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Abstract

The radial structure of electron drift waves in a low-pressure tokamak plasma is presented.
The ions are cold and an electrostatic approximation for the fluctuating potential is used. It
is shown that problem of the radial structure of drift waves in toroidal geometry is amenable
to a two-step solution; in the first approximation, the radial structure of the mode is neglected
and the problem to be solved is the usual eigenmode equation along the (extended) poloidal
angle; in the second approximation, the mode amplitude is expanded in ascending powers of
the parameter (k⊥Ln)−1/2, where k⊥ is the magnitude of the lowest-order wavevector and
Ln is the radial density scalelength. The implications of these radially-extended drift-type
modes for the anomalous cross-field diffusion are discussed.

1. Introduction

It is now generally accepted in the fusion community that even if fast, large-
scale magnetohydrodynamic (MHD) instabilities can be suppressed, magnetically-
confined plasmas always contain sufficient free energy to drive slow, short-scale
instabilities. The cross-field ‘anomalous’ transport generated by drift-type
instabilities is typically two orders of magnitude larger than the neoclassical
transport (Horton 1989; Tang 1978; Liewer 1985; Wagner and Stroth 1993). Using
the heuristic ‘derivation’ of Kadomtsev (1965) one can estimate the perpendicular
anomalous diffusion coefficient as

D⊥ ≈
γ

(k(eff)
r )2

, (1)

where γ is the linear growth rate and k
(eff)
r is the effective radial wavevector.

Most theoretical studies deal with detailed calculations to determine the linear
growth rate γ. Typically the most unstable mode is found for k⊥−1 ∼ kr−1 = ξρs
where ξ is a nondimensional quantity of the order unity (typically between 3
and 10) and ρs = cs/ωci, and where cs = (Te/mi)

1
2 is the ion sound speed and

ωci = eB/(mic) is the ion cyclotron frequency. Although it is important to
calculate the linear growth rate accurately, we note that the (heuristic) diffusion
coefficient (1) has a strong dependence on k

(eff)
r .

The aim of this paper is to study the radial localisation of drift waves in
tokamak geometry and to estimate k(eff)

r in equation (1). In order to clarify the
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method used to calculate k
(eff)
r , we consider a simple model for electron drift

waves with cold ions. A simple iδ model is used for the nonadiabatic part of the
electron response and the geometry is the one of a low-β tokamak plasma with
circular, concentric magnetic surfaces. In Section 2, we discuss the representation
of the fluctuating electrostatic potential. The method used by Romanelli and
Zonca (1993) to estimate the radial extension of ion-temperature-gradient (ITG)
driven modes is briefly discussed. In Section 3, we derive a set of two coupled
equations; one equation describes the structure of the mode along the magnetic
field line whereas the second equation is a differential equation (DE) describing
the radial structure of the mode. In Section 4, we discuss the implication of our
results and suggest possible improvements for future work.

2. Representation of the Fluctuating Potential

In this section, we discuss two different, but complementary, representations
for the fluctuating electrostatic potential Φ. Since the density fluctuation is
related to Φ by a simple iδ correction, our model is essentially a one-field
(Φ) model. The confining magnetic field can be written in straight-field-line
coordinates (Boozer 1981, 1982) as

B = ∇α×∇α×∇ψ , (2)

where α is the field line label and 2πψ is the enclosed poloidal flux. For a low-β
tokamak plasma with circular, concentric magnetic surfaces we can also write B
as

B =
B0R0

R
φ̂+

rqB0

R
θ̂ , (3)

where R = R0 + r cos θ is the local major radius, B0 is the magnetic field strength
at the magnetic axis (R = R0), θ is the poloidal angle measured from the
outside of the torus, and θ̂ and φ̂ are unit vectors in the poloidal and toroidal
directions, respectively. For the magnetic field given in (3), the field line label is
α = φ− q(r)θ and the poloidal flux function ψ(r) satisfies

ψ(r) = B0

∫ r

0

r′

q(r′)
dr′ . (4)

In the local coordinate system {r, θ, φ}, the contravariant basis vectors are
∇r = r̂, ∇θ = θ̂/r and ∇φ = φ̂/R. For low-frequency modes with k||/k⊥ ¿ 1,
it is convenient to use the eikonal representation for the fluctuating electrostatic
potential Φ̃ ≡ eΦ/Te. Following Antonsen and Lane (1980), we write

Φ̃ = Φ̂ exp(−iωt) exp(iNS) , (5)

where ω is the mode frequency and N À 1 is the toroidal mode number. The
amplitude Φ̂, and the eikonal S, vary on the equilibrium scale length. We demand
that B .∇S ≡ 0. Then, taking into account equation (2), the general solution
for the eikonal is S = S(α, ψ) or, equivalently, S = S(α, q) since the safety factor
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is a flux surface quantity, q = q(ψ). The lowest-order perpendicular wavevector
is defined as (Antonsen and Lane 1980)

k⊥ ≡ N∇S . (6)

For simplicity, we write the eikonal as S = α+ S(q) and we can write the above
equation as

k⊥ = N(∇α+ θk∇q)

= N

(
∇α+

dq

dr
θk∇r

)
, (7)

where θk ≡ dS/dq is the radial mode number. In the standard eikonal representation,
the amplitude is written as Φ̂ = Φ̂(x||) where x|| is the length along the magnetic
field. For our simple equilibrium magnetic field (3), we have x|| ' qR0θ where,
now, θ is the extended poloidal angle. When representation (5) is used in the
model equation, one gets a second-order differential in θ and the mode frequency
is ω = ω(r, θk).

As shown by Romanelli and Zonca (1993), the radial structure of the eigenmode
is related to the radial mode number θk which is then considered as an operator
in the radial direction. In this paper, we suggest another approach to the problem
of the radial structure of eigenmodes in toroidal geometry. We simply set the
radial mode number to zero but retain the radial variation of the mode in the
amplitude. Therefore, we write the potential fluctuation as

Φ̃ = Φ̂(x||, r) exp(iNα− iωt) . (8)

The lowest-order perpendicular wavevector is now k⊥ = N∇α. Typically,
k⊥ ≈ kθ ≡ Nq/r. In order to decouple ∂Φ̂/∂r from the equilibrium, we write
∂Φ̂/∂r ∼ Φ̂/λ and assume

λ¿ L ∼ Ln , (9)

where L is a typical equilibrium scale length and Ln is the radial density scale
length. Since the rapid variation is included in the phase factor exp(iNα− iωt)
we assume

λÀ λ⊥ ≡
2π
k⊥

∼ r

Nq
. (10)

Taking into account orderings (9) and (10), it is natural to adopt the meso-scale
ordering

λ ∼
√
Lλ⊥ . (11)

We note that ordering (11) is an assumption and it must be verified that this
ordering yields a physically correct solution. In the coming sections, we verify
that ordering (11) is consistent with a broad radial extension of drift waves in
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toroidal geometry. For clarity, we write the ordering that we shall use throughout
this paper:

k−1
⊥ /a = O(N−1) , λ/a = O(N−1/2) , L/a = O(1) . (12)

3. Two-dimensional Eigenmode Equation

In this section, we adopt the eikonal representation (8) and derive a two-
dimensional (r, θ) eigenmode equation for drift waves in toroidal geometry. Using
the meso-scale (11), it is shown that the two-dimensional problem can be reduced
to a set of 2 one-dimensional eigenmode equations. One eigenmode equation
describes the ‘parallel’ (along the field line) structure of the mode, whereas the
second eigenmode equation describes the radial envelope of the toroidal drift
wave. As discussed in the Introduction, we adopt a simple model for electron
drift waves with cold ions. Since the typical perpendicular wavelength is much
larger the Debye length, the plasma is quasi neutral, ne ' ni ≡ n. Our basic
equations are the ion continuity equation (Braginskii 1965)

∂n

∂t
+∇ . (nvi) = 0 , (13)

and the ion momentum equations (with Ti 7→ 0)

min

(
∂

∂t
+ vi .∇

)
vi = en

(
E +

vi ×B
c

)
, (14)

where, for a low-β plasma, E ' −∇Φ. For low-frequency drift-type modes, we
solve equation (14) for the cross-field ion drift velocity. The derivation is standard
(Lewandowski 1997a, 1997b) and we state the result

vi⊥ = vE + vpi , (15)

where vE ≡ cE×B/B2 is the lowest-order E×B drift velocity and

vpi ≡ ω−1
ci ê|| ×

(
∂

∂t
+ vE .∇

)
vE (16)

is the ion polarisation drift velocity. Here ê|| ≡ B/B is the unit vector along B
and ωci = eB/mic is the ion cyclotron frequency. The parallel component of the
ion momentum equation yields

∂ṽ||
∂t

= −cs∇||Φ̃ , (17)

where ṽ|| ≡ vi||/cs is the normalised parallel ion velocity. Our model equation is

∂n

∂t
= −∇ . (nvE + nvpi + nvi||) . (18)
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To obtain a single eigenmode equation, we write the perturbed density as
ñ = (1−iδ)Φ̃ where δ is a small, positive constant which describes the nonadiabatic
response of the electrons. Since the amplitude Φ̂ = Φ̂(r, x||) depends on the radius,
the eigenmode equation resulting from equation (18) will be two-dimensional. To
simplify intermediate calculation, it is convenient to define the following operator:

P⊥ ≡
(
ik⊥ +∇r ∂

∂r

)
. (19)

The E×B drift velocity is

vE = csρsf
?ê|| ×P⊥(Φ̂) (20)

and, in the linear approximation, the polarisation drift velocity reads

vpi = −f?ρ2
s

∂

∂t
P⊥(Φ̂) . (21)

In equations (20) and (21), we have defined the phase factor f? ≡ exp (iNα).
The divergence of the ion polarisation drift velocity is

∇ . vπ = −ρ2
s

∂

∂t

[
f?
∇Te

Te

. P⊥(Φ̂) +∇f? . P⊥(Φ̂) + f?∇ . P⊥(Φ̂)
]
, (22)

where we have assumed |∇B/B| ¿ |∇Te/Te|. When written in explicit form,
equation (22) contains many terms. For instance, the last term in the square
brackets of equation (22) can be written as

∇ . P⊥(Φ̂) = ik⊥ .∇⊥Φ̂ +∇ .∇r ∂Φ̂
∂r

+ i∇ . k⊥Φ̂ +∇r .∇
(
∂Φ̂
∂r

)
. (23)

In particular, we have to evaluate ∇ .∇α [third term on the right-hand side of
equation (23)]. Using the expression for the field line label α = φ − q(r)θ, we
have

∇ .∇α = ∇ .∇φ− q∇ .∇θ − q̇∇r .∇θ − q̇θ∇r .∇r − q̈θ∇r .∇r − q̇∇θ .∇r

= ∇ .∇φ− q∇θ − q̇θ∇ .∇r − q̈θ , (24)

since, for an equilibrium with concentric, circular magnetic surfaces, we have
∇r .∇r = 1 and ∇r .∇θ = 0. In the above equation, a dot denotes a derivative
with respect to r. To calculate ∇ .∇r, we note that ∇r = r̂ = θ̂× φ̂ = J∇θ×∇φ,
where J ≡ r(R0 + r cos θ) is the Jacobian of the transformation. Then we get

∇ .∇r = ∇J . (∇θ ×∇φ) + J∇ . (∇θ ×∇φ)

=
∂J
∂r
∇r . (∇θ ×∇φ)

=
1
J

∂J
∂r

' 1
r
. (25)
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Similarly, it is easy to show that ∇ .∇θ = − sin θ/rR0 and ∇ .∇φ = 0. Then,
equation (24) becomes

∇ .∇α ' − q

r2 (ŝ+ ĉ)θ . (26)

Here we have defined the (global) magnetic shear ŝ ≡ rq̇/q and ĉ ≡ r2q̈/q. We
term ĉ the scalar magnetic curvature (since it is related to the second-order
radial derivative of the safety factor), to distinguish this quantity from the vector
magnetic curvature, κ ≡ (ê .∇)ê. After tedious but straightforward algebra, we
obtain the divergence of the ion polarisation flux:

∇ . (nvpi)
n0

= − f? ∂
∂t

[
ρs

Ln
(1 + ηe)

(
i
√
bŝθΦ̂− ∂Φ̂

∂x

)
− bg(θ)Φ̂− 2i

√
bŝθ

∂Φ̂
∂x

− i
√
b(ŝ+ ĉ)θ

Φ̂
c

+
1
x

∂Φ̂
∂x

+
∂2Φ̂
∂x2

]
, (27)

where x ≡ r/ρs is the normalised radial coordinate, g(θ) = 1 + (ŝθ)2 is related
to the secular behaviour of |∇α|2 and b ≡ (kθρs)2. Also we have introduced
the temperature gradient parameter ηe ≡ d lnTe0/d lnn0. Other calculations are
similar. Our final two-dimensional eigenmode equation reads

L||(Φ̂) = L⊥(Φ̂) , (28)

where we have defined the following operators,

L|| ≡
∂2

∂θ2 +
q2

ε2n
Ω[ΩA(θ) + C(θ)] , (29)

and where Ω ≡ ω/ω? is the normalised mode frequency (ω? = cs/Ln); εn ≡ Ln/R0

is the toroidicity parameter. Also we have

A(θ) ≡ 1 + bg(θ)− iδ − i(ρs/Ln)(1 + ηe)
√
bŝθ

C(θ) ≡
√
b[1− 2εnf(θ)] , (30)

where f(θ) = cos θ+ ŝθ sin θ is a combination of the normal and geodesic curvatures;
this term arises because in an inhomogeneous magnetic field the divergence of
the lowest-order E×B drift velocity does not vanish, ∇ . vE ' −2vE .∇B/B (in
the low-β approximation). The term in ρs/Ln in equation (30) comes from the
term ∇n0 . vpi which is formally smaller than other terms. We have retained it
for sake of completeness. The operator on the right-hand side of equation (28)
describes the radial structure of the eigenfunction

L⊥ ≡
[
2iεnΩ sin θ − Ω2

(
ρs/Ln(1 + ηe) + 2i

√
bŝθ + i

√
b(ŝ+ ĉ)θ − 1

x

)]
∂

∂x

+ Ω2 ∂
2

∂x2 . (31)
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We recall that x ≡ r/ρs is the normalised radial coordinate.

(3a) Parallel Mode Structure

To lowest order in the smallness parameter ε̂ ≡ 1/N ¿ 1, we can neglect the
right-hand side of equation (28). The envelope of the mode along the magnetic
field line, ϕ̂(θ), is governed by the usual eigenmode equation

d2ϕ̂

dθ2 +
q2

gre2
n

Q(Ω, θ)ϕ̂ = 0 , (32)

where Q(Ω, θ) = A(θ)Ω2 +C(θ)Ω is the ‘effective’ potential in the Schrodinger-like
equation. Here we note that the iδ correction due to the nonadiabatic electron
population is responsible for the instability. In other words, if δ = 0, both the
eigenfunction and the eigenvalue(s) are purely real quantities in equation (32).
For small finite δ, the real part of the mode frequency, Ωr ≡ <(Ω), will be much
larger than its imaginary part, γ ≡ =(Ω). In fact, it is not difficult to show that
γ ≈ Ωrδ ¿ Ωr. We exploit the smallness of δ to solve equation (32) perturbatively.
In unsheared slab geometry, the mode frequency is obtained by setting θ = εn = 0
and by solving Q = 0. This yields ΩSLAB = −

√
b/(1 + b − iδ) or, in physical

units, we recover the well-known result (Manheimer and Lashmore-Davies 1989)

ωSLAB =
ω?e

1 + (kyρs)2 − iδ
, (33)

where ω?e = −kyρscs/Ln is the electron diamagnetic drift frequency. We can
estimate the effect of finite toroidicity by solving the local dispersion relation
Q = 0 with εn 6= 0. It is easy to show that the mode frequency is weakly
affected since Ω ' ΩSLAB(1− 2εn) ≈ ΩSLAB. We note that in the edge region of
medium-size tokamaks and stellarators (Tsui et al. 1993) the toroidicity parameter
is a small quantity; typically, εn ∼ 10−2. We shall return to the smallness of εn in
the next section. Following Cordey and Hastie (1977) we use the strong-coupling
approximation (Horton et al. 1978). The effective potential can then be written
as a quadratic polynomial Q = Q0 +Q1θ +Q2θ

2, where

Q0 ' 2εn
b

1 + b
,

Q1 = −i ρs
Ln

(1 + ηe)
b

3
2

(1 + b)2 ŝ ,

Q2 '
b2

(1 + b)2

[
ŝ2 + 2εn

1 + b

b
(ŝ− 1

2 )
]
. (34)

Note that Q1 is roughly
√
εn ¿ 1 times smaller than Q2 and, to first approximation

(as it is usually done), we may neglect Q1. Then one can write the eigenmode
for ϕ̂ as

d2ϕ̂

dθ2 + (G−Hθ2)ϕ̂ = 0 , (35)



66 J. L. V. Lewandowski

where G ≡ 2q2b/[εn(1 + b)] and H ≡ −b2q2[ŝ2 + 2εn(1 + b)(ŝ− 1
2 )/b]/[εn(1 + b)]2

which, when the global magnetic shear is not too large, is a positive-definite quantity.
It is convenient to introduce the transformation ϕ̂(θ) = F̂ (θ) exp(−

√
Hθ2/2) so

that equation (35) becomes

d2F̂

dθ2 −
√
HF̂ − 2

√
Hθ

dF̂

dθ
= −GF̂ . (36)

Then, introducing the new variable θ̄ = H
1
4 θ, we obtain

d2F̂

dθ

2

− 2θ
dF̂

dθ
− (1− Λ)F̂ = 0 , (37)

where Λ ≡ G/
√
H. Equation (37) is the Hermite differential equation. Therefore,

the general solution for the parallel envelope of the mode can be written as

ϕ̂(θ, x) =
∞∑
l=0

Hl(H
1
4 θ)exp

(
− θ2

θ2
c

)
, (38)

where θc ≡
√

2/H 1
4 and Hl is the Hermite polynomial of order l. We have

indicated the (slow) radial dependence of the lowest-order eigenfunction (38) since
H and θc both are functions of the normalised radial coordinate x.

(3b) Radial Mode Structure

We now consider the radial extension of the toroidal drift waves. First we
note that the operator (29) is a differential operator in θ alone. Therefore, if ϕ̂ is
solution of L||(ϕ̂) = 0, then, for arbitrary A0(x), we note that Φ̂0(θ, x) = A0(x)ϕ̂
is also a solution to L||(Φ̂0) = 0. Before going further, it is convenient to estimate
the order of magnitude of the plasma parameters appearing in the equations. For
concreteness, we consider the edge plasma of the Texas Experimental Tokamak
(TEXT) (Gentle 1981). The parameters are: a = 26 cm (minor radius);
R = 100 cm (major radius); Ln = 3 ·0 cm (radial density scalelength); B0 = 2 T
(magnetic field strength at the magnetic axis); q = 3 (safety factor at r = a); and
Te = 25 eV (electron temperature). Experimental measurements show that the
turbulence in the edge region of the TEXT tokamak has a long perpendicular
wavelength; typically, k⊥ρs ' 0 ·1. With these parameters, the plasma edge
ordering is

εn ∼ ρs/Ln ∼ b ≡ (kθρs)2 ∼ 10−2 ¿ 1 . (39)

Also the typical toroidal mode number is in the range N = 100 to N = 200, so
that εn ∼ ε̂ where ε̂ ≡ 1/N is the expansion parameter. We expand the general
eigenfunction in ascending powers of ε̂,

Φ̂ = A0(x)ϕ̂(θ) + ε̂A1(x, θ) + ε̂2A2(x, θ) + · · · , (40)

and write the radial operator (31) as follows,
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L⊥ = Ω(µ(1) + µ(3/2))
∂

∂x
+ Ω2 ∂

2

∂x2 , (41)

where, taking into account the ordering (39), we have Ω ≈ Ωr '
√
b/(1+b) = O(ε 1

2 ).
Here

µ(1) = 2iε sin θ − iΩ
√
bθ(3ŝ+ ĉ) ,

µ(3/2) = Ω
[

1
x
− ρs

Ln
(1 + ηe)

]
, (42)

where the superscripts indicate the corresponding order in ε̂. Assuming that A1

varies slowly along the extended poloidal angle, ∂A1/∂θ ∼ A1ε̂
2, we arrive at the

following equations:

µ(1) dA0

dx
+ Ω

d2A0

dx2 = 0 [corrections O(ε̂2)] , (43)

A0µ
(1) ∂ϕ̂

∂x
= ϕ̂µ(3/2) dA0

dx
= 0 [corrections O(ε̂ 5

2 )] . (44)

We solve equations (43) and (44) to obtain

1
A0

d2A0

dx2 =
〈

1
Ω

[µ(1)]2

µ(3/2)

∂

∂x
ln ϕ̂

〉
, (45)

where 〈•〉 denotes an average over the extended poloidal angle. The definition of
〈•〉 is given below. It is easy to show that the right-hand side of equation (45)
is a negative quantity so that A0(x) decreases in the radial direction. Equation
(45) has two important characteristics that one would expect from A0; first, the
width of A0 is related to the radial variation of the parallel envelope of the mode;
second, A0 depends on the magnetic shear (and also on the scalar magnetic
curvature ĉ) through µ(1) and θc in the envelope ϕ̂. Although the general solution
(38) can be substituted in equation (45), we consider the l = 0 mode. We note
that the l = 0 mode is the least stable mode since the l 6= 0 modes respond
more easily to the stabilising effect of the magnetic shear. Therefore, substituting
ϕ = ϕ0 exp(−θ2/θ2

c ) in equation (45) and defining the ‘parallel average’ of F (x, θ)
as

〈F 〉(x) ≡ 1
2θc

∫ +θc

−θc
F (x, θ′)dθ′ , (46)

we obtain after some algebra

1
A0

d2A0

dx2 ' (1 + b)2

b

Ln

(1 + ηe)a
U(x)W(x) , (47)
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U(x) ≡ ŝ+
[ĉ+ ŝ(1− ŝ)][ŝ+ εn(1 + b)/b]
[ŝ2 + 2ηn(1 + b)(ŝ− 1/2)/b]

, (48)

W(x) ≡ 2η2
nα1 +

(θcb)2

5(1 + b)2 (3ŝ+ ĉ)2 + 2
εnb

θc(1 + b)
(3ŝ+ ĉ)α2 , (49)

where

θc =
2εn(1 + b)√

bq|ŝ2 + 2εn(1 + b)(ŝ− 1
2 )/b| 14

, (50)

α1 =
∫ +1

−1

y2 sin(θcy)dy ,

α2 =
∫ +1

−1

y3 sin(θcy)dy .

The implications of equation (47) for the cross-field anomalous transport are
discussed in the next section.

4. Discussion and Conclusion

We can estimate the effective radial wavevector in the expression for D⊥,
equation (1), from equation (47):

1
A0

d2A0

dx2 ∼ [k(eff)
r ]2ρ2

s . (51)

In the context of the simple iδ model, the growth rate in equation (1) is (in
unnormalised units)

γ = ω?δ

√
b

1 + b
. (52)

If one adopts Kadomtsev’s (1965) estimate, k(eff)
r ∼ kr ≈

√
b/ρs, one gets the

following anomalous cross-field diffusion coefficient:

D⊥ ≈
ω?δρ

2
s√

b(1 + b)
(Kadomtsev) . (53)

If one uses equation (1) for D⊥, then one multiplies equation (53) by the
enhancement factor F ≡ [kr/k

(eff)
r ]2. Using equation (51) and taking into account

(47)–(49) we obtain the enhancement factor

F = (1 + εe)
a

Ln

b2

(1 + b)2

1
U(ŝ, ĉ)

1
W(ŝ, ĉ)

, (54)
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where the functions U and W are given by equations (48) and (49), respectively.
Equation (54) is the main result of this paper. To summarise our approach,
we have included a radial dependence in the amplitude Φ̂, and the eikonal
representation for the fluctuating electrostatic potential is given by equation (8).
The eikonal representation (8) is then substituted in the model equation (18)
and a two-dimensional eigenmode equation (28) is readily derived. To lowest
order we obtain an eigenmode (32) describing the parallel (along the field line)
structure of the mode. Then expanding the general eigenfunction in ascending
powers of ε̂, the radial envelope of the mode A0(x) is obtained (45), and the
effective radial wavenumber of electron drift waves in toroidal geometry can be
calculated. We would like to point out that the enhancement factor (54) depends
strongly on the global magnetic shear ŝ, as well as the scalar magnetic curvature
ĉ, which is related to the second-order derivative of the safety factor.

Let us estimate the enhancement factor for the TEXT edge plasma parameter.
In the edge plasma of the TEXT tokamak (Gentle 1981), we have ŝ ∼ ĉ = O(1).
Then using equations (39) and (48)–(50), we obtain

F ≈ b

εn(Ln/a)
≈ a

Ln
' 10 [TEXT edge plasma] . (55)

We conclude that the radial extension of (ion and electron) drift waves in toroidal
geometry is an important quantity to calculate the cross-field anomalous transport.
Using a different approach, Romanelli and Zonca reached a similar conclusion
for the ITG mode. We are currently working on a more detailed model for the
nonadiabatic electron response (treated as a iδ term in this paper). We expect
to report our estimates for D⊥ in a separate paper.
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