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Abstract

We present here the solution of the helium double photoionisation problem by the convergent
close-coupling (CCC) method. This method allows us to obtain the most detailed description
of the double photoionisation process in the form of the fully resolved triply differential cross
section (TDCS). The accuracy of our model is tested by calculating the TDCS in the three
different forms of the electromagnetic operator which produces essentially identical results. We
compare our calculation with the most accurate experimental and theoretical data available
to date.

1. Introduction

The three-body break up of a charged system is one of the most fundamental
and still intriguing problems of atomic collision physics. The helium double
photoionisation is the simplest example of the three-body Coulomb break up and,
as such, it attracts considerable interest from experimental and theoretical atomic
physicists. The most detailed description of the helium double photoionisation,
known also as the (γ, 2e) reaction, can be obtained in the form of the fully-resolved
triply differential cross section (TDCS) which gives the probability of detecting
the two photoelectrons with fully determined kinematics. Considerable effort
has been made to obtain this quantity experimentally. A large number of
synchrotron-based experiments have been performed to measure the TDCS by
observing the angular correlation of the two photoelectrons escaping with fixed
energies. The first measurement was reported by Schwarzkopf et al. (1993a) who
chose the symmetric energy sharing E1 = E2 = 10 eV and a simple geometry in
which one of the two emitted electrons was directed along the major polarisation
axis of the elliptically polarised light. The angular distribution of the second
photoelectron in the polarisation plane was detected. Later, a number of
similar experiments were reported at slightly different geometries with both equal
(E1 = E2 = 5, 10 eV) and unequal (E1 = 5 eV, E2 = 47 ·9 eV) energy sharing
(Schwarzkopf 1995; Schwarzkopf et al. 1993b, 1994b). Common to all these
experiments, performed at the BESSY storage ring (Berlin, Germany), was detection
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of the two photoelectrons in the plane perpendicular to the direction of the
photon. This experimental set up is illustrated in Fig. 1. An attempt has been
made to normalise the TDCS. The absolute data reported by Schwarzkopf and
Schmidt (1995) were later revised upwards by a factor of two (Schwarzkopf and
Schmidt 1996; Schmidt et al. 1996).

Different kinematics were used by the group working at the Super-ACO storage
ring (Orsay, France) (Lablanquie et al. 1995; Mazeau et al. 1996; Malegat et al.
1997). These experiments were performed with linearly polarised light and one
of the electrons directed along the polarisation vector of the photon. The second
electron was detected in the plane formed by the polarisation vector and the
momentum of the photon, also shown in Fig. 1. Following the convention
of Malegat et al. (1997) we refer to this experimental set-up as the coplanar
geometry. In contrast, the BESSY kinematical arrangement is referred to as the
perpendicular geometry.

Fig. 1. Alignment of the photoelectron momenta k1, k2, and polarisation vector of the
photon e. Left: perpendicular geometry used at BESSY. Right: coplanar geometry used at
Super-ACO.

A different set of experimental data was reported by Dawber et al. (1995). They
obtained the TDCS at photon energies very close to the double photoionisation
threshold E1 +E2 = 0 ·6, 1 and 2 eV both for equal and unequal energy sharing.
Although their data were not absolute, all the TDCS were obtained with the
same normalisation constant. This allowed a study of the departure from the
Wannier regime of photoionisation with increasing photon energy.

An alternative way of studying helium double photoionisation was used by
Dörner et al. (1996, 1997). Instead of detecting in coincidence the two outgoing
electrons they studied the correlated motion of the He2+ ion and one of the
photoelectrons. With this technique they were able to obtain the fully resolved
double photoionisation cross sections within a 4π solid angle at energies 1–80 eV
above the threshold.

From the point of view of theory, calculation of the fully resolved double
photoionisation presents the most challenging task and requires a detailed account
of all aspects of the electron–electron and electron–ion interactions. Following
the pioneering work of Schwarzkopf et al. (1993a) various theoretical models have
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been tried to calculate the helium double photoionisation TDCS. Maulbetsch and
Briggs (1993a, 1993b) employed a three-body Coulomb (3C) correlated final-state
wave function. Alternatively, Pont and Shakeshaft (1995b, 1996) described the
final state as a product of two screened Coulomb (2SC) wave functions employing
effective charges. The shape of the TDCS obtained in early experiments by
Schwarzkopf et al. (1993a, 1994b) was reproduced very well both by the 2SC (Pont
and Shakeshaft 1995a) and the 3C (Maulbetsch and Briggs 1993a; Schwarzkopf
et al. 1994b) theories. The phenomenological fourth-order Wannier theory of
Feagin (1996) reproduced very accurately shapes of the TDCS at photon energies
up to 20 eV above the threshold (Dorner et al. 1997), but does not yield correct
absolute values.

The 3C and 2SC theories (Maulbetsch et al. 1995) were also used to reproduce
the experimental results obtained in the coplanar geometry by Lablanquie et al.
(1995). The conclusion was that the two theories were close to each other and
both in disagreement with the experiment. Later Mazeau et al. (1996) reported
another set of measurements in the coplanar geometry with improved statistics.
Comparison with the theory seemed to be more favourable (Huetz 1997).

Determination of the absolute TDCS appeared to be even a more difficult task
both for theory and experiment. Firstly, it became obvious that the 3C calculation
in various forms of the electromagnetic operator (length and velocity) gave results
deviating in magnitude by a factor of 10. The 2SC calculation was reported only
in the velocity form and fell right in between the length and velocity 3C results.
Secondly, the existing absolute experimental data (Schwarzkopf and Schmidt
1995) were found inconsistent with a well established total double photoionisation
cross section σ2+. It forced Schwarzkopf et al. to revise their values upwards by
a factor of two (Schwarzkopf and Schmidt 1996; Schmidt et al. 1996).

As it follows from the above discussion the problem of helium double
photoionisation is far from a final solution and more theoretical work is still
needed to produce an accurate and gauge-independent reliable absolute TDCS. In
this paper we report on the first application of the convergent close-coupling (CCC)
method to the calculation of helium double photoionisation TDCS. The method
has been demonstrated to produce accurate integrated double photoionisation
cross sections over a wide range of photon energies (Kheifets and Bray 1996).
After an improvement had been made to the description of the helium atom
correlated ground state by employing a 14-term Hylleraas ground state, the
integrated cross sections calculated in the three gauges of the electromagnetic
interaction, length, velocity and acceleration, became practically identical from
threshold to 1 keV (Kheifets and Bray 1998). This development makes the CCC
method a strong contender to produce an accurate and reliable absolute TDCS.

The paper is organised as follows. In Section 2 we present the CCC formalism
as applied to the double photoionisation problem. In Section 3 we give the
results in the form of the absolute TDCS for various experimental geometries
and make a comparison with the data and other calculations. In conclusion we
discuss possible extensions of the present theory.

2. Formalism

We treat the double photoionisation as a two step process. The first is the full
absorption of the photon energy by one electron. The second is the interaction
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of this electron with the helium nucleus and the remaining electron. We
require an accurate description of the initial and final states of the target.
For the initial state we choose a 14-term Hylleraas expansion. For the
final state we use a close-coupling expansion to obtain the wave function
corresponding to electron-impact excitation and ionisation of the He+ ion. The
part corresponding to ionisation is identified with double photoionisation. The
excitation part corresponds to single photoionisation with excitation of the
remaining electron.

The convergent close-coupling (CCC) method was first introduced by (Bray
and Stelbovics 1992) for the e–H scattering problem. The first indication that it
may be applied to ionisation problems came from the reproduction of the e–H
total ionisation cross section (TICS) and spin asymmetry (Bray and Stelbovics
1993). Indeed, it has been successfully applied to the calculation of differential
e–H ionisation (Bray et al. 1994). In the present case we are interested in e–He+

ionisation, and the CCC method has already demonstrated the ability to obtain
accurate TICS in this case (Bray et al. 1993). The details of the CCC theory and
applications for electron scattering on one-electron targets have been given by
(Bray and Stelbovics 1995). Briefly, the total wave function is expanded in a set of
N square-integrable target states obtained by diagonalising the target Hamiltonian
in an orthogonal Laguerre basis. The negative-energy states approximate the
full target discrete spectrum, while the discrete positive-energy states provide an
integration rule over the true target continuum. Ionisation is identified with the
excitation of the positive-energy target states. The close-coupling equations are
formed and solved for the T -matrix using momentum space techniques outlined
by (McCarthy and Stelbovics 1983).

The fully differential cross section of helium double photoionisation resolved
with respect to the solid angles of the two photoelectrons and the energy can
be written, using the standard partial wave expansion, as

d3σ

dΩ1dΩ2 dE2

=
8π2

ωc

∣∣∣∣∑
l1l2

(−i)l1+l2ei[δl1 (k1)+δl2 (k2)]Dl1l2(k1k2)

×
∑
m1m2

Yl1m1(k̂1)Y ∗l2m2
(k̂2)(−1)m2

(
l1 1 l2
m1 0 −m2

) ∣∣∣∣2 . (1)

Here ω is the photon energy and c ' 137 is the speed of light in atomic units.
The z axis is directed along the polarisation vector of the photon. The quantity
Dl1l2(k1k2) is the reduced dipole matrix element which is stripped of its angular
dependence. We write

ei[δl1+δl2 ]Dl1l2(k1k2) ≈ ei[δl1 (Z=1)+δl2 (Z=2)]Dl1l2(k1n2)〈l2k2 ‖ l2n2〉 , (2)

where 〈l2k2 ‖ l2n2〉 is the overlap between the pseudostate of energy εn2l2 and
the true Coulomb state radial wave function of the same energy (k2

2/2 = εn2l2).
The derivation of this approximation is similar to that given by (Bray and Fursa
1996) for electron-impact differential ionisation. The Coulomb radial orbitals
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are normalised on energy in Ry as 〈lk ‖ lk1〉 = δ(k2−k2
1). The pseudostate radial

orbitals are a linear combination of the Laguerre square-integrable basis,

〈r ‖ nl〉 =

(
µl(n− 1)!

(2l + 1 + n)!

) 1
2

(µlr)l+1 exp(−µlr/2)L2l+2
n−1 (µlr) , (3)

where the L2l+2
n−1 (µlr) are the associated Laguerre polynomials, and n ranges

from 1 to the basis size Nl. The constant µl is arbitrary and is chosen so that
sufficiently many true discrete He+ eigenstates were accurately described, and
to ensure that for each l2 there was one n2 such that εn2l2 = k2

2/2 = E2 in (2).
For He+ we typically have µl ≈ 1 ·7± 0 ·3.

The dipole matrix element is calculated by integrating the first-order dipole
matrix with the dipole singlet T -matrix of the e–He+ scattering system:

Dl1l2(k1n2) =
∑
nlλ

∫
k2dk

〈lk λn ‖ TJ=1,S=0 ‖ l1k1 l2n2〉
E − k2/2− ελn + i0

dlλ(kn) . (4)

The first-order dipole matrix is obtained as a transition amplitude of the dipole
operator between the correlated ground state and the final state containing one
continuum Coulomb wave and one discrete pseudostate:

dl l±1(kn) = (−1)l>
√
l>〈lk (l ± 1)n||ω (r1δ(l±1)L + r2δlL)||

×
∑
L

(2L+ 1)−1ΦL(r1r2)〉 , (5)

where l> the is greater of l and l± 1. Here the radial part of the dipole operator
is taken in the length form. It can be also expressed in the velocity form ∂/∂r
or the acceleration form 2/(ωr)2.

We describe the correlated ground state by a 14-term Hylleraas expansion over
the powers of u = r12, s = r1 + r2 and t = r1 − r2 (Chandrasekhar and Herzberg
1955) in which the angular dependence is then reduced to the sum of Legendre
polynomials:

Φ(r1r2) = Ne−zs
14∑
n=1

ans
αntβnuγn =

∑
L

ΦL(r1r2)PL(θ12) . (6)

Expression (5) becomes separable after ΦL is expanded over the Slater functions
Fl(r1, r2) = rl</r

l+1
> , where r< and r> are the lesser and the greater of r1 and

r2 respectively.
After integration over the angular variables in (1) one gets the single-differential

cross section (SDCS):

dσ(E2)
dE2

=
8π2ω

3c

∑
l2=l1±1

|Dl1l2(k1n2)|2 1

2
√
E2

. (7)
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This cross section corresponds to the energy E1 = E − E2 with E2 = εn2l2 for
some pseudostate n2 and every l2. Variation of the Laguerre exponential fall-off
for each l2 allows this for one value of E2. To define the SDCS for all 0 ≤ E2 ≤ E
we form the SDCS for each l2 by interpolation onto a common energy grid and
then sum over all l2, see Bray and Fursa (1995) for detail.

The total double photoionisation cross section is then obtained by energy
integration:

σ2+ ≈
∑

nl:εnl>0

σnl ≈
∫ E

0

dE2
dσ(E2)
dE2

, (8)

where σnl is the cross section for photoexcitation of the nl pseudostate of energy
εnl. The integral above is from 0 to E because in the close-coupling formalism
electron flux is distributed between all pseudostates with energy εnl < E. We
find that we do not obtain convergence in the SDCS with increasing Laguerre
bases Nl here, or even in model problems (Bray 1997). We suspect that as
Nl → ∞ the SDCS, as obtained from (7), tends to a step function since it
tends to 0 for E2 > E/2. This is a systematic problem associated with the
finite basis close-coupling formalism and likely stems from the incorrect boundary
conditions for the ionisation processes. In finite calculations there is non-zero
electron flux for E2 > E/2, though usually very small. Thus, in making a
comparison with experiment we combine incoherently amplitudes corresponding
to the theoretically distinct process for E2 and E−E2. We choose the incoherent
combination as this is imposed in the integral (total). In practice, for substantially
asymmetric energy-sharing kinematics, only one amplitude contributes. For equal
energy-sharing we always obtain two cross sections, of similar magnitude, which are
then summed. Examples of these two cross sections and a coherent combination
in the case of (e, 2e) has been given by (Bray et al. 1997).

3. Results and Discussion

To test the CCC theory outlined in the previous section we performed a
number of calculations which correspond to the perpendicular geometry used in
the BESSY experiments. By chosing this geometry we test our method against
the best established set of experimental and theoretical data.

The CCC calculations have been carried out using the following parameters.
We included Nl2 = 17− l2 states for 0 ≤ l2 ≤ 4 in all calculations presented here.
For each l2 the Laguerre exponential fall-off factors have been varied to ensure that
one of the positive energy pseudostates had the energy (E2) of one of the detected
electrons. By doing so we avoided interpolation of the complex amplitudes when
calculating the TDCS using (1). The total double photoionisation cross section
σ2+ is obtained by summing the cross sections for excitation of the positive-energy
pseudostates (8). The contribution from the true discrete eigenstates is projected
out from this cross section. The total double photoionisation cross section σ2+

is almost identical in the three gauges of the electromagnetic operator. It agrees
well with experiment (Kheifets and Bray 1998), and therefore can be used to
estimate the true SDCS. In this estimate we are assisted by the theoretical results
of Pont and Shakeshaft (1995a) and the experiment of Wehlitz et al.. The SDCS
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Fig. 2. Triply differential cross sections for photon-impact double ionisation of the ground
state of helium. One of the detectors is positioned to receive electrons with energy E1 = E−E2

at fixed θ1 indicated by arrow. The other electron, of energy E2 is detected in coincidence
on the full circular angular range. The θ1 = 180◦ measurement is absolute (Schwarzkopf and
Schmidt 1995, 1996), others are all relative (Schwarzkopf et al. 1993b; Schwarzkopf 1995),
and have been normalised by best visual fit to both the present CCC (see text) and the 2SC
calculations of Pont and Shakeshaft (1995b) and Shakeshaft (1997).
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Fig. 3. Theory and relative
experiment as for Fig. 2, except for
the energies indicated.

Fig. 4. Theory and relative
experiment (Schwarzkopf et al.
1994b) as for Fig. 2, except for the
energies indicated.

can be assumed flat for the photon energies considered of 89 eV (E = 10)
and 99 eV (E = 20). The TDCS is then rescaled by the ratio (≈ 2) of this
SDCS and the SDCS obtained via (7) at E2 = E1 = E/2. At the other photon
energy considered of 132 eV (E = 53) the existing experimental data are for
the asymmetric energy-sharing conditions. Here we estimate the true SDCS by
assuming that it is well-described by a quadratic, with the three coefficients
determined by the following requirements: (1) the symmetry about E/2, (2) the
integral must yield σ2+, and (3) by matching to the calculated SDCS at E2 = 0
(the boundary condition problem is least here). The result agrees with the SDCS
prediction of Pont and Shakeshaft (1995a) at E/2 and yields the same result
at the detected electron energy as the original SDCS, and so no rescaling is
performed.
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In Figs 2–4 we present a comparison of the CCC calculations, in the three
gauges, with the available measurements in the perpendicular geometry from the
BESSY group and the velocity-gauge 2SC calculations of Pont and Shakeshaft
(1995b). We see that there is excellent agreement between the theories and
experiment. The agreement between the CCC three gauges for the TDCS has
no parallel in the previous theoretical work. What is also remarkable is the
agreement between the CCC and 2SC theories. Since both theories have similar
SDCS, the angular and magnitude agreement presented suggests that the two
theories are likely to yield similar results over the full phase-space of the two
electrons. Given the diverse origin of the CCC and 2SC approaches such good
agreement gives us great confidence in the accuracy of the two theories for this
problem. The strength of the CCC method is that it has the capacity to obtain
accurate, essentially gauge-independent TDCS from near threshold to 1 keV
photon energies.

However, the news is not all good. As mentioned in the Introduction the
measurements of Lablanquie et al. (1995) in the coplanar geometry were found
to be in disagreement with the 3C and 2SC calculations of Pont et al. (1996).
We attempted to resolve this controversy by applying the CCC method here
also. Preliminary investigation suggests much closer agreement to the 2SC
theory than the experimental data. We shall investigate this problem in more
detail. In addition, we are looking forward to applying the CCC theory to the
absolute measurements reported by Dörner et al. (1997) and the near-threshold
measurements of Dawber et al. (1995).

4. Conclusion

We have demonstrated a unique capacity of the CCC method to produce
an absolute TDCS for the helium double photoionisation over a wide range of
energies. The internal consistency of the calculation in the three gauges of
the electromagnetic interaction and its remarkable agreement with experiment
makes us quite confident that the helium double photoionisation problem can be
eventually solved.

As an obvious extension of the present theory we consider the application
of the CCC method to the double photoionisation of other two-electron atoms
such as Be, Mg, Ca. Our formalism can also be easily adopted to describe the
electron impact double ionisation under the condition of high incident energy
when the projectile can be regarded as a structureless probe. In this case the
dipole electromagnetic operator is simply replaced by the Born operator and the
rest of the formalism remains unchanged.
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