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Abstract

We have studied the effect of non-thermal electrons on the structure of a shock wave in
a magnetised plasma. Using the reductive perturbation technique we have derived the
Zakharov–Kuznetsov equation, and also the modified version of it in the critical limit. The
structure of the shock wave is then analysed as a function of the parameter β, which measures
the deviation from the thermalised state. The corresponding behaviour of the maxima of the
shock wave and its velocites are depicted graphically. Both comprehensive and rarefactive
shocks are seen to be generated.

1. Introduction

Double layers in plasma have aroused considerable interest in recent years.
Their presence in aural and magnetospheric plasmas has already been established
by the S32-3 and Viking satellites (Temerin et al. 1982; Bostrom et al. 1988).
The double layer or shock wave theory has successfully explained the mechanism
of solar flares (Alfvén and Carlquist 1967), particle acceleration in space (Temerin
et al. 1982; Carlquist 1986) and the ionosphere (Borovsky 1984). Besides
astrophysical applications double layers have also been exploited for non-heating
in linear turbulent heating devices (Saeki et al. 1980) and the confinement of
plasma in tandem mirror devices. Attempts have also been made to discuss the
effect of double layers in a magnetised plasma. Goswami and Bujurbaruah (1986)
have studied the obliquely propagating ion acoustic double layer using the fluid
equation and arbitrary equation of state for electrons. Bharuthram and Shukla
(1986) studied multidimensional double layers in an unmagnetised plasma with
cold ion and two temperature electrons. They did not use the quasi-neutrality
condition. However, the propagation was considered to be along the magnetic
field. Strong oblique double layers were analysed by Borovsky and Joyce (1983) in
a numerical simulation experiment and they observed an increase in the thickness
of the double layer with an increase of the obliqueness to the magnetic field.
Ion acoustic double layers have also been studied in hot relativistic plasmas by
a number of authors. Some have also considered the effect of electron inertia
and finite geometry (Roy Chowdhury et al. 1994; Mondal et al. 1998). However,
in all these papers a basic ingredient is the assumption of a Boltzmann-type
distribution of electrons. On the other hand, the experimental observations of
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the Freya satellite (Dovner et al. 1994) have brought to notice the fact that
double layers are actually solitary structures with density depletion in plasmas
where the electrons are non-thermal. Also it has been observed that in nature
both the comprehensive and rarefactive type shocks are present, which is not the
case with most of the theoretical formulations noted above. So here we consider
an analysis of the shock-like structure in a magnetised plasma with hot ions
and non-thermal electrons in multidimensions. Using the reductive perturbation
procedure we deduce the Zakharov–Kuznetsov (ZK) (1974) equation and also its
modified version in the critical case. The solution of such a system gives rise to
a shock structure whose maxima and velocity is then analysed as functions of
various plasma parameters. It is interesting to note that due to the presence of
non-thermal electrons both comprehensive and rarefactive shocks are found to
be present.

2. Formulation

We consider a collision-less fully ionised plasma with warm adiabatic ion
and non-thermal electrons with density n and nc in an external magnetic field
B = B0Z . The dynamics of the plasma is then governed by the fluid equations

∂n

∂t
+∇(n.v) = 0 ,

∂v

∂t
+ (V.∇)V = −∇φ+ (Ω/ω)V × Z − 5

2σ∇(n) 2
3 ,

∇2φ = ne − n . (1)

The ion and electron densities are normalised to the unperturbed density n0,
V is the ion fluid velocity normalised to the ion fluid speed C s = (T e/m)1/2,
where T e is the electron temperature in units of the Boltzmann constant, m is
the ion mass, φ is the electrostatic potential normalised to T e/e, the spatial
variables are normalised to the Debye length λD = (T effε0/n0e2)1/2 and the
time is normalised to the ion plasma period ω−1

p = (n0e2/ε0m i)−1/2. Since the
electrons are assumed to be non-thermalised with a population of fast particles,
we can choose the distribution to be that given by Cairns et al. (1995), so that
the electron density is

ne = (1− βφ+ βφ2)eφ , β = 4α/(1 + 3α) . (2)

The parameter α determines the presence of fast particles in the model; its value
ranges from 0 ·1 to 0 ·2.

We now adopt a reducive perturbation procedure by setting

t′ = ε3/2t, y′ = ε1/2y, x′ = ε1/2x, z′ = ε1/2(z − t) , (3)

and expanding the dynamical quantities as
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Vx = ε3/2V (1)
x + ε2V (2)

x + ... ,

Vy = ε3/2V (1)
y + ε2V (2)

y + ... ,

Vz = V0 + εV (1)
z + εV (2)

z ... ,

ϕ = εϕ(1) + ε2ϕ(2) + ... ,

n = 1 + εn(1) + ε2N (2)... . (4)

Substituting in the basic equation and collecting various powers of ε we get from
terms of order ε3/2

(V0 − λ)n(1) = V (1)
z , (5)

[1 + 5
3σ(1− β)]∂/∂x(φ(1)) = aV (1)

y , (6)

[1 + 5
3σ(1− β)]∂/∂y(φ(1)) = aV (1)

x , (7)

(V0 − λ)∂/∂z(V (1)
z ) + 5

3σ∂/∂z(n
(1)) = −∂/∂z(φ(1)) , (8)

(1− β)φ(1) = n(1) , (9)

and the dispersion relation is

1/(1− β) + [ 5
3σ − (V0 − λ)2] = 0 . (10)

Proceeding to higher order in ε and eliminating all variables in favour of φ(1) we
get

(V0 − λ)(1− β)2∂/∂t(φ(1))− φ(1)
zzz

+ φ(1)∂/∂z(φ(1))[1− 3(V0 − λ)2(1− β)3 + 5
9σ(1− β)3]

− ∂/∂z(φ(1)
xx + φ(1)

yy ){1 + (V0 − λ)2/a2[1 + 5
3σ(1− β)]} = 0 , (11)

which is the ZK equation describing the propagation of the nonlinear wave in
plasma. In the critical situation where the non-linearity in equation (11) vanishes,
we get

(1− β)3[ 5
9σ − 3(V0 − λ)2] = 1 , (12)

and the ZK equation is no longer valid. So we change the stretching parameters
of the independent variables and set
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x′ = εx, y′ = εy, z′ = ε(z − t) , t′ = ε3t . (13)

Again proceeding in the same fashion we arrive at the modified ZK equation
which is given as

ϕt − ϕzzz/[2(1− β2)(V0 − λ)] + 3Q/[2(1− β)(V0 − λ)]ϕ2ϕz

−P∂/∂z(ϕxx + ϕyy)− C2
′(V0 − λ)ϕz + 1

2a(ϕxx + ϕyy) = 0 , (14)

where

Q = β/(1− β) + 2(V0 − λ)2(1− β)2 − 3
2 (V0 − λ)2(1− β) + (5σ/18)(1− β) , (15a)

P = 1/[2(1− β2)(V0 − λ)] . (15b)

But if the non-linear term in equation (11) is not identically zero but small,
then the scaling (13) along with the expansions of the dependent variables leads
to an equation which is a linear combination of both the ZK equation and the
modified ZK equation, written as

ϕt + aϕϕz + 1
2bϕ

2ϕz + 1
2cϕzzz + dϕz + 1

2r(ϕxxz + ϕyyz) + q(ϕx + ϕy) = 0 , (16)

where the coefficients a, b, c, d , r , q are given as follows:

a = 1/[(V0 − λ)(1− β2)]− 3(V0 − λ)(1− β) + (5σ/9)(1− β)/(V0 − λ) , (17a)

b = [3/(1− β)(V0 − λ)][β/2(1− β) + 2(V0 − λ)2(1− β)3

− 3
2 (V0 − λ)2(1− β) + (5σ/18)(1− β)] , (17b)

c = 1/[(V0 − λ)(1− β)2] , (17c)

d = −C2
′(V0 − λ) , (17d)

r = [(V0 − λ)4(1− β) + a′
2]/[(V0 − λ)(1− β)2a′

2] , (17e)

q = 1
2a
′; a′ = ωi/Ωi . (17f)

We now search for a solution of this equation in the form

ϕ = ϕ(lx+my + nz − ωt) = ϕ(η) , (18)

where η is the wavefront; here l , m, n are the direction cosines of the wave
vector with respect to the x , y , z axes respectively. Under the assumption (18),
equation (16) is finally reduced to an equation of the form ϕηη + V (η) = 0 or
ϕη = χ; χη + V (η) = 0, where V (η) satisfies conditions g(0) = 0 and g ′(0) < 0.
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Then the usual theory of dynamical systems predicts that the point (0,0) is a
saddle point with local stable manifold and the unstable manifold through (0,0)
coincides with the stable one, so that there is an orbit passing through (0,0)
which is known as the homoclinic orbit. The existence of this orbit guarantees
the existence of the type of solution we are searching for (Chow et al. 1980).

We proceed to search for a solution behaving like a shock wave. Such solutions
do exist when the equation possesses a homoclinic orbit. The general structure
of such a solution turns out to be

ϕ = (ϕm/2)[1− tanh(ϕ2
m/2) 1

6 (−B) 1
2 η] , (19)

which is obtained by integration of the reduced form of (16) given as

(∂ϕ/∂η)2 + Ψ(ϕ) = 0 , (20)

where

ψ = 2[Aϕ2 +A1ϕ
3/3 +Bϕ4/12]/D , (21)

with

A = (dn+ pl + qm− u) , (21a)

A1 = an , (21b)

B = bn , (21c)

D = [cn2 + p(l2 +m2)]n . (21d)

In the above expression for the shock wave the maximum of the wave is

ϕm = −2A1/B (22)

and the velocity is u = A2
1/3BD. The width turns out to be ∆ = 4(−6D/B) 1

2 /|ϕM|.
The width of the double layer is normalised by the Debye length and it is related
to the depth d of the classical potential by the formula ∆ = Ψd− 1

2 . The latter
follows from renormalising the ‘energy law’ by introducing φ(x ) = Ψφ(x/∆) and
V = v(φ(ψ)), where φ(x) (0 < φ < 1) and v(φ) (−1 < v < 0) are functions which
vary on scales of order unity and depend on each other as φ′(ξ)2/2 + v(φ) = 0.
The depth d is uniquely determined by the parameters α = T i/T i(trapped) of
Ψ. This width depends on the value of n that is the angle between the magnetic
field and the direction of propagation of the double layer.

3. Discussion

To understand the implications of these analytical results we have plotted
the expressions for ϕm and ϕ (the shock wave itself) for various values of the
plasma parameters, especially the new parameter β which is a measure of the
non-thermalisation of the electrons. Remember that ϕm is the maximum value
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of the shock-like structure given by ϕ. We also depict the variation with respect
to the phase velocity (V 0−λ). In Figs 1a and 1b the variation of u and ϕm

are exhibited as a function of the phase velocity. In each figure we give the
case corresponding to β = 0, i.e. the purely thermalised situation. Whereas in
the latter case the nature of u and ϕm shows a trend to saturate for large
values of (V 0−λ), the non-thermal case suggests a totally different behaviour.
One should note that the trend of ϕm and u changes completely from the β = 0
case. Also, in the case of finite β we can get positive as well as negative values
of ϕm, indicating the fact that both compressive and rarefactive shocks can be
formed. Next in Figs 2a and 2b we exhibit the form of shocks with respect
to η for β = 0 ·3 and 0 ·5. It is quite clear that for low values of β we get
rarefactive shocks, whereas for larger β values compressive shocks are generated.
One should note that the presence of both compressive and refractive shocks is
very important in the formation of aurora in the ionosphere. Here η actually
stands for the wave front of the shock wave.

Fig. 1. Variation of (a) u and (b) ϕm with respect to V 0−λ for various values of β.

Fig. 2. Shock wave profile for (a) low β values and (b) high β values.

It may be mentioned that Mamun and Cairns (1996) did not observe any
significant change in the behaviour of solitary waves due to the non-thermal
nature of electrons. However, in the present situation of shock waves we find
(a) the presence of both types of shocks; (b) their physical characteristics show
prominent changes due to the variation of β; and (c) the effect of β actually
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signifies the presence of fast particles which are practically in abundance in free
space. Under these circumstances it is quite natural to conclude that the effect
of non-thermal electrons is to modify shock-like structures, though they do not
influence stationary waves. The observations of the Freya satellite show density
depletions which are due to the large population of energetic electrons. Here lies
the importance of both the positive and negative potential. Our analysis actually
takes care of this practical situation. The importance of such phenomena is
apparent from the Freya observations as noted before. Studies have already been
made on the effect of non-thermal electrons on the solitary waves (Mammun and
Cairns 1996). So it seems quite relevant to study further the case of shock waves
in plasmas. Our observations may help in the understanding of the origin and
distribution of the parallel electric fields that accelerate electrons and produce
visible aurora (Scammel 1982).
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