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Abstract

The temporal evolution of the dust grain charge is investigated for the first time in a dusty
plasma with an ion beam. The grain charge attains to the stationary state after the fluctuation
of short time. The dust charge increases as the ion beam temperature and the plasma ion
density increase, but decreases as the beam density increases. The speed of the wave increases
as the ion density and temperature increase, whereas it decreases as the dust charge increases.
The variable dust mass-to-charge and ion-to-electron density ratios govern the existence of dust
acoustic waves. The findings of this investigation may be useful in understanding laboratory
plasma phenomena.

1. Introduction

There has been a growing interest in investigating new properties of dusty
plasmas containing charged, micrometre-sized dust grains which have been observed
not only in space environments (Hartquist et al . 1992; Tsytovich and Havnes
1993), but also in laboratory devices (Barkan et al . 1995; Bingham et al . 1991;
Boufendi et al . 1992). The dust grains have variable charge and mass due to
fragmentation and coalescence, and are charged due to the local electrons and
ions. In actual situations, the variable grain charge and electrostatic waves have
been studied over a range of frequencies in the laboratory (Chu et al . 1994;
Thompson et al . 1997; Sugai et al . 1997). The ion beams in laboratory dusty
plasmas have become indispensable in the field of materials processing such as
etching chemical vapour deposition and surface modification (Sugai et al . 1997).
Such circumstances in plasma applications and the ease of realising dusty plasmas
on a laboratory scale have accelerated active studies on dust phenomena in
plasmas. On the other hand, for low frequency nonlinear waves, the dust grains
can be described as negative ions with large mass and large charge (Goertz
and Morfill 1983; Rao et al . 1990). Ion and dust acoustic waves, as well as
dust acoustic instabilities, in dusty plasmas have been studied theoretically by
several authors (D’Angelo 1990; Bharuthram et al . 1992; Rosenberg 1993; Shukla
1995). Recently the topics of nonlinear grain charge variation and electrostatic
ion waves (Nejoh 1997a, 1997b, 1997c, 1998a, 1998b) have been reported by
regarding dust grains as point charges, where the Debye length is much larger
than the inter-grain distance. Therefore, since the dust charge variation affects
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the characteristics of the collective motion of the plasma, the effect of variable
charge dust grains is of crucial importance in understanding nonlinear waves
excited in dusty plasmas. However, the dependence of the grain charge and dust
acoustic waves on the ion beam velocity, density and temperature has not been
investigated theoretically in dusty plasmas.

In this paper, we focus our attention on the characteristics of the grain charge
and electrostatic dust acoustic waves in an unmagnetised dusty plasma with a
positive ion beam. It is instructive to examine the variation of the grain charge
and the effects of the beam velocity, density and temperature in dusty plasmas.
We derive nonlinear equations for variable charge dust grains from a set of basic
equations, and the Sagdeev potential, in Section 2. In Section 3, performing the
numerical calculation of the nonlinear equations obtained in Section 2, we show
the temporal evolution of grain charge, and the dependence of the dust charge on
the dust mass-to-charge ratio, plasma potential, ion-to-electron temperature and
density ratios, and ion-beam velocity and temperature in the stationary state.
Our results show the nonlinearly variable dust charge and the existence of the
dust acoustic waves. The last section is devoted to a concluding discussion.

2. Theory

We consider the nonlinear dust charge variation and the one-dimensional
propagation of nonlinear dust acoustic waves in an unmagnetised dusty plasma.
Our plasma model is as follows. Electrons and positive ions form the Boltzmann
distribution. A positive ion beam flows at the uniform streaming velocity in the
isothermal state. Since it is assumed that coalescence of electrons to dust grains
occurs more frequently than the collision of beam ions and dust grains, we ignore
the latter. The radius r of a spherical dust grain is assumed to be much less
than the inter-grain distance, the electron Debye length λD and the wavelength
of the waves. Thus the dust grains can be considered as heavy immobile point
masses. It is assumed that the variation of the dust charge is due to the
microscopic electron, ion and ion-beam currents flowing onto the grains because of
the potential difference between the grain surface and the adjacent plasma. The
plasma considered here consists of four components, i.e. Boltzmann-distributed
electrons with a temperature T e, warm positive ions having a temperature T i,
a positive ion beam with a temperature T b, and a negatively-charged, heavy,
cold dust fluid. The dynamics of the ion beam and dust fluids are governed by
the continuity and momentum equations. We also assume that low frequency
electrostatic waves propagate in this system.

The number densities of electrons and ions are assumed to be

ne = ne0exp(eφ/Te) , (1)

ni = ni0exp(−eφ/Ti) . (2)

The continuity equation and the equation of motion for an ion beam are
described by

∂nb

∂t
+

∂

∂x
(nbvb) = 0 , (3a)
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∂vb

∂t
+ vb

∂vb

∂x
+

Tb

mbnb

∂nb

∂x
+

e

mb

∂φ

∂x
= 0 , (3b)

where we express the pressure term in (3b) by the isothermal equation of state.
It is noted that the collision between the beam ions and dust grains is ignored.
Here, T b is the ion-beam temperature. The quantities m i and e are ion mass
and the magnitude of electron charge respectively.

For one-dimensional low frequency motions, we have the following two equations
for cold dust grains:

∂nd

∂t
+

∂

∂x
(ndvd) = 0 , (4a)

(
∂

∂t
+ vd

∂

∂x

)
vd −

Qd

md

∂φ

∂x
= 0 . (4b)

Here Qd (= eZd) is the variable charge of dust grains, where Z d is the charge
number measured in units of e.

The Poisson equation is given as

∂2φ

∂x2 =
e

ε0
(ne − ni − nb + Zdnd) , (5)

where ε0 denotes the permittivity of the vacuum. The variables nb, nd, n i,
vb, vd and φ refer to the ion-beam density, dust-grain density, ion density,
ion-beam velocity, dust velocity and electrostatic potential respectively. We
define the velocities of the electrons, positive ions, beam ions and dust grains
in equilibrium as v e0, v i0, v0 and vd0. We assume that v e,th À vphÀ v i0, v0

À vd,th, where v e,th (vd,th) and vph are the electron (dust) thermal velocity
and phase velocity of the dust acoustic waves respectively. The dust thermal
velocity, in general, is much less than the wave phase velocity because of the
massive dust grains. The ion-beam velocity v0 is assumed to be less than the
phase velocity vph ≈ (ZdTe/md)1/2. Since the dust acoustic instability is brought
about by the condition v0 > vph (Rosenberg 1993), the dust acoustic instability
does not occur in our system. It is also assumed that the ion-beam velocity is
much less than the beam thermal velocity. We consider that v e0, v i0, v0 6= 0 in
equilibrium and this imples the origin of the electron, ion and ion-beam currents.
At infinity, x→∞, v e0, v i0, vd0 = 0 and v0 6= 0 are assumed. Charge neutrality
at equilibrium requires that ni0 +nb0 = ne0 +nd0Zd, where ni0 (nb0, nd0) denotes
the equilibrium ion (ion beam, dust grain) density.

We normalise all the physical quantities as follows. The densities, space
coordinate x , time t , velocities and electrostatic potential φ are normalised by the
background electron density ne0, the dust Debye length λDd = (ε0Teff/nd0e

2)1/2,
the inverse dust plasma period ω−1

pd = (ε0md/n0(eZd)2)1/2, the dust acoustic
velocity vDA = (Teff/md)1/2 and Teff/Qd respectively. The effective temperature is
determined to Zdnd0/Teff = ne0/Te + nb0/Tb + ni0/Ti. Then, the basic equations
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described above can be written in the non-dimensional form

ne = exp(αeφ) , (6)

ni = δiexp(−αiφ) , (7)

∂nb

∂t
+

∂

∂x
(nbvb) = 0 , (8a)

∂vb

∂t
+ vb

∂vb

∂x
+
τb

nb

∂nb

∂x
+
µd

Zd

∂φ

∂x
= 0 , (8b)

∂nd

∂t
+

∂

∂x
(ndvd) = 0 , (9a)

∂vd

∂t
+ vd

∂vd

∂x
− ∂φ

∂x
= 0 , (9b)

∂2φ

∂x2 = ne − ni − nb + Zdnd , (10)

where τb = Tb/Te, δi = ni0/ne0, αe (αi) = Teff/ZdTe(Teff/ZdTi) and µd = md/mb.
In this system, the ordering md À mi À me holds, as obtained in laboratory

plasmas. Typical laboratory plasma frequencies are 102 Hz : 105–6 Hz : 109–10 Hz,
and have roughly the same ordering as the mass ratios (Selwyn et al . 1990; Chu
et al . 1994; Thompson et al . 1997; Sugai et al . 1997). Thus, the inclusion of the
mass ratios is equal to considering the collective motion of dust grain particles
(Nejoh 1997b, 1997c).

We assume that the charging of the dust grain particles arises from plasma
currents due to the electrons, ions and an ion beam reaching the grain surface
for spherical grains of radius r . In this case, the variable dust grain charge is
determined by the charge current balance equation:

d
dt
Qd = Ie + Ii + Ib , (11)

where

Ie = − eπr2

√
8Te

πme

ne(φ)exp
(
eΦs

Te

)
, (12)

Ii = eπr2

√
8Ti

πmi

ni(φ, τi)
(

1− eΦs

Ti

)
, (13)

Ib = eπr2

√
8Tb

πmb

nb(φ, τb) , (14)
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where Ie, Ii and Ib denote the electron, ion and ion beam current, and the
dust grain surface potential is Φ ≡ Qd/4πε0r relative to the plasma potential.
In order to derive the ion current I i, we used the orbital limited motion
theory (Goertz 1989). We normalise the electron, and ion-beam currents by
eπr2(8Te/πme)1/2ne0 ≈ eπr2ve,thne0. In order to express all the physical quantities
in non-dimensional form, we use the definition β = 1+δi/τi +δb/τb, ∆ = δi +δb−1,
where δb = nb0/ne0 and r is the average radius for spherical dust grains. Assuming
that Φs ≡ Qd/Cs, we can regard Cs = 4πε0r as the capacitance on the surface of
the grains. Considering the assumptions of the orbital limited motion for plasma
ions with the Boltzmann distribution and the constant flow velocity of beam
ions, we have the normalised expressions for equations (12)–(14):

Ie = − ne(φ)exp(aZd) , (15)

Ii =
√
τi

µi

ni(φ, τi)
(

1− aZd

τi

)
, (16)

Ib =
√
τb

µb

nb(φ, τb) , (17)

where a = e2/4πε0rTe, µi = mi/me, µb = mb/me and τi = Ti/Te.
In order to solve (1)–(5), we introduce the variable ξ = x−Mt, which is the

moving frame with the velocity M normalised by the dust acoustic velocity vDA.
We study the one-dimensional propagation of the nonlinear dust acoustic wave in
this system. For this purpose, deriving a set of equations in the moving frame,
and using the boundary conditions, φ→ 0, nd→∆/Zd, ni→ δi, nb→ δb, vb→ v0,
vi→ 0 and vd→ 0 at ξ→∞, we obtain the ion-beam and dust-grain densities as

nb = δb

/√
1− 2µdφ

Zd[(M − v0)2 − τb]
, (18)

nd =
∆
Zd

/√
1 +

2φ
M2 . (19)

The derivation of the ion-beam density (18) is given in the Appendix.
In the non-stationary state, considering the charge current balance equation

(11), we can derive a nonlinear equation for the variable charge of dust grains as

d(aZd)
dt∗ = − exp(αeφ+ aZd) + δi

√
τi

µi

exp(−αiφ)
(

1− aZd

τi

)

+
√
τb

µb

δb

/√
1− µd

Zd

2φ
[(M − v0)2 − τb]

, (20)
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where t∗ = t/λDdr
−1ω−1

pe . Here we note that αe = ∆/βZd, αi = ∆/τiβZd,
β = 1 + δi/τi + δb/τb and ∆ = δi + δb − 1. Equation (20) includes strongly
nonlinear terms. Then, we can obtain the solution of (20) by numerical
calculation in the next section. At the stationary state, from dQd/dt∗ = 0,
equation (20) reduces to

exp(αeφ+ aZd) = δi

√
τi

µi

exp(−αiφ)
(

1− aZd

τi

)

+
√
τb

µb

δb

/√
1− µd

Zd

2φ
[(M − v0)2 − τb]

. (21)

Next, in order to confirm the possibility of the existence of dust acoustic
waves, we derive the law of conservation of energy from (10). Integration of the
Poission equation gives the Energy Law , (∂φ/∂ξ)2/2 + V (φ) = 0, with

V (φ) =
1
αe

{1− exp(αeφ)}+
δi

αi

{1− exp(−αiφ)}+ ∆M2

(
1−

√
1 +

2φ
M2

)

+ δb
Zd[(M − v0)2 − τb]

µd

{
1−

√
2µdφ

Zd[(M − v0)2 − τb]

}
. (22)

The oscillatory solution of the electrostatic dust acoustic waves exists when the
following conditions are satisfied:

(i) If V (φ) satisfies the condition d2V (φ)/dφ2 < 0 at φ = 0, the velocity of
nonlinear waves propagating in this system can be determined. This condition
gives rise to

−1− δi

τi
+
δb

αe

1
{(M − v0)2 − τb}

+
∆

αeM
2 < 0 . (23)

(ii) Nonlinear dust acoustic waves exist only when V (φM ) ≥ 0, where the
maximum potential is determined by φM = −M2/2. This implies that the
following inequality holds:

1
αe

{1− exp(−αeM
2/2)}+

δi

αi

{1− exp(αiM
2/2)}+ ∆M2

+ δb
Zd[(M − v0)2 − τb]

µd

{
1−

√
µdM

2

Zd[(M − v0)2 − τb]

}
≥ 0 . (24)
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We show the speed M of dust acoustic waves as a function of the ratio of the
ion to electron density δi in Fig. 1, from (23), in the case of Zd = 100 (solid lines)
and 50 (dotted lines), where r = 10−6 m, a = 1 ·4 × 10−3, δb = 1 ·0, τb = 2 ·0,
µi = 1836, µd = 1011, v0 = 0 ·1 and 0 ·05. The thick and thin lines denote the ion
temperature τ = 0 ·2 and 0 ·1 respectively. For example, a dust grain radius of
1 µm and mass density 2000 kg m−3 has a mass ∼5×10−15 kg so that µd ≈ 1011.
Using the Landau length e2/4πε0Te = 1 ·4 × 10−9 m for Te = 1 eV, we obtain
a = e2/4πε0rTe = 1 ·4 × 10−3 for the gain radius r = 10−6 m. It is noted that
the parameters a = 1 ·4 × 10−3, δb = 1 ·0, τb = 2 ·0, µi = 1836, µd = 1011 and
v0 = 0 ·1 are all dimensionless. When the ion-to-electron density ratio δi becomes
large, the speed of the dust acoustic waves increases. An increase of the ion
temperature increases the wave speed.

Fig. 1. Velocity (Mach number) of dust acoustic waves as a function
of the ion-to-electron density ratio for the case of Zd = 100 (solid
lines) and 50 (dotted lines), where a = 1 ·4×10−3, δb = 1 ·0, τb = 2 ·0,
µi = 1836, µd = 1011, µb = 39 × 1836 and v0 = 0 ·1. The thick
and thin lines denote the ion temperature ratio τi = 0 ·2 and 0 ·1
respectively.

3. Numerical Results

The aim of this section is to investigate non-stationary and stationary
properties of the grain charge and Sagdeev potential for the existence of nonlinear
waves. It is noted that, in the case where md = 2 ·0 × 10−16 kg, Zd = 103,
Te = 1 ·0 eV, Ti = 0 ·4 eV, the dust thermal velocity is vd,th = 0 ·004 m s−1,
the dust acoustic velocity vDA ≈ 1 ·0 m s−1 and the wave phase velocity
vph ≈ (ZdTe/md)1/2 ≈ 1 m s−1. If we assume K+ ions as the ion-beam
component, the beam thermal velocity is ≈ 11 ·4 m s−1. When the beam
velocity is ≈0 ·1 m s−1, we obtain v0 = 0 ·1 because the velocity is normalised
by the dust acoustic velocity vDA = (Teff/md)1/2. Since the conditions for
the velocities, which are stated after (5), are satisfied properly under these



44 Y. N. Nejoh

circumstances, we note that the dust acoustic instability due to the streaming
ion beam does not occur in our system. In the following, in order to calculate
equations (20)–(24), we use the parameters a = 1 ·4× 10−3, δb = 1 ·0, τb = 2 ·0,
µi = 1836, µd = 1011, µb = 39× µi for K+ ions, and v0 = 0 ·1.

Fig. 2. A non-stationary property of the grain charge with
a = 1 ·4× 10−3, δb = 1 ·0, τb = 2 ·0 and v0 = 0 ·1.

Fig. 3. A Z d–φ plane in the case of δb = 1 ·0, τb = 2 ·0 (dotted
line) and δb = 100, τb = 2 ·0 (solid line) and δb = 100, τb = 0 ·1
(dashed line), where a = 1 ·4 × 10−3, δi = 500, τi = 0 ·2, M = 0 ·9
and v0 = 0 ·1.

First, using (20) we show the temporal evolution of the grain charge Zd

in Fig. 2, where τi = 0 ·2, δi = 500 and M = 1 ·6. In this case, the grain
charge attains to the stationary state after the fluctuation of a short time. The
fluctuating time, as is seen from Fig. 2, is t = 120 × λD(rωpe)−1 = 0 ·79 s for
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r = 10−6 m, ne = 1010 m−3 and Te = 0 ·4 eV. In order to study the dependence
of the dust charge on the potential, we illustrate a Zd–φ plane in Fig. 3, in
the case of δb = 1 ·0, τb = 2 ·0 (dotted line), δb = 100, τb = 2 ·0 (solid line) and
δb = 100, τb = 0 ·1 (dashed line), where δi = 500, τi = 0 ·2 and M = 0 ·9. The
dust grain charge increases as the beam temperature increases and beam density
decreases. Fig. 4 illustrates the dependence of the dust charge number on the
ion-to-electron density ratio δi, in the case of φ = −1 ·0 (solid line) and −0 ·1
(dotted line), where τi = 0 ·2 and M = 0 ·8. We find that the increase of the ion
density increases the dust grain charge.

Fig. 4. Dependence of the dust charge number Z d on the ion-to-
electron density ratio δi in the case of φ = −1 ·0 (solid line) and −0 ·1
(dotted line), where a = 1 ·4 × 10−3, δb = 1 ·0, τi = 0 ·2, τb = 3 ·0,
M = 0 ·8 and v0 = 0 ·1.

Second, Fig. 5a shows a bird’s-eye view of the potential V (φ) depending on
the dust mass-to-charge ratio µd/Zd, where τi = 0 ·1, δi = 50 and M = 0 ·8. We
show a two-dimensional V (φ)–φ plane for µd/Zd = 5× 108 in Fig. 5b in the case
δi = 50 (solid line) and 100 (dotted line). It turns out that the potential V (φ)
strongly depends on the dust grain mass-to-charge and ion-to-electron density
ratios, and that the amplitude of the dust acoustic waves grows when the ion
density increases.

4. Discussion

We have investigated the effect of nonlinear dust charging on dust acoustic
waves in a dusty plasma with an ion beam. We find that, unlike the ordinary
electron–positive ion plasmas, the quite dense positive ion, the dust mass-to-charge
ratio, the ion-beam density and temperature govern the collective motion of dust
grains. We summarise the remarkable properties of the grain charge and dust
acoustic waves as follows:
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Fig. 5. (a) A bird’s-eye view of the Sagdeev potential V (φ) and its dependence on the mass
to charge ratio µd/Zd and the electrostatic potential φ, where a = 1 ·4 × 10−3, δb = 1 ·0,
τi = 0 ·1, τb = 3 ·0, δi = 50, M = 0 ·8 and v0 = 0 ·1. (b) A V (φ)–φ plane in the case of
µd/Zd = 5× 108 in Fig. 5a, where the solid and dotted lines correspond to δi = 50 and 100
respectively.

(1) Speed of the wave: An increase in the ion density increases the speed of
the wave. An increase of the ion temperature increases the wave velocity, but
an increase of the dust charge decreases it.
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(2) Grain charge: The temporal evolution of the grain charge is shown in a
dusty plasma with an ion beam. The dust charge drastically fluctuates within
0 ·79 s from the commencement of the charging, and afterward it attains to the
stationary state. In this state, an increase in the ion density increases the dust
charge. The charge number increases as the beam density decreases and the
beam temperature increases.

(3) Existence of the waves: We show the possibility for the propagation of
dust acoustic waves by the calculation of the Sagdeev potential. It turns out
that the amplitude of the wave increases as the ion density increases.

We point out that the model considered here is structurally unstable, in the
sense that a small change in the parameters or inclusion of small additional effects
will not produce just a small change in the solution, but completely change its
nature, for example from a double layer to a solitary wave (Nejoh 1997a, 1998a).
Considering such a viewpoint, the results presented here are highly suggestive in
discussing the properties of ion-beam plasma systems with highly-charged, heavy,
micrometre-sized dust grains. As possible examples, nonlinear dust acoustic
waves are present in dusty plasmas, which have been observed in laboratory
plasmas (Selwyn et al . 1990; Sugai et al . 1997). They may serve as a source of
improvement in the etching rate of plasma processing. This investigation would
be effective in understanding the properties of grain charging and dust acoustic
waves with the positive ion beam.

Acknowledgment

The author wishes to thank the Special Research Program of the Hachinohe
Institute of Technology and the Joint Research Program of the National Institute
for Fusion Science.

References

Barkan, A., Merlino, R. L., and D’Angelo, N. (1995). Phys. Plasmas 2, 3563.
Bingham, R., de Angelis, U., Tsytovich, V. N., and Havnes, O. (1991). Phys. Fluids B 3, 811.
Boufendi, L., et al. (1992). Appl. Phys. Lett . 60, 169.
Chu, J. H., Du, J. B., and Lin, I. (1994). J. Phys. D 27, 296.
Goertz, C. K. (1989). Rev. Geophys. 27, 271.
Goertz, C. K., and Morfill, G. E. (1983). Icarus 53, 219.
Hartquist, T. W., Havnes, O., and Morfill, G. E. (1992). Fundament. Cosmic Phys. 15, 107.
Nejoh, Y. N. (1997a). Phys. Plasmas 4, 2813.
Nejoh, Y. N. (1997b). IEEE Trans. Plasma Sci . 25, 492.
Nejoh, Y. N. (1997c). Rep. Inst. Fluid Sci. (Tohoku Univ.: Sendai) 10, 167; 175.
Nejoh, Y. N. (1998a). Aust. J. Phys. 51, 95.
Nejoh, Y. N. (1998b). Nonlinear Processes Geophys. 5, 53.
Rao, N. N., Shukla, P. K., and Yu, M. Y. (1990). Planet. Space Sci . 38, 543.
Rosenberg, M. (1993). Planet. Space Sci . 41, 229.
Selwyn, G. S., Heidenreich, J. E., and Haller, K. L. (1990). Appl. Phys. Lett . 57, 1876.
Shukla, P. K. (1995). ‘The Physics of Dusty Plasmas’, p. 175 (World Scientific: Singapore).
Sugai, H., Ahn, T. H., Ghanashev, I., Goto, M., Nagatsu, M., Nakamura, K., Suzuki, K., and

Toyoda, H. (1997). Plasma Phys. Controll. Fusion 39, 445.
Thompson, C., Barkan, A., D’Angelo, N., and Merlino, R. L. (1997).Phys. Plasmas 4, 2331.
Tsytovich, V. N., and Havnes, O. (1993). Commun. Plasma Phys. Controll. Fusion 15, 267.



48 Y. N. Nejoh

Appendix: Derivation of the Ion-beam Density (18)
It is necessary to derive the ion-beam density in the sense that the nonlinear

variation of the dust charge depending on the ion-beam density is very important.
The ion-beam density is required for investigation of the dust grain charge
variation and the existence of nonlinear dust acoustic waves.

We consider the equation of continuity and the equation of motion with the
ion-beam pressure gradient under the assumption of isothermal beam ions. The
ion-beam pressure is expressed as pb = kBTbnb in the isothermal process, where
kB denotes the Boltzmann constant. Using the beam pressure and (3b) and
normalising, we obtain (8b) associated with the equation of continuity of ions
(8a). In order to investigate the stationary collective motion, we introduce the
moving frame ξ = x−Mt with the velocity M in this system. Integrating (8a)
and (8b) once and using the boundary conditions, we can obtain

nb

nb0

=
v0 −M
vb −M

, (25)

(vb −M)2 − (v0 −M)2 + 2φ+ 2τbln
nb

nb0

= 0 . (26)

We assume that the quasineutrality condition holds,(
nb

nb0

)2

= 1 + δ

(
nb

nb0

)
, (27)

where δ(nb/nb0) denotes the normalised perturbation of beam ions, and
1 À δ(nb/nb0). Substituting (25) into (26) and using (27), we reduce (25)
to

δ

(
nb

nb0

)
=

2φ
(M − v0)2 − τb − 2φ

,

where we neglect the higher-order terms of nb/nb0 in the expansion of the
ln(nb/nb0). Returning to the quasineutrality conditions, we can easily obtain the
ion-beam density (18).
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