinetics of Erofeev
(1997a). Emphasis will be given to substantiating the declaration made above on
extending of range of applicability of the weak plasma turbulence theory. Then
we write the corrected results of the earlier calculation. In conclusion we discuss
once more the problem of plasma kinetics.

2. Kinetics of the Klimontovich–Dupree Plasma

Klimontovich introduced the distribution function

Nα(r,p, t) =
∑
i=1

δ3(r− ri(t)) δ3(p− pi(t)). (1)

This function is composed of the terms corresponding to the individual charged
plasma particles. The subscript α stands for the type of particle (electron, ion)
and the subscript i represents different particles of a given kind; the functions
ri(t) and pi(t) represent the particle trajectories. We call this distribution
function a microdistribution.

The microdistribution evolves according to the Klimontovich–Dupree equation:

∂Nα

∂t
+ v .∇Nα + eα

(
E +

1
c

(v×B)

)
.
∂Nα

∂p
= 0 . (2)

The trajectories of the plasma particles are the characteristics of this partial
differential equation. The total electric E and magnetic B fields are solutions to the
Maxwell equations, when the charge currents and densities are the corresponding
integrals of the microdistributions Nα.

For definiteness, we shall focus on the problem of plasma diffusion across a
magnetic field. The plasma is homogeneous along the yz plane. A nonlinear
turbulent field of the drift waves is present in the plasma boundary layer. Due
to the interactions of the plasma particles with the drift waves, the width of the
plasma boundary increases with the course of time (which may lead to plasma
losses in experiments with magnetic plasma confinement).

For studying the temporal extension of the plasma boundary it is most natural
to consider the kinetic currents along the x axis, and therefore we average
the microdistribution (1) along the yz plane. We regard the planes as ‘thick’:
they have small but finite dimensions along x and the momentum components
pβ . The averaged microdistribution is a well-defined and statistically reliable
function. This function describes well the statistics of the particle distribution in
the r–p phase space, and it can be used for an objective description of plasma
currents along the x axis. It is natural to regard this statistical function as
a distribution function f(r,p, t). It is clear that its time variation is strictly
specified. Therefore, the problem of an objective plasma description is equivalent
to the problem of the calculation of the rate of change of this function.

In the situation under consideration, the turbulent field of drift waves determines
the evolution of the distribution functions and vice versa. The drift turbulence
is characterised by the drift wave spectral density, and we derive the evolution
equation for the wave spectral density. Similar to the traditional expression for
the rate of change of the spectral density, our rate of change can be divided into
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a number of terms corresponding to different physical processes. In this way, we
separate the part of the time derivative of the spectral density that corresponds
to the three-wave interactions.

Calculating the rate of change of the distribution function, one obtains an
evolution equation of traditional form:[
∂

∂t
+ vβ

∂

∂rβ
+
eα

c
v0
iF

iβ ∂

∂pβ

]
fα(r,p, t)

= − eα

c
vi

∂

∂pβ
〈
δF iβ(r, t)Nα(r,p, t)

〉
. (3)

We see that the distribution function f(r,p, t) is advanced in time by a ‘two-point
correlation function’,

〈 δF iβ (r′, t′) Nα (r,p, t) 〉 . (4)

In this notation δF iβ (r′, t′) stands for the spatially fluctuating part of the
electromagnetic field (EMF) tensor and the averaging is of the above type over
the yz plane. The difference r − r′ should be fixed at the averaging, i.e. we
should change the variables r and r′ synchronously.

In turn, the two-point correlation function is advanced in time by a ‘three-point
correlation function’,〈

δF iβ (r′′ , t′′) δF jγ (r′ , t′) Nα (r,p, t)
〉
. (5)

(When averaging, all three variables r, r′ and r′′ change synchronously, for
fixing the differences r′−r and r′′−r. The averaging with fixed shifts of variables
r from one point to another is a general procedure in our consideration.)

Correspondingly, the three-point correlation function is advanced in time by the
‘four-point correlation function’, etc. In such a way, we obtain a definite hierarchy
of equations. These equations account appropriately for many processes in a
turbulent classical plasma: wave excitation and absorption by plasma particles,
particle scattering on the waves, Coulomb collisions, and so on. But they are not
suitable for a constructive plasma description. Nevertheless, the corresponding
equations can be used for the derivation of more useful kinetic equations: the
evolution equation for the function that we call a wave spectral density and
the evolution equation for the actual distribution function. These equations are
obtained as a result of a calculation carried out in two stages. For the first stage
we derive a truncated closed evolution equation for the two-point correlation
function. To obtain this equation, we use conventional expansion techniques, and
the above hierarchy of equations (truncated up to necessary order) is used to
start the iteration procedure.

The two-point correlation function is always integrated in all of the final
equations. With an accuracy sufficient for integration, it can be expressed in
terms of a more familiar ‘two-time correlation function’. The two-time correlation
function is determined by two electromagnetic field tensors, the product of which



848 V. I. Erofeev

is averaged over the yz plane:

Φiβjγ(r′, t′ , r, t) =
〈
δF iβ(r′ , t′) δF jγ(r, t)

〉
. (6)

This function is typical for traditional (i.e. based on the Vlasov equation) weak
plasma turbulence theory. It evolves in accordance with the Maxwell equations
when the charge currents and densities are the corresponding integrals of the
two-point correlation functions. The expression for the two-point correlation
function in terms of the two-time correlation function is obtained by iterating the
above-mentioned evolution equation for the two-point correlation function. (To
leading order this equation represents a linear relationship between the two-point
correlation function and the two-time correlation function.) Obtaining this
expression (and consequently the evolution equation for the two-time correlation
function) completes the first stage in the calculation of the final kinetic equations.
For the second stage we express the two-time correlation function in terms of a
function called the wave spectral density and obtain the time derivative of this
function.

For an expanded description of this first stage the reader is referred to Erofeev
(1997a). The corresponding calculation was performed by utilising graphical
means for writing the analytical manipulations. Here we give only the final results
of this stage: the evolution equations for the matrix elements of the two-time
correlation function [see equations (24) and (25) in Erofeev (1997a)]

1
c

∂

∂t

〈
δ̃F βγ(r, t) δ̃F

kl
(r′, t′)

〉
= − ∂

∂rβ

〈
δ̃F γ0(r, t) δ̃F

kl
(r′, t′)

〉

+
∂

∂rγ

〈
δ̃F β0(r, t) δ̃F

kl
(r′, t′)

〉
, (7)

1
c

∂

∂t

〈
δ̃F

β0
(r, t) δ̃F

kl
(r′, t′)

〉
= − ∂

∂rγ

〈
δ̃F

βγ
(r, t) δ̃F

kl
(r′, t′)

〉

− 4π
c

∫
dr dt σβm·· · γ (r, t, r, t)

〈
δ̃F
· γ
m·(r, t) δ̃F

kl
(r′, t′)

〉

− 4π
c

∑
α

eα

∫
dp vβ P kl

α (r,p, t, r′, t′) . (8)

In equation (8), σβm·· · γ (r, t, r, t) is a conductivity tensor. (For a detailed description
of the various terms in these formulae see Erofeev 1997a.)

It should be emphasised that to this point we have not formulated any
restrictions on the type of motion that the plasma particles participate in. There
are only two essential restrictions that are implied. The first one is that the
two-time correlation function has some characteristic decay length, the correlation
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length Rc, which is large compared to the Debye radius. In fact this is not even
a restriction for ideal plasmas. (The correlation length Rc depends purely on the
spectrum of plasma collective motions.) The second restriction is on the value of
spatial variations of the electromagnetic field in the plasma: the absolute value
of the energy density of the electromagnetic field (i.e. the absolute value of
the two-point correlation function) should not exceed some threshold dictated by
convergence of the iteration procedure. Speaking of its content, this restriction
resembles the well-known applicability condition of the traditional weak plasma
turbulence theory: the theory works only when the wave energy density does not
exceed some threshold. For instance, for the case of Langmuir turbulence this
threshold is the threshold of the modulational instability. The reader is reminded
that above the latter threshold the time of interaction for separate waves becomes
comparable with the time of their phase separation, i.e. the phases of different
waves in the plasma become strongly correlated.

We reiterate that the plasma particles can exercise very complicated motions,
and no restriction on the type motion exists. Some plasma particles can be
involved in oscillatory motion, while others can be trapped inside drift vortices.
One can speak also about phase space granulations (Dupree 1972, 1978) or
density holes (Dupree 1982), and there even may be the possibility of the
Bernstein–Green–Kruskal modes (see Bernstein et al. 1957). Even the influence
of a random mixture of Zakharov’s (1972) collapsing cavities (in the case of
Langmuir turbulence) on the plasma behaviour may sometimes be studied. All
the above-mentioned objects contribute to the two-time correlation function, and
this function properly accounts for their integral effect.

Note also that equations (7) and (8) describe the effect of the Coulomb
collisions. It seems that they can be used to check the well-known Lenard–Balescu
equation (see Lenard 1960 and Balescu 1960).

In the case when the plasma collective motions define the main aspects
of the plasma evolution (the Coulomb collisions can be neglected) a further
calculation—the second stage of the derivation of the final kinetic equation—can
be performed as follows. First, we perform a transition from the dependencies
on the spatial variable r − r′ to the related dependencies on Fourier variables.
In the case of a homogeneous plasma this transition is very useful for simplifying
the treatment of the problem. In our problem the inhomogeneity effect cannot be
neglected. But the typical scale of motion (of the order of the electron Larmor
radius) is small compared with the inhomogeneity length. It helps to reduce
(7) and (8) to comparatively simple equations for the Fourier transform of the
two-time correlation function. We define the latter transform Φijklk (r, t, t′) by the
identity

Φijklk (r, t, t′) =
∫

dR
(π)

exp(−ik . R)

〈
δF ij(r +

R
2
, t) δF kl(r− R

2
, t′)

〉
. (9)

With this definition, the transform is self-adjoint:

Φijklk (r, t, t′) =
[
Φklijk (r, t′, t)

]∗
. (10)
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In the general case, the system of simultaneous equations that follows from (7)
and (8) in Fourier variables consists of 36 independent equations in 36 independent
components of the tensor Φk. For simplicity, we restrict ourselves to the situation
where the following condition is satisfied:

β ≡ 8πnT
B2 ¿ me

mi

. (11)

Under this condition, when the drift waves are potential, the only essential
components of the tensor Φijklk (r, t, t′) are the components Φβγk (r, t, t′). All the
others can be expressed in terms of these by iterations. As a result, the system
of equations reduces to one equation for one function:

Φk(r, t, t′) =


k
kβkγΦ

βγ
k (r, t, t′) .

In other words, the field of the drift turbulence is a scalar one: it can be described
by the scalar function Φk(r, t, t′). The evolution equation of this function is

∂

∂t
Φk(r, t, t′) = − 4π

∫
dt {σk(r, t, t)Φk(r, t, t′)

− i



∂

∂kδ
σk(r, t, t)

∂

∂rδ
Φk(r, t, t′)

+
i



∂

∂rδ
σk(r, t, t)

∂

∂kδ
Φk(r, t, t′) } − Bk(r, t, t′) . (12)

In this formula σk(r, t, t′) is a conductivity scalar, defined by

σk(r, t, t′) =
kβ

k

[
kγ +

i



(
δδγ − kγkδ

k

)
∂

∂rδ

]
σβ ·k · · γ , (13)

where δδγ is the Kronecker delta of rank 2. The scalar Bk(r, t, t′) is

Bk(r, t, t′) = 4π
∑
α

eα

∫
dp

kβ v
β kγ

k
P 0γ
αk (r,p, t, t′) . (14)

The formula (12) contains only the first non-vanishing terms of the expansion
parameter ρLi/a (recall that a is a typical inhomogeneity length).

The instability of the drift waves may be revealed when one considers the first
term in the braces on the right-hand side of this formula. The other terms within
these braces contain derivatives of Φ̂k(r, t, t′) with respect to the coordinates
and the wave vectors. They correspond to a wave drift in (k,r) space, which is
induced by the plasma inhomogeneity.
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We repeat once more that to this point we have not imposed any restrictions
on the motions of plasma particles, or on the variety of physical structures present
in the plasma. And if we use notions developed in the theory of plasma waves, it
is only because of convenience, and because the essence of these notions is well
known. In other words, an orientation on waves in a plasma in our treatment is
the most transparent one for readers.

In calculations it is sufficient to regard (12) as an equation for the correlation
function Φk(r, t, t′) in the region t > t′. In the region t < t′ the function can
be reconstructed using equation (10).

Now let us consider the following aspect of our master equation (12). Suppose
that we are dealing with a steady homogeneous plasma and that the last term on
the right-hand side of the equation can be neglected. Then, the only solutions
to the equation are natural oscillations: if we replace the function Φk(t, t′) by
the oscillating function Φk(t′) exp(−iωk(t− t′)) then (12) reduces to a dispersion
equation. Further, if we return to an inhomogeneous time-dependent collisionless
plasma and restore the last term on the right-hand side, this will slightly modify
the situation. Namely, the key part of the two-time correlation function comprises
the natural oscillations, and all the remaining terms are the forced oscillations
related to the natural oscillations in some way.

If one accepts the given image of the wave correlation function, one can
conclude that the term Bk(r, t, t′) as a function of t− t′ damps for a time roughly
equal to the inverse frequency width of the spectrum. Note that this width is
small compared with the decay time of the oscillations. We suppose that the term
B slightly modifies the natural oscillations. This is the case provided the energy
density of the turbulent wave field is sufficiently low (or more correctly we are
likely to have the well-known applicability condition of weak plasma turbulence
theory—see above).

We stress that the introduction of natural oscillations here appears only as
a method of calculation of the two-time correlation function. By no means do
these natural oscillations separate the ‘wavy’ part of the two-time correlation
function from the others. However, undoubtedly, the traditional waves are entirely
included in our natural oscillations, and in the case of traditional weak plasma
turbulence they are the only contributors to the spectral density.

A more expanded basis for the calculation of the two-time correlation function
is given by Erofeev (1997a). Here we mention only that the leading order of the
two-time correlation function has the form

Φk(r, t, t′) =
∑
s=±

nsk(r, t′) exp
(
− i

∫ t

t′
ωsk(r, τ) dτ

)
, (15)

with a positive real function nk(r, t′) corresponding to the wave spectral density
(that is, had the two-time correlation function been composed of the contributions
of waves only, this function is just the wave spectral density). A direct integration
of (12) over time gives a correction to leading order of the two-time correlation
function; within the accuracy of our treatment the corresponding correction is
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quite sufficient. The corrected two-time correlation function is

Φk(r, t, t′) =
∑
s

{
[−13]nsk − 4π

[
∂nsk

∂t′
− 2γsknsk

]

×
∫ t

t′
dt1
∫ t′

−∞
dt2 σk(r, t, t) (t − t′) exp

(
i

∫ t

t

ωsk(τ)dτ
)

+
4πi(t− t′)

2

{(
i

4π
− ∂σkω

∂ω

) [
∂ωsk
∂kδ

∂nsk

∂rδ
− ∂ωsk

∂rδ
∂nsk

∂kδ

]

+ nsk

[
∂2σkω

∂kδ∂ω

∂ωsk
∂rδ

− ∂2σkω

∂rδ∂ω

∂ωsk
∂kδ

]}} ∣∣∣∣∣
ω=ωsk(r,t′)

× exp
(
− i

∫ t

t′
ωsk(r, τ) dτ

)
−
∫ t

t′
Bk(r, t, t′) dt . (16)

When omitted, the time variable t′ and the variable r are implied in this
expression.

The time derivative of the spectral density can be easily obtained from the
following chain of equations:

∂

∂t
Φk(r, t, t) =

∂

∂t
Φk(r, t, t′)

∣∣∣∣∣
t′=t−0

+
∂

∂t
Φk(r, t′, t)

∣∣∣∣∣
t′=t−0

= 2 Re

[
∂

∂t
Φk(r, t, t′)

] ∣∣∣∣∣
t′=t−0

. (17)

Calculating here the time derivative of the autocorrelation function, i.e. the time
derivative of nk + n−k, one can replace the two-time correlation function by the
right-hand side of (16). The mistake in Erofeev (1997a) was made at this point.
Instead of relation (39) in that paper, we have the equation∑

s

∂nsk

∂t
= 2

∑
s

{ Imωsk nsk + ReAsk }

+ 4π

[
∂nsk

∂t′
− 2γsknsk

]
∂Imσkω

∂ω

∣∣∣∣∣
ω=Reωsk

− 2 ReBk(r, t, t) ,

Ask =
4π
2

[(
1

4π
+ i

∂σkω

∂ω

) (
∂ωsk
∂rδ

∂nsk

∂kδ
− ∂ωsk

∂kδ

∂nsk

∂rδ

)

+ i nsk

(
∂2σkω

∂kδ∂ω

∂ωsk
∂rδ

− ∂2σkω

∂ω∂rδ
∂ωsk
∂kδ

)] ∣∣∣∣∣
ω=Reωsk

, (18)

where σkω is the Laplace transform of the conductivity scalar.
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Now let us present the corrected results of the calculation performed by Erofeev
(1997a). The rate of change of the drift wave spectral density can be written in
the form

∂

∂t
nk ≡ Stnk = 2γ lin(k)nk + Stscat nk + St3 nk

+ 2
ReA+

k

ReEkω|ω=Reωsk

, (19)

where

Ekω = 1 + 4πi
∂

∂ω
σkω. (20)

In the expression (19) for the collision integral of drift waves, Stnk, the different
terms correspond to different physical processes. The linear growth of the drift
waves is given by the first term on the right-hand side: γ lin in (19) is for the
linear growth rate. The term 2 ReA+

k /ReEkω corresponds directly to wave drift
in phase space:

ReA+
k =

4π
2

[
ReEkω

(
∂Reω+

k

∂rδ
∂nsk

∂kδ
− ∂Reω+

k

∂kδ

∂nsk

∂rδ

)

− nk

(
∂2Imσkω

∂kδ∂ω

∂Reω+
k

∂rδ
− ∂2Imσkω

∂ω∂rδ
∂Reω+

k

∂kδ

)]∣∣∣∣∣
ω=Reωsk

. (21)

The term Stscat describes the nonlinear wave scattering induced by the plasma
particles:

Stscat nk =
2nk

ReEkω
∑
α,s

eα Re
{∫

dk dk dp dp

× kβv
β
1

k
δ3(k− k1 − k2)nsk1

×0 Gαkω+i0(p,p1)
kε1
k1

∂

∂pε1
Hαkω,−k1−ω′(p1)

}
, (22)

where

ω = Reω+
k , ω′ = Reωs

′

k1
, ω′ = Reωs

′

k2
. (23)
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Finally, the term St3 nk is the three-wave collision integral:

St3 nk =
2π

ReEkω
∑
s′,s′

∫
dk dk δ(k− k − k) δ(ω − ω′ − ω′)

× Re
{
Vk1ω′,k2ω′′ Vkω,−k1−ω′′ nkns′k1 (Ek2ω′′)

−1

+ 1
2 |Vk1ω′,k2ω′′ |

2
ns′k1ns′′k2 (Ekω)−1

}
. (24)

In these formulae the matrix element of the three-wave interaction Vk1ω′,k2ω′ is
defined as follows:

Vk1ω′,k2ω′ = 4π
∑
α

eα

∫
d3p

kβv
β

k
Hαk1 ω′,k2 ω′′(p) , (25)

Hαk1 ω′,k2 ω′(p) = e2
α

∫
d3p1

0Gαk1+k2 ω′+ω′′+i0(p,p1)

×
{
kβ2
k2

∂

∂pβ1

0Gαk1 ω′+i0(p1,p2)
kγ1
k1

∂fα

∂pγ2

+
kβ1
k1

∂

∂pβ1

0Gαk2 ω′+i0(p1,p2)
kγ2
k2

∂fα

∂pγ2

}
. (26)

The function Hαk1 ω′,k2 ω′′(p) contains singularities as a function of ω′ and ω′′.
This function was introduced to represent concisely the term P that is necessary
for calculating the time derivative of the distribution function. The expression
for P is

P0γ
αk(r,p, t, t′) = − kγ

k

∫
dω exp(−iω(t− t′))

∑
s,s′

∫
dk dk δ(k− k − k)

× 1
2 δ(ω − Reωsk1

− Reωs
′

k2
)Hαk1 ω′,k2 ω′′(p)

× nsk1 ns′k2 (Vk1 ω′∗,k2 ω′′∗)
∗ 1

(− i ω∗ + 4π σkω∗)
∗ . (27)

From a formal point of view, this expression diverges. However, to calculate
the time derivative of the distribution function one needs to integrate P over k.
After this, the final contribution to the collision integral converges.

In the form presented here the three-wave collision integral coincides in its
main features with that of the traditional calculations by Kadomtsev (1965),
Davidson (1972) and Rogister and Oberman (1969).
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3. Conclusion
In the paper here we have outlined the beginnings of a nontraditional approach

to the derivation of kinetic equations for classical plasmas, first developed by
Erofeev (1997a). We have shown that calculations following the framework of
this earlier work confirm the structure and intensity of the traditional three-wave
collision integral (contrary to the erroneous declaration made in Erofeev 1997a
and then repeated in Erofeev 1997b). This means that the new calculations
constitute one more substantiation of the existing weak plasma turbulence theory.
We have shown that these calculations also extend the notion of the plasma
weak turbulent wave field and the grounds for application of the weak plasma
turbulence theory. Unlike the traditional weak plasma turbulence theory that
was developed for treating wave fields only, in our new understanding the theory
can be equally applied to studying macroscopic effects of mixtures of interacting
solitons (Berezin and Karpman 1964, 1969; Krall 1969), vortices (Hasegawa
and Mima 1977, 1978; Petviashvili 1977), the Bernstein–Green–Kruskal (1957)
modes, Zakharov’s (1972) collapsing caverns (in the case of Langmuir turbulence),
Dupree’s (1972, 1978) density holes and Dupree’s (1982) phase space granulations
(if the latter two notions are of any importance for plasma studies).

In reality, what was advanced in Erofeev (1997a) is but a most natural basis
for studies of plasma macroscopic behaviour due to various nonlinear phenomena.
According to this basis, there is no necessity to consider, for instance, the
structures of various vortices, or questions of their stability and interaction. The
reader knows that there exist plenty of publications devoted to the description
of different vortex structures (surely, an infinite number of these structures in
plasmas can be proposed), to studies of their stability and to discussions of various
aspects of the interaction of plasma vortices. However, note that without accurate
descriptions of vortex generation (which is thought to be due to the three-wave
interaction, see Shukla 1991), no consistent quantitative description of the vortex
role in a plasma can be developed. It is not only that a quantitative description
of the vortex generation is absent at the moment, but it cannot even be developed
due to the large variety of vortex structures. For this reason, when the question
arises as to the role of vortices in plasma losses, only qualitative speculation about
their contribution to the diffusion coefficient is usually proposed. In contrast, our
approach from the very beginning is oriented towards extracting a quantitatively
correct physical picture of plasma evolution, even when it is complicated by the
generation of mixtures of vortices and the subsequent interaction of vortices.

It seems that at present the study of plasma vortices is popular because the
vortices are regarded as more universal structural elements of the plasma physical
picture compared to plasma waves. But in reality, the language of the drift
vortices is a less rigorous one than that of the waves, and the methodology of this
language is insufficiently well elaborated. After our treatment, the substitution
of one set of structural elements, the plane waves, by another, the drift vortices,
seems to be senseless.

Arguments similar to those above regarding the drift vortices can be advanced
for all the other structures in plasmas that we have listed here. We suppose
that there is no extensive use in studies of either separate solitons or Dupree’s
density holes and phase space granulations, and the same can be said about
many other topics of plasma research.
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In the case of four-wave interactions, the traditional calculations cannot give
a full description of the collision integral, and only their modification following
the reported ideas make it possible both to check the structure of different
terms of the integral and to obtain a correct expression for the intensities in
various channels of the process. Moreover, preliminary calculations revealed some
new renormalisations of the four-wave matrix element when one starts from the
Klimontovich–Dupree rather than the Vlasov equation. The reason is that while
calculating the four-wave collision integral one should use not a linear relation
between the two-point and two-time correlation functions in diagrams (which
was easily sufficient for obtaining the three-wave collision integral), but a more
corrected nonlinear relation of the former with the latter. It is anticipated that
even some extra terms in the collision integral may appear that have structures
different from the known ones.

Thus, the approach to the plasma kinetic description reported here seems to
be a more rigorous one compared to its traditional analogue. This conclusion
may be ascribed to the fact that we have constructed a perturbation theory that
operates from the very outset with the correlation functions and not with wave
amplitudes.

Now let us return to our earlier declaration concerning the inadequacy
of the method of the Gibbsian probabilistic ensemble for studies of evolving
inhomogeneous physical systems. According to usual physical commonsense, the
traditional substitution of a certain thermodynamically nonequilibrium physical
system by a system ensemble looks an unnatural one, and the results of this
substitution should depend on the content of the ensemble. In particular, this
can be said about substitution of a Klimontovich–Dupree plasma by a Vlasov
plasma. Physically, there are no evolving ensembles in the Universe. An evolving
ensemble is a theoretical abstraction only. For this reason it is only natural to
anticipate some difference in the pictures of physical evolution of the mixture
of discrete charged particles (such as the Klimontovich–Dupree plasma) and the
imaginary continuous liquids of electron and ion components (such as the Vlasov
plasma). The collective effects are not those where this difference manifests itself,
and it is in the studies of collisions where one can hope to find a discrepancy
in plasma evolution following the Klimontovich–Dupree equation and following
the kinetic equations of Bogolubov (1946), Born and Green (1949), Kirkwood
(1946) and Yvon (1935) (known collectively as the BBGKY kinetic equations).
In particular, the first step to be done is to check the Lenard–Balescu equation
(Lenard 1960; Balescu 1960). But the author has only a small hope for success
in this direction. Even if there exists any difference in the physical pictures of
Coulomb collisions within the framework of the reported kinetics and within the
BBGKY kinetics, it should be only a small correction to the leading order of
the process. At least for the plasma case, the substitution of a physical system
by a system ensemble is performed in a situation where the discordance in the
physical pictures of the process for a certain physical system and for a system
ensemble seems to be negligibly small in all circumstances. That is, it may well
be the case that one can always directly study physical manifestations of certain
physical system (as was done for the case of the Klimontovich–Dupree plasma
by Erofeev 1997a), and that one can also substitute it by a system ensemble
(traditional BBGKY kinetics) with practically no change in the physical picture
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of the system evolution. We stress, nevertheless, that without a thorough study
of this question the traditional substitution of a physical system by the system
ensemble is not substantiated.
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