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Abstract

We have analysed the stability of a solitary shear kinetic wave in a hot relativistic plasma for
oblique long wavelength perturbation following the method of Zakharov and Rubenchik. The
Zakharov–Kuznetsov equation describing the wave propagation is deduced and the growth rate
of instabilities due to large amplitude magnetic field perturbations is obtained as a function
of the angle θ between the direction of propagation of the solitary wave and magnetic field,
the streaming parameter v0/c and the electron temperature σ.

1. Introduction

Large amplitude incompressible magnetic field perturbations have been observed
in nature over a long period of time (Bdlecher and Davis 1971). One of the most
important places for its occurrence is in the solar wind (Hada 1993). The existence
of such kinds of waves cannot be explained by the usual MHD theory because
exact large amplitude Alfvén waves are known to decay to ion acoustic waves over
the order of astronomical distances (Yu and Shukla 1978; Shukla et al . 1982).
Various authors have investigated this scenario in different situations either by use
of a kinetic approach or hydrodynamic theory (Kalita and Kalita 1986). Hasegawa
and Mima (1976, 1977) proved that solitary kinetic waves do exist and propagate
in a direction oblique with respect to the external magnetic field. They assumed
the dominance of electron pressure over electron inertia, whence the electrons were
assumed to follow a Boltzmann distribution. Later the effects of ion inertia and
electron thermal velocity were also incorporated. On the other hand, in recent
years the importance of relativistic phenomena in a plasma has been realised (Das
and Paul 1985). This is specially important for electrons in the astrophysical
context. Many authors have shown that relativity does have a significant
influence in the formation and on the propagation characteristics of solitary
waves in plasma (Roy Chowdhury et al . 1988; Mukherjee and Roy Chowdhury
1992). In the light of the above observation we have studied the case of shear
Alfvén waves in a hot relativistic plasma from the stability point of view (Infeld
1985; Infeld and Rowland 1978). We have derived the Zakharov–Kuznetsov
equation and then analysed the stability of the solitary wave following the
methodology of Zakharov and Rubenchik (1974). The growth rates are explicity

q CSIRO 1998 0004-9506/98/060921$05.00

Matthew J Bosworth
10.1071/PH98009



922 J. Mukherjee and A. Roy Chowdhury

calculated as functions of the angle θ between the propagation direction of the
solitary wave and the external magnetic field, the streaming v0/c and also as a
function of the electron temperature σ. It is observed that the growth rate varies
significantly due to the effect of streaming and ion temperature. While for the
nonrelativistic situtation the value of the growth rate remained significant over
a small range of θ (0 ·85 < θ < 2 ·85), in the relativisitic case the value remains
considerable over wider values of θ. On the other hand, for a fixed θ the growth
rate tends to a constant value as v0/c becomes large.

2. Formation

Let us consider a plasma consisting of hot electrons in the presence of an
external magnetic field B0 directed along the z -axis. The magnetic field is
assumed to be constant. The electrons are considered to be relativistic. For the
three-dimensional problem the dynamics of the nonlinear slow shear wave in a
homogeneous low β (β ¿ me/mi) plasma can be written as follows. Instead of
writing the general three-dimensional forms of the equations of motion we here
follow the strategy adopted by Shukla et al . (1982) of decomposing the electron
motion into two parts, the drift part and the motion parallel to the z -axis. We
simply generalise their equation to three dimensions, as originally formulated for
the two-dimensional problem. Of course, in our case the motion in the z -direction
is also considered to be relativistic. In the whole formulation it is furthermore
assumed that variation with respect to transverse directions can be neglected.

The equation of continuity is

∂ne

∂t
+

∂

∂z
(nevez) = 0 , (1a)

where ne is the density of electrons and v ez is the velocity in the z -direction.
The corresponding momentum equation can be written as

∂

∂t
(Vez)α + Vez

∂

∂z
(Vez)α = − e

me

Ez +
e

mec
(V e ×× B)− σ

ne

∂pe

∂z
, (1b)

which is coupled with the pressure equations given as

∂pe

∂t
+ Vez

∂pe

∂z
+ 3pe

∂

∂z
(Vez)α = 0 , (1c)

whereas the governing equation for ion drift mode is

∂ni

∂t
+

c

B0Ωi

(
ni
∂Ex

∂t

)
+

c

B0Ωi

(
ni
∂Ey

∂t

)

+
∂

∂x
[ni(VEx + Vpx)] +

∂

∂y
[ni(VEy + Vpt)] = 0 . (1d)



Stability of Shear Kinetic Alfvén Waves 923

On the other hand, one has Maxwell’s equations

∂Ex

∂z
− ∂Ez

∂x
= − 1

c

∂By

∂t
(1e)

∂Ez

∂y
− ∂Ey

∂z
= − 1

c

∂Bx

∂t
, (1f)

∂By

∂x
− ∂Bx

∂y
= − 4πe

c
neVez , (1g)

∂Ey

∂x
− ∂Ex

∂y
= 0 . (1h)

In the above equations V E and V p are the velocity components due to E ×× B
drift and polarisation drift. These have been included since the problem is
three-dimensional, and are given as

V E =
c

B2
0

(E ×× B0ẑ) , (2)

V p =
c

B0Ωi

(V E .V )E⊥ .

Here Ωi = eB0/mic and (Vez)α is the relativistic counterpart,

(Vez)α =
Vez

(1− V 2
ez/c

2)1/2
.

Further, ne and ni are respectively the electron and ion number density, Vez is
the z component of the electron velocity and Ωi is the ion-cyclotron frequency.
For a shear Alfvén wave there cannot be any magnetic field along the z -axis,
which implies equation (2). Since V 2

A (Alfvén speed) ¿c2 we have assumed the
quasineutrality condition to hold. Finally, the ion inertia and the displacement
current have been neglected, since the wave frequency is assumed to be much
smaller than Ωi.

To derive the nonlinear wave equation we make the following stretching of
spatial and temporal coordinates:

z′ = ε
1
2 (z − t), t′ = ε

3
2 t, x′ = ε

1
2x, y′ = ε

1
2 y . (3)

We furthermore assume that the physical variables are expressed as

n0 = n0 + εn(1) + ε2n(2) + ... ,

Vez = V0 + εV (1)
ez + ε2V (2)

ez + ... ,
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E = ε
1
2E(1) + ε

3
2E(2) + ... ,

Bx = ε
1
2B(1)

x + ε
3
2B(2)

x + ... ,

By = ε
1
2B(1)

y + ε
3
2B(2)

y + ... ,

pe = 1 + εp(1)
e + ε(2)p(2)

e + ... . (4)

Substituting these in equations (1a) to (1h) and equating lowest powers of ε we
get (to lowest order)

V (1)
ez =

λ− V0

n0

n(1) ,

p(1)
e =

3(1 + 3V 2
0 /2c

2)
n0

n(1) , (5)

∂E(1)
x

∂x′
+
∂E(1)

y

∂y′
= −B0Ωi

cn0

n(1) ,

E(1)
y

x
− E(1)

x

y
= 0 ,

E(1)
z = 0, B(1)

y =
c

λ
E(1)
x , B(1)

x = − c
λ
E(1)
y ,

along with the relation

λ2 − V0λ−
B2

0

4πmin0

= 0 . (6)

Proceeding to the next order in ε and eliminating all the variables in favour of
n(1) and φ(1) we get

∂n(1)

∂t′
−A11n

(1) ∂n
(1)

∂z′
+A31

∂

∂z′

(
∂2n(1)

∂x′
2 +

∂2n(1)

∂y′
2

)

+A21

(
∂n(1)

∂x′
∂2φ(1)

∂x′∂z′
+
∂n(1)

∂y′
∂2φ(1)

∂y′∂z′

)
= 0 , (7)
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along with the relation

n(1) = − cn0

B0Ωi

(
∂2φ(1)

∂x′
2 +

∂2φ(1)

∂y′
2

)
,

E(1)
x = +

∂φ(1)

∂x′
, (8)

in accordance with equation (5). Here the coefficients Aij are given as

A11 =
λ(λ− V0)
n0(2− V0)

,

A21 =
λ(λ− V0)c

B0Ωi(2λ− V0)
, (9)

A31 = − n0λ
2(λ− V0)

B0Ωi(2λ− V0)

[(
1 +

3V 2
0

2c2

)
cme

e

λ− V0

n0

× (V0 − 1) +
3cmeσ

en0

(
1 +

3V 2
0

2c2

)]
.

The set of equations (7) and (8) is the required Zakharov–Kuznetsov equation
describing the propagation of the nonlinear wave. In the following, our motivation
is to obtain a solution of this and to analyse its stability.

3. Solitary Wave Solution

In order to study the stability of a solitary wave that propagates in a direction
making an angle α with the axis, we make a rotation of the (x , z ) axis and set

Z = z cos α−X sin α ,

X = z sin α+ x cos α . (10)

In the new coordinate system equations (7) and (8) assume the following form:

∂n(1)

∂t′
+ βn(1) ∂n

(1)

∂z
+ γ

∂3n(1)

∂z3 +
∂n(1)

∂z

∂E(1)

∂z
δ

+a1n
(1) ∂n

(1)

∂X
+ b1

∂n(1)

∂Z

∂E(1)

∂X
+ c1

∂n(1)

∂X

∂E(1)

∂Z
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+a0
∂n(1)

∂X

∂E(1)

∂X
+ b0

∂n(1)

∂y′
∂2φ(1)

∂Z∂y′
+ c0

∂n(1)

∂y′
∂2φ(1)

∂X∂y′

+d1
∂3n(1)

∂Z2∂X
+ e1

∂3n(1)

∂Z∂X2 + f1
∂3n(1)

∂X3 + h1
∂3n(1)

∂X∂y′
2 + g1

∂3n(1)

∂Z∂y′
2 = 0 , (11)

n(1) = λ1
∂E(1)

∂Z
+ µ

∂E(1)

∂X
+ γ

∂2φ(1)

∂y′
2 ,

E(1) = sin α
∂φ(1)

∂Z
+ cos α

∂φ(1)

∂X
. (12)

The different coefficients occuring in the above equation are functions of the
angle α and different plasma parameters. Their explicit form are given below:

β = −A11 cos α , b1 = −A21 sin2α ,

γ = A31 sin2 α cos α , c1 = A21 cos2 α ,

δ = A21 sin α cos α , a0 = −A21 sin α cos α ,

a1 = A11 sin α , b0 = A21 cos α ,

f1 = −A31 sin α cos2α ,

c0 = −A21 sin α ,

d1 = A31 sin α (2 cos2α− sin2α) ,

c1 = A31 cos α (cos2α− 2 sin2α) ,

g1 = A31 cos α, h1 = −A31 sin α ,

λ1 = − cn0

b0Ωi

sin α, µ = − cn0

B0Ωi

cos α ,

γ = − cn0

B0Ωi

. (13)

To construct the nonlinear wave we assume that n(1) = N0(z), φ(1) =
φ0(z), E(1) = E0(z), where z = z − u0t leading to

−u0
dN0

dz
+ kN0

dN0

dz
+ γ

d3N0

dz3 = 0 , (14)
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with N0 = λ1 dE0/dz, E 0 = sin α dφ0/dz and K = β+δ/λ1 . So we immediately
obtain

N0 = a sech2(pz) , a =
3U0

k
, p = (u0/4γ)1/2 ,

E0 =
a

pλi

tanh(pz) . (15)

It may be noted that

a =
3u0

β + δ/λ1

= − 3u0(2λ− V (0)
ez )

2 cosαλ(λ− V (0)
ez

< 0 ,

as λ > V
(0)
ez , so equation (15) represents a solution with a density depression.

4. Stability Analysis

To ascertain the stability of such a wave profile let us use the technique of
Zakharov and Rubenchik (1974). We set

n(1) = N0(z) + q(z, x, y′, t′) ,

φ(1) = φ0(z) + ψ(z, x, y′, t′) , (16)

E(1) = E0(z) + F (z, x, y′, t′) .

Substituting in equation (12) and linearising with respect to q, ψ, F we get

−u0
∂q

∂z
+
∂q

∂t′
+ βN0

∂q

∂z
+ γ

∂3q

∂z3 + δ
dN0

dz

∂F

∂z
+ δ

∂E0

∂z

∂q

∂z

+a1N0
∂q

∂x
+ b1

∂N0

∂z

∂F

∂x
+ c1

∂E0

∂z

∂q

∂x
+ d1

∂3q

∂z2∂x
+ e1

∂3q

∂z∂x2

+f1
∂3q

∂x3 + q1
∂3q

∂z∂y′
2 + h1

∂3q

∂x∂y′
2 = 0 , (17)

q = λ1
∂F

∂z
+ µ

∂F

∂z
+ γ

∂2F

∂y′
2 ,

F = sin α
∂ψ

∂z
+ cos α

∂ψ

∂x
. (18)
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We now assume that the perturbation terms (q, F, ψ) in the case of long
wavelength perturbations in the direction (l,m, n) have the following forms. Note
that (l,m, n) are the direction cosines which specify the directions

q = q (z) exp [ik (lx+my′ + nz)− iωt′] ,

F = F (z) exp [ik (lx+my′ + nz)− iωt′] ,

ψ = ψ (z) exp [ik (lx+my′ + nz)− iωt′] , (19)

where k is small and l2+m2+n2 = 1.
We further assume that for small k we can expand the functions q , F and ψ

as follows:

q(z) = q0(z) + kq1(z) + k2q2(z) + ... ,

F(z) = F0(z) + kF1(z) + k2F2(z) + ... ,

ψ (z)= ψ0(z) + kψ1(z) + k2ψ2(z) + ... ,

ω = kω1 + k2ω2 + ... . (20)

Our main interest is to obtain an expression for ω1. On substituting these
expressions in equations (17) and (18), we equate various powers of k . At the
lowest order of K we get

q0 = λ1
dF0

dz
, F0 = sinα

dψ0

dz
, (21)

−u0
dq0

dz
+ k

d
dz

(N0q0) + γ
d3q0

dz3 = 0 . (22)

Eliminating all other variables in favour of q0 and integrating once one obtains

[−1 + 2sech2(pz)]q0 +
1

4p2

d2q0

dz2 = A , (23)

A being a constant. The two linearly independent solutions of equation (23)
with the right-hand side equal to zero are

f = N0z and g = N0z

∫ z dz
N2

0z

, (24)

which leads to

f = RS2, g = pzRS2 + 2
15S
−2 + 1

3 − S
2 . (25)
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Here R = tanh(pz ), S = sech(pz ), so the most general solution is

q0 = A1f +A2g − f
∫ z Ag

W/4p2 dz + g

∫ z Af

W/4p2 dz , (26)

where A1, A2 are two constants and W is nothing but the Wronskian of the two
solutions, which being nonzero proves that the solutions are independent. After
some simplification q0 can be written as (Ince 1956)

q0 = A1RS
2 +A2(pz RS2 + 2

15AS
−2 + 1

3 − S
2)

+
15A

2

(
1
15S
−2 + 1

30 S
2 + 1

10S
−2 + 1

10pz RS
2

)
. (27)

Now the constants A1, A2, A are to be chosen in such a fashion that q0 does not
go to ±∞ as |z|→∞. Similarly F0 and ψ are found to be

F0 = − A1

2apλ1

N0; ψ0 = − A1R

2p2λ1 sin α
. (28)

So we have explicitly determined q0, F0 and ψ0 by equations (26), (27) and
(28). We call this the zeroth order set. Next we pass over to the first order
corrections, for getting information on q1, F1 and ψ1.

First Order Equation

To first order in k we obtain

−u0
dq1

dz
+ k

d
dz

(N0q1) + γ
d3q1

dz3 = σ ,

σ = − iA1

2ap
(ω1 + V0N)

dN0

dz
+

iA1

2ap
(3γr + d1l)

d3N0

dz3

+
iA1

2ap

[
KN +

(
b1

λ1

+
c1

λ1

+ a1 −
µd

λ2
1

)
l

]
N0

dN0

dz
, (29)

q1 = λ1(inF0 + dF1/dz) + iµlF0 . (30)

Using the expressions for the zeroth order quantities we get

1
4p2

d2q1

dz2 + [−1 + 3 sech2(p2)]q1

= B + iA1a2 sech2(pz) + iA1b2 sech2(pz) tan2(pz) , (31)
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where a2 and b2 are new constants. The solution of (31) yields

q1 = B1 RS
2 − iA1pzRS

2(a2 + b2) +
iA1

3
S2(3a2 + b2) , (32)

from which corresponding expressions for F1 and ψ0 may be obtained.

Second Order Corrections

Proceeding now to terms of order of k2 we get

−u0
dq2

dz
+K

d
dz

(N0q2) + γ
d3q2

dz3

= − i(ω2 + h1lm
2) q0 + ia3q1 + b3

dq0

dz
− i C3N0q1 − id3

d2q1

dz2

+ il3
dN0

dz
F1 + f3

dN0

dz
ψ0 ,

q2 = λ1(in F1 + dF2/dz) + iµ(lF1) + νm2ψ0 , (33)

where a3, b3, c3 are some combinations of previous constants.
Now let us consider the equation adjoint to the homogeneous part of equation

(33), which is

(−u0 + kN0)dq2/dz + γ
d2

dz2

(
dq2

dz

)
= 0 . (34)

We look for a solution of this equation satisfying the same boundary conditions
as required for equation (31). Whence we obtain

q2 = A′S2 ,

A being a constant, so that the kernel of the operator

(−u0 +KN0)d/dz + d2/dz2 (36)

is S2. So for the solution of equation (33) to exist the right-hand side of (33)
should be orthogonal to this kernel, leading to the condition determining ω1:

−i(ω2 + h1lm
2)
∫ ∞
−∞

q0S
2dz + ia3

∫ ∞
−∞

q1S
2dz + b3

∫ ∞
−∞

dq0

dz
S2dz
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− ic3
∫ ∞
−∞

N0q1S
2dz − id3

∫ ∞
−∞

d2q1

dz2 S
2dz + il3

∫ ∞
−∞

dN0

dz
F1S

2dz

+ f3

∫ ∞
−∞

dN0

dz
ψ0S

2dz = 0 . (37)

Substituting the previously obtained expressions for q0, q1 and ψ0, F1 etc., we get

ω2
1 +Aω1 +B= 0 , (38)

where
A = −a2 − 1

9b 2 − 8
9C3a+ 4

3p
2d3 − 4

9

e3a

λ1

, (39)

with a similar expression for B . The discriminant of equation (38) is ∆ = A
2−4B.

So the condition for instability of a perturbation in the direction (l,m, n) is that

A
2 − 4B< 0 . (40)

If this relation is satisfied then the growth rate gR is given by

g2
R = K2(4B−A2

) . (41)

For a perturbation in a plane through the z -axis making an angle θ with the
(x, y) plane, the above expression for the growth rate is

g2
R = (1− n2)K2(4B−A2

) , (42)

Fig. 1. Normalised growth rate (squared) versus the angle θ for various values of the angle α.
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Fig. 2. Normalised growth rate (squared) versus v0/c for
various values of σ where α = π/8 and θ = 1 ·5.

Fig. 3. Normalised growth rate (squared) versus θ for various
values of σ where α = π/8 and v0/c = 0 ·8.

which is a maximum for n = 0. Hence the maximum growth rate is attained for
perturbation in the (x′, y′) plane, which is the plane of direction of propagation
of the solitary wave. We have analysed the variation of this expression for gR

for different values of v0/c, the electron temperature σ and the angle θ.
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To start we consider the case v0/c = 0 and σ = 0 and plot the growth rate as
a function of θ for various α. This is shown in Fig. 1. It may be observed that
our diagram exactly reproduces that of Das and Paul (1985). On the other hand,
for finite but small values of v0/c, we depict the growth rate as a function of
v0/c for fixed α and θ in Fig. 2. It is interesting to note that for various values
of the electron temperature σ the growth rate reaches a constant value as v0/c
increases. On the other hand, in Fig. 3 we show the variation with θ for fixed
v0/c and α. It is actually comparable to the non-relativistic case given in Fig. 1.
The trend has changed totally. The growth rate never becomes zero in this range
of θ as it does in the non-relativistic situation. Also its value decreases with the
temperature of the electron. Fig. 4 shows the variation of the growth rate as a
function of θ, but for different v0/c. The trend remains the same as in Fig. 3
and the growth rate again decreases with v0/c.

Fig. 4. Normalised growth rate (squared) versus θ for various
values of v0/c where α = π/8 and σ = 1 ·5.

5. Discussion

In our analysis of the stability of the shear kinetic solitary wave we have
observed that the maximum value of the growth rate occurs for the perturbation
in a plane perpendicular to the direction of motion of the solitary wave. This
pattern was also there even in the non-relativistic case. On the other hand, there
has been a significant change in the variational pattern of the growth rate with
respect to the streaming and electron temperature. While in the non-relativistic
case the profile of the growth rate was confined over smaller values of θ, in the
present case it almost exists throughout the full range of θ and decreases with
respect to both v0/c and σ.
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