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Abstract

A 3-field model for collisional drift waves, in the ballooning representation, for a low-pressure
stellarator plasma is presented. In particular, the effect of a finite radial mode number
( ≡ θk) is studied, and the linear growth rates for the fluctuating plasma density, electrostatic
potential and electron temperature are computed numerically by solving the 3-field model as
an initial-value problem. Numerical results for a 3-field period stellarator with low global
magnetic shear are then presented. It is found that, in a system with small global magnetic
shear, the case θk = 0 yields the fastest linear growth rate.

1. Introduction

Magnetically confined plasmas are intrinsically nonuniform in space. Spatial
gradients in the plasma density and (ion and electron) temperatures typically
generate slow, short-scale, collective phenomena known as drift waves (Horton
1989). These drift waves, along with other microinstabilities (Liewer 1985; Tang
1978), are believed to be responsible for the large cross-field transport, the
so-called ‘anomalous transport’ (Rosenbluth and Sagdeev 1984; Manheimer and
Lashmore-Davies 1989), which is observed in tokamaks and stellarators.

Electrostatic drift wave turbulence can be excited by various mechanisms. Some
destabilising mechanisms for drift waves in low-β plasmas can be provided by
collisions, Landau resonances, trapped particle effects (Rosenbluth and Sagdeev
1984; Manheimer and Lashmore-Davies 1989), ionisation effects (Ware et al. 1992)
and finite parallel (Marchand and Guzdar 1982) and perpendicular (Tang and
Luhmann 1976) currents. In general, the magnetic shear is the dominant stabilising
mechanism. For example, the standard tokamak configuration, typically has a
strong, positive global magnetic shear. However, some stellarator configurations,
such as W7-AS (Grieger et al. 1985), TJ-2 (Alejaldre et al. 1990) and H1-NF
(Hamberger et al. 1990), have a small, or even negligible, global magnetic shear.
In these configurations, the local properties of the magnetic shear can play an
important role, as recently suggested by Waltz and Boozer (1993). In order to gain
a better understanding of stellarator cross-field transport, it is crucial to access
the importance of the confining magnetic field key attributes (such as the local
magnetic shear and the normal curvature) on drift wave dynamics. This paper
is part of an ongoing project concerned with drift waves in three-dimensional
geometries, such as stellarators and tokamaks with field coil ripples (Persson et
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al. 1996; Persson and Lewandowski 1997; Lewandowski 1997a, 1997b, 1997c,
1998).

In this paper, we use the ballooning representation to study a 3-field model
for collisional drift waves, in the linear regime which is valid for low-β stellarator
plasmas. Here, we have included the effect of radial mode number (θk), which
was neglected in a 3-field (Lewandowski 1997a) and a 4-field (Lewandowski
1997b) model for resistive drift-type modes. In a system with low-global magnetic
shear, such as H1-NF, it can be argued that the dependence of the fastest linear
growth rate on θk must be weak. Extensive numerical simulations for ideal MHD
ballooning modes show that the θk dependence is indeed weak, and one can argue
that the slow θk dependence must, a priori , also be valid for resistive modes. In
this case, one can assume that θk = 0 in all calculations (Lewandowski 1997a).
However, it has not yet been proven (either analytically or numerically) that the
θk dependence of linear resistive modes in a low-shear system is indeed weak.
The aim of this paper is to numerically study the θk dependence of such modes
for a realistic stellarator plasma.

The paper is organised as follows; in Section 2, the equilibrium magnetic
field is specified in straight-field-line (Boozer) coordinates; in Section 3, a fluid
model, valid for arbitrary 3-dimensional geometry, is presented and the ballooning
representation, including the effect of a finite radial mode number, is discussed
(analytical calculations of the geometrical effects are reported in Appendix B).
The numerical results are presented and discussed in Section 4. We conclude
with some remarks in Section 5.

2. The Equilibrium

For 3-dimensional equilibria, the equilibrium magnetic field is conveniently
written in straight-field-line (Boozer) coordinates (Boozer 1980, 1981, 1982)

B = ∇α×∇ψ , (1)

where α ≡ ζ−q(ψ)θ is the field line label and 2πψ is the enclosed poloidal flux. The
variables θ and ζ are, respectively, the poloidal and toroidal angle-like coordinates
(with period 2π). For a stellarator geometry, it is customary to use s ≡ Ψ/Ψb as a
radial label, where Ψ is the enclosed toroidal flux and Ψb is the enclosed toroidal
flux evaluated at the plasma boundary. By construction, the (normalised) radial
label ranges from 0 (at the magnetic axis) to 1 (at the last closed magnetic
surface). The confining magnetic field then reads B = ψ̇∇α ×∇s, where a dot
denotes a derivative with respect to s. In the coordinate system (s, θ, ζ), the
Jacobian of the transformation J ≡ [∇s ·(∇θ×∇ζ)]−1 has the dimensionality of a
volume. In a stellarator geometry, this equilibrium is computed numerically using
the ideal magnetohydrodynamic (MHD) equations (as described in Appendix A).

3. The Model (General Geometry)

We consider a low-temperature, high-density plasma in which, for simplicity,
the ions are assumed to be cold (τ ≡ Ti/Te ¿ 1). For modes with perpendicular
wavelength much larger than the ion thermal gyro-radius and parallel wavelength
much larger than the electron mean free path, the plasma is in the collisional
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regime and Braginskii’s (1965) fluid equations can be used to describe the drift
wave dynamics. We consider slow, drift-type modes satisfying

ω

ωci

¿ 1 and
k||
k⊥

¿ 1 . (2)

Here k|| and k⊥ are the typical magnitude of the parallel and perpendicular
wavevectors, respectively, ω ∼ ∂/∂t is the typical mode frequency and ωci ≡ eB/mic
is the ion cyclotron frequency. For perturbations with parallel phase velocity
much larger than the ion thermal velocity, ω/k|| À vthi, the ion parallel motion
can be neglected. The inclusion of ion parallel motion has been shown to provide
a stabilising mechanism for the drift waves. For wavelengths much larger than
the Debye length, the plasma is quasineutral.

The basic equations (Braginskii 1965) are the ion continuity equation,

∂n

∂t
+∇ . (nvi) = 0 , (3)

the ion momentum balance equation,

min

(
∂

∂t
+ vi .∇

)
vi = en

(
E +

vi ×B
c

)
−Rei , (4)

the electron momentum equation (neglecting electron inertia and viscous effects)

∇pe + en

(
E +

ve ×B
c

)
−Rei = 0 , (5)

the quasineutrality condition,

∇ . J = 0 , (6)

and the electron energy equation

3
2 n

(
∂

∂t
+ ve .∇

)
Te = −nTe∇ . ve −∇ . qe +

J . Rei

en
, (7)

where the electron viscosity and the ion–electron equilibration term (∼ me/mi ¿ 1)
have been neglected. In equations (4), (5) and (7), Rei is the momentum transfer
to the electrons due to collisions with ions. In the ion momentum equation (4),
the ion collisional viscosity has been neglected. The ion collisional viscosity has
a stabilising influence on the drift wave (Coppi et al. 1967). For slow cross-field
motions satisfying (2), the perpendicular components of the ion and electron
velocities can be obtained perturbatively. This derivation is standard, and hence,
we only state the results (Lewandowski 1997a) that

vi⊥ = vE + vpi + vcoll (8)

is the cross-field ion velocity, obtained from equation (4), and
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ve⊥ = vE + vde + vcoll (9)

is the perpendicular electron velocity obtained from Ohm’s law (5). In equations
(8) and (9)

vE ≡
c

B
E× ê|| ,

vpi ≡ ω−1
ci ê|| ×

(
∂

∂t
+ vE .∇

)
vE ,

vcoll ≡
c

enB
ê|| ×Rei ,

vde ≡
c

enB
∇pe × ê|| (10)

are the lowest order E × B drift velocity, the ion polarisation drift velocity,
the ion–electron-collision-driven drift velocity and the electron diamagnetic drift
velocity, respectively. Here, ê|| ≡ B/B is a unit vector parallel to the equilibrium
magnetic field. The parallel component of the electron momentum equation (5)
provides the parallel current density (assuming vi|| = 0) which is then substituted
into the charge neutrality equation

∇ . J|| = −∇ . J⊥ , (11)

where the perpendicular current density J⊥ = en(vpi − vde) is obtained by
subtracting equation (9) from equation (8). After linearisation of equation (11),
we neglect the (small) parallel equilibrium current density J||0; this approximation
is justified in medium-size stellarators such as the toroidal heliac H1-NF. A
non-zero J||0 implies that a relatively strong electric field exists (possibly generated
locally by the heating system) which, in turn, suggests a strong departures
from thermodynamic equilibrium. In the present paper, such strong departures
from thermodynamic equilibrium are not taken into account. Introducing the
normalised plasma density perturbation ñ ≡ δn/n0, the normalised electrostatic
potential Φ̃ ≡ eΦ/Te0 (where Te0 is the equilibrium electron temperature) and
the normalised fluctuating electron temperature T̃e = δTe/Te0, we note that
vE ∼ vde À vpi À vcoll ∼ vE/ξe, where ξe ≡ ωceτe is a dimensionless quantity
related to the plasma collisionality. Here ωce is the electron cyclotron frequency and
τe is the electron basic collisional time as calculated by Braginskii (1965). For a high-
density, low-temperature, magnetised plasma (typically B ∼ 1 T, n ∼ 1012 cm−3,
Te ∼ 25 eV), we have ξe ∼ 105 À 1, showing that the collision-driven drift velocity
is much smaller than the E×B-drift velocity.

For modes with short perpendicular wavelength (but still long enough so
that k⊥ρthi ¿ 1, where ρthi is the ion thermal gyro-radius) and long parallel
wavelength, one can use the ballooning representation for fluctuating quantities
(Antonsen and Lane 1980):

Φ̃ ≡ eΦ
Te0

= Φ̂(x||, t) exp
(
i
S

ε̂

)
, (12)
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where S is the eikonal, x|| is the length along the magnetic field line, ε̂¿ 1 is a
smallness parameter (expansion parameter) and Φ̂ is the amplitude. If L denotes
the typical equilibrium scalelength, we assume that the amplitude Φ̂ and the
eikonal S are slowly-varying functions of space; more specifically, we assume that
|LΦ̂−1∇Φ̂| ∼ |LS−1∇S| = O(1). Following Antonsen and Lane (1980), we also
demand that the eikonal satisfies B .∇S = 0. From the Clebsch representation
(1), it is clear that S = S(α, ψ). Since the safety factor is a flux surface quantity,
q = q(ψ), one can use q as a radial coordinate. Then we get (to leading order)

∇Φ̃ = iε̂−1∇S Φ̃

= iε̂−1 ∂S

∂α
(∇α+ θk∇q)Φ̃ , (13)

where θk ≡ (∂S/∂q)/(∂S/∂α) is the so-called radial mode number. Making the
usual assumption that the eikonal has the form S = α+ S̄(q, α) with |∂S̄/∂α| ¿ 1,
equation (13) then yields ∇Φ̃ = ik⊥Φ̃ +O(Φ̃/L) where

k⊥ ≡ n(∇α+ θkq̇∇s) , (14)

and n ≡ 1/ε̂ À 1 is the (large) toroidal mode number. In a previous paper
(Lewandowski 1997a), collisional drift waves in stellarator geometry were studied
for the case θk = 0. Strictly speaking, the parameter θk must be varied until the
fastest growing mode is found. We note that θk 6= 0 modifies the radial (along ∇s)
component of the lowest-order perpendicular wavevector. As it turns out, all the
secular terms in the final eigenmode equations are modified for θk 6= 0. As for the
time scales involved in the problem, the equilibrium plasma density is assumed to
vary on the transport timescale, ω−1

ci ∂n0/∂t/n0 = O(ε3)¿ ω−1
ci ∂n̂/∂t/n̂ = O(ε),

where ε ∼ ω/ωci ¿ 1 is a smallness parameter. A similar eikonal representation
(12) is assumed for the perturbed density and electron temperature.

Our model equations, written in normalised form, have been derived elsewhere
(Lewandowski 1997a). After linearisation, these are: the ion continuity equation

∂n̂

∂t′′
= i(S⊥1 − S⊥2)Φ̂ , (15)

the quasineutrality condition

∂Φ̂
∂t′′

= L [iS⊥1(n̂+ T̂e)− ξc (L2
n∇2
||F̂ − LnQ||∇||F̂ ) ] , (16)

and the electron energy equation

∂T̂e

∂t′′
= ξc [L2

n∇2
||Ĝ−Q||Ln∇||Ĝ]

+ i Φ̂ ( 2
3S⊥1 − ηeS⊥2) + i n̂ (2

3 S⊥2 − 2
3 S⊥1) + i T̂e ( 2

3 S⊥2 − 7
3 S⊥1) . (17)
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In equations (15)–(17), Q ≡ Ln∇B/B is a dimensionless quantity proportional
to the curvature of the magnetic field line; Ln ≡ ā(dn0/ds/n0)−1 is the radial
density scalelength (ā is the average minor radius of the last closed magnetic
surface); ω?e ≡ (cTe0kθ)/eB0Ln is the electron diamagnetic frequency (kθ ≡ mq/ā);
L ≡ (B?/ξ⊥kθρs0)2 is related to the polarisation drift term; B? ≡ B/B0 is the
magnetic field strength normalised to B0 (magnetic axis); ξ⊥ ≡

√
ê⊥ . ê⊥;

ê⊥ ≡ k⊥/kθ is the normalised perpendicular wavevector; ξc ≡ ωce0τe/kθLn À 1
is a nondimensional quantity arising for the parallel electron conductivity; and,
finally, ωce0 is the electron cyclotron frequency evaluated at the magnetic axis.
In equation (11), we have defined F̂ ≡ 2(1 + µ1)T̂e + 2ĥ, where µ1 = 0 ·71 is a
thermoelectric coefficient in the electron–ion momentum transfer Rei, and ĥ = n̂−Φ̂
is the non-adiabatic response of the electrons. In the electron energy equation
(16), Ĝ ≡ 2[2(1 + µ1)2 + µ2]T̂e/3 + 4(1 + µ1)ĥ/3 and µ2 = 3 ·2 is a thermoelectric
coefficient in the parallel electron heat conductivity. The geometrical effects enter
through L (polarisation drift), B? (magnetic field strength), ξ⊥ (norm of the
perpendicular wavevector) as well as the curvature term

S⊥1 ≡
2
B?

(ê|| × ê⊥) . Q , (18)

and the diamagnetic term

S⊥2 ≡
ā
√
gss

B?
[ê⊥ . (ê|| × n̂)] , (19)

where gss = ∇s .∇s is a metric element, ê|| ≡ B/B is the unit vector along B and
n̂ ≡ ∇s/(∇s .∇s) 1

2 is a unit vector normal to the magnetic surface and pointing
outwards. Finally, we would like to point out that the term Q|| in equations
(16) and (17) is related to the compression of the unit vector ê|| (Lewandowski
1997a). In stellarator geometry, the extended toroidal angle ζ can be used as a
label along the magnetic field line, so that we write x|| = x||(ζ) in the amplitude
(12).

Equations (15) and (17) form a system of three time-dependent, coupled partial
differential equations to be solved along the magnetic field line. The amplitudes
Φ̂, n̂ and T̂e are assumed to vanish for large values of the extended poloidal angle
since, for any physical solution, the eigenfunctions must be square integrable:∫ +∞

−∞
|Φ̂(ζ ′, t)|2dζ ′ <∞ . (20)

In the next section, we present the numerical solution of equations (15)–(17) in
a stellarator geometry.

4. Numerical Results

The system of equations (15)–(17) has been solved numerically as an initial-value
problem along the field line. In view of the fast parallel electron heat transport,
explicit methods require a very small time step of integration. Furthermore the
perpendicular transport in the electron temperature equation (16) involves a term
of the form
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∂T̂e

∂t′′
= C⊥T̂e + ... , (21)

which is found to be numerically unstable even for a very small time step of
integration. Therefore the diffusive terms in (16) and (17) have been treated
implicitly with centred differences along the extended toroidal angle. The terms
∂Φ̂/∂t′′ and ∂T̂e/∂t

′′ have also been treated implicitly. However, the ion continuity
equation (15) has been explicitly treated in full detail. The system of equations
reduces to a tridiagonal form which can be easily solved using the elimination
method (Press et al. 1983); this method is easy to implement and suitable for
highly-vectorised numerical codes. Other numerical details have been reported
elsewhere (Lewandowski 1997a, 1997b).

The growth rate for the perturbed electrostatic potential has been computed
as follows:

γΦ(t′′) =
1

〈|Φ̂|〉
∂〈|Φ̂|〉
∂t′′

, (22)

where |F | ≡ (FF ?) 1
2 denotes the magnitude of F and 〈G〉 denotes an average

over the extended toroidal angle,

〈G〉 ≡ 1
2ζm

∫ ζ0+ζm

ζ0−ζm
G(ζ ′)dζ ′ , (23)

where ζ0 is a poloidal angle of reference and ζm is a free parameter. Perturbed
quantities are assumed to vanish at ζ0± ζm. Note that this is consistent with the
square-integrability condition (19). The parameter ζm must be chosen sufficiently
large so that the growth rate (21) and the mode extent along the field line
become independent of ζm. The growth rates for the perturbed density ñ, and
the fluctuating electron temperature T̃e, assume a similar form to equation (22).

As shown in Appendix B, the inclusion of a nonzero radial mode number
θk in the geometrical quantities leads to the appearance of new secular terms.
The details of the calculations for ∇||, ξ⊥, S⊥1 and S⊥2 are also presented in
Appendix B. To verify that the new geometrical effects were included correctly,
we have run a typical case with θk = 0, and then compared the results with
previously known results (Lewandowski 1997a, 1997b).

Because of the rapid variation of the equilibrium quantities along the magnetic
field line (see Figs 4–6 in Lewandowski 1997a), we must use a small mesh size
along the extended toroidal angle; for the simulations discussed below, we have
used ∆ζ = π/200. A smaller mesh size does not modify the eigenfunctions or the
eigenvalues (growth rates); however, the time step must be drastically reduced
[typically, the critical time step consistent with numerical stability scales like
1/(∆ζ)2]. We have chosen a normalised time step of ∆t′′ = ω?e∆t = 10−4.
The parameter ζm must be chosen so that the final (physical) growth rate is
independent of the actual value of ζm. However, if ζm is too large, then the
numerical solution of our model equations becomes prohibitive. To estimate
ζm, we note that the secular terms will ultimately govern the extent of the
modes along the field line. The secular terms enter through combinations of the
multiple-valued vector ∇α, that is
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∇α = ∇ζ − q∇θ − q̇θ∇s . (24)

Clearly the secular part of |∇α| arises from the last term on the right-hand side
of equation (23). If we take α0 = 0 as the field line of reference, we note that
for |ζ| ≥ ζc ≡ |q/q̇| the secular last term on the right-hand side of equation (23)
dominates over the other two terms. For the numerical calculations discussed
below, we have chosen the s0 = 0 ·9 magnetic surface, where q(s0) = 0 ·9 and
q̇(s0) = −0 ·1 (i.e. a small negative global magnetic shear). Then we expect the
secular terms in the model equations to dominate for |ζ| ≥ 10. The eigenfunctions
for ñ, Φ̃ and T̃e are typically localised within |ζ| ≤ 12, which agrees reasonably well
with the estimate above (see Figs 7–9 in Lewandowski 1997a). To ensure proper
convergence, we have chosen ζm = 40, which is a few times the magnitude of ζc.
A longer integration distance does not modify the results for the eigenfunctions
or the eigenvalues.

Fig. 1. Poloidal cross section of the H1-NF plasma at the plane φ = 0. A (reduced) set
of 21 nested magnetic surfaces is shown. The full equilibrium has been calculated with 100
magnetic surfaces equally spaced in the radial coordinate s. The position of the symmetry
point θ0 = ζ0 = 0 used in the numerical calculations corresponds to X = 7 ·6 cm and Y = 0 cm.

Fig. 1 shows a poloidal cross section, at the plane φ = 0, for the standard
configuration of H1-NF. For the sake of clarity, only a reduced set of 21 nested
magnetic surfaces is shown in Fig. 1. The full equilibrium was determined using
a set of 100 magnetic surfaces. We note the characteristic ‘bean shape’ of
the magnetic surface cross sections of H1-NF. The magnetic axis is located at
x = y = 0.
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Fig. 2. Average linear growth rate 〈γ〉 at the end of the simulations
as a function of the electron temperature gradient parameter
ηe ≡ d lnTe0/d lnn0, where n0 is the equilibrium plasma density
and Te0 is the equilibrium electron temperature. The dotted line
corresponds to the case θk = 0; the solid line is for θk = π/2. Other
parameters used in the simulations areTe = 25 eV, n0 = 5×1012 cm−3,
Ln = 3 ·5 cm and b = (kθρs0)2 = 0 ·5.

Fig. 3. Average linear growth rate 〈γ〉 at the end of simulations as
a function of the radial mode number. The temperature gradient
parameter is ηe = 1 ·0; other parameters are the same as in Fig. 2.

Fig. 2 shows the average growth rate 〈γ〉 ≡ (γΦ + γn + γTe)/3 at the end of
the simulations, as a function of the electron temperature gradient parameter.
Other parameters are Te = 25 eV, n0 = 5 × 1012 cm−3, Ln = 3 ·5 cm and
b = (kθρs)2 = 0 ·5. For all of the results presented below a vectorisation of 95%
to 98% was achieved. Each point (i.e. the growth rate) in Figs 2 and 3 requires
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260 minutes of central-processor-unit (CPU) time on a Supercomputer VPP300
(Utsumi et al. 1994). The dotted line shows the case θk = 0, whereas the solid
line corresponds to the case θk = π/2. We note that the average growth rate for
θk 6= 0 is smaller than 〈γ〉 for all values of the electron temperature gradient
parameter.

Fig. 3 shows the average growth rate 〈γ〉 as a function of the radial mode
number. The electron temperature gradient parameter is ηe = 1 ·0; all other
parameters are the same as in Fig. 2. As can be seen in this figure, the fastest
growth rate occurs at θk = 0. Interestingly, for ideal MHD ballooning modes
and for the same magnetic configuration as in Figs 1–3, the fastest linear growth
rate is also found for θk = 0 (Cuthbert 1999).

5. Conclusion

We have studied resistive drift-type modes in the linear regime and for the
low-β edge plasma of a stellarator. An eikonal representation was used for
the fluctuating quantities, in which the radial mode number θk was taken into
account. The set of equations has been solved as an initial-value problem along
the magnetic field line.

It has been shown that a nonzero θk is responsible for additional secular
terms in the model equations, and in particular, in the curvature term and the
lowest-order perpendicular wavevector.

In general, the fastest linear growth rate must be optimised with respect to
the parameter θk. We have found that θk = 0 corresponds to the fastest linear
growth. For the toroidal heliac H-1NF, the same trend for ideal MHD ballooning
modes was recently observed by Cuthbert (1999). However, when the global
magnetic shear is large, the largest growth rate does not necessarily occur at
θk = 0 (Cuthbert et al. 1998).

Therefore, for a stellarator plasma with low global magnetic shear, both ideal
and resistive drift-type (k||/k⊥) modes have their fastest growth rates for θk = 0.
We believe that this is an important conclusion: since the fastest growth rate
occurs at a vanishing radial mode number, a scan in the parameter θk is not
necessary. This greatly speeds up the numerical solution of the time-dependent
problem.

What is not understood, however, is why the ideal and non-ideal (resistive)
modes with k||/k⊥ ¿ 1 have their fastest linear growth rate at θk = 0 in a plasma
with low global magnetic shear. We believe that a better understanding of the
geometrical effects in the ballooning representation would be desirable.
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Appendix A: Numerical Equilibrium

In this Appendix, we discuss the numerical equilibrium used in the 3-field
model (15)–(17) for collisional drift in stellarator geometry. The characteristics
of the toroidal heliac H1-NF (Hamberger et al. 1990) are also briefly discussed.

The toroidal heliac H1-NF is a 3-field period machine. The coil set consists
of a central ring coil linked by 36 smaller toroidal field coils, a set of vertical
field coils, which are not topologically linked to the main coil set, and a smaller
helical coil fitted closely to the central coil. The average major radius R̄ is 1
m. The magnetic field strength at the magnetic axis is 1 T and the aspect
ratio is A ≡ ā/R̄ = 7 ·6 (ā is the average minor radius). The equilibrium has
been computed using the VMEC code (Hirshman and Whitson 1983; Hirsham
and Meier 1985) with fixed boundary conditions, zero net toroidal current and
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a volume-averaged β of 0 ·35% for a set of 100 magnetic surfaces. The VMEC
code solves the following ideal MHD equations

J×B = c∇p , J =
c

4π
∇×B , ∇ . B = 0 , (A1)

which are the radial force balance equation, Ampere’s law and the divergence-free
condition for B, respectively. The VMEC equilibrium code outputs the curvilinear
components of the magnetic field, the Jacobian of the transformation as well
as the cylindrical components of a set of magnetic surfaces in terms of Fourier
series. The position vector on a given magnetic surface is written in cylindrical
coordinates, r = R cosφ x̂ +R sinφ ŷ +Z ẑ, where φ is the usual azimuthal angle.
Coordinates (R,Z, φ) are written in Fourier series as follows (for a given magnetic
surface, s = const):

R =
M∑
m=0

n=+N∑
n=−N

Rmn cos(µmn) ,

Z =
M∑
m=0

n=+N∑
n=−N

Zmn sin(µmn) ,

φ = ζ − 2π
Np

M∑
m=0

n=+N∑
n=−N

φ̃mn sin(µmn) , (A2)

where µmn ≡ mθ+Npnζ and Np is the number of field periods. For H1-NF, we
have Np = 3. In view of the complicated magnetic field structure of H1-NF, a
large number of Fourier components in (A2) must be retained; in this paper, we
have chosen M = 13 and N = 27.

Using equations (A2) the covariant basis vectors

es ≡
∂r
∂s

, eθ ≡
∂r
∂θ

, eζ ≡
∂r
∂ζ

, (A3)

can be computed, followed by the contravariant basis vectors (D’haeseleer et al.
1983)

∇s ≡ eθ × eζ
J , ∇θ ≡ eζ × es

J , ∇ζ ≡ es × eθ
J . (A4)

The Jacobian of the transformation, J , can be calculated using the set of
contravariant basis vectors: J = [∇s . (∇θ×∇ζ)]−1; or using the set of covariant
basis vectors: J = es . (eθ × eζ). Using equations (A3) and (A4), any vector
quantity can be written in term of the covariant basis vectors or the contravariant
basis vectors.

Appendix B: Geometrical Effects

In this Appendix, we derive all the geometrical quantities that enter the
model equations (15)–(17). Special attention is given to the effect arising from a
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nonzero θk. The relevant geometrical quantities are ξ⊥ (normalised perpendicular
wavevector), ∇|| (parallel gradient operator keeping the field line label α and the
radial coordinate s constant), S⊥1 (curvature term) and S⊥2 (diamagnetic term).
In particular, we show that only ξ⊥ and S⊥1 are affected by a nonzero θk.

The magnitude of the normalised perpendicular wavevector is defined by
ξ⊥ ≡ (ê⊥ . ê⊥) 1

2 . Hence, we can write

ξ⊥ =
ā

q(s)
[gαα + 2q̇θkgsα + (q̇θk)gss] 1

2 , (B1)

where the metric elements are

gαα ≡ ∇α .∇α = gζζ − 2qgθζ + q2gθθ + q̇θ[q̇θgss + 2qgsθ − 2gsζ ] , (B2)

gsα ≡ ∇s .∇α = gsζ − qgsθ − q̇θgss , (B3)

and where gss ≡ ∇s .∇s, gsθ ≡ ∇s .∇θ, gsζ ≡ ∇s .∇ζ, gθθ ≡ ∇θ .∇θ,
gθζ ≡ ∇θ .∇ζ and gζζ ≡ ∇ζ .∇ζ can be calculated using the methods outlined in
Appendix A. We note that the last three terms on the right-hand side of equation
(B2) and the last term on the right-hand side of equation (B3) are responsible
for the secular behaviour of the perpendicular wavevector for a configuration
with a nonvanishing global magnetic shear (q̇ 6= 0). We note that a nonzero
θk yields the appearance of new secular terms in the norm of the normalised
perpendicular wavevector (B1).

We now determine the parallel gradient operator. In Boozer (1980, 1981)
coordinates the covariant representation of the confining magnetic field is

B = Bs∇s+Bθ(s)∇θ +Bζ(s)∇ζ , (B4)

where Bθ and Bζ are flux surface quantities which are respectively related to the
toroidal and poloidal currents flowing in the plasma. Taking the scalar product
of equation (B4) with the contravariant form (1), we note that JB2 is a flux
surface quantity. This flux surface quantity

F (s) ≡ JB2 (B5)

can be used to simplify analytical formulation of equilibrium quantities. We now
proceed with the parallel gradient operator. Introducing η̄ ≡ θBθ(s) + ζBζ(s)
and B?s ≡ Bs − θḂθ − ζḂζ (where a dot denotes d/ds), the magnetic field can
be written in the set of intermediate coordinates (s, α, η̄), which yields

B = B?s∇s+∇η̄ . (B6)

Using equation (B6), the parallel gradient operator, keeping s (on a given
magnetic surface) and α (on a given magnetic field line) constant, can now be
written as
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∇|| =
(

ê|| .∇s
∂

∂s
+ ê|| .∇α

∂

∂α
+ ê|| .∇η̄

∂

∂η̄

)
s,α

=
(

B .∇η̄
B

)
s,α

∂

∂η̄

= B
∂

∂η̄
, (B7)

where we have made use of equation (B6). Clearly the coordinate η̄ is related
to the length along the magnetic field line, dx|| = dη̄/B (x|| is the length along
the magnetic field line). On a given magnetic field, dα = 0, we may write
dθ = dζ/q(s) and the parallel gradient operator becomes

∇|| =
ξ||(ζ)
R̄

∂

∂ζ
, (B8)

where ξ|| ≡ 1/J?B? is a function, defined along the extended toroidal angle, of
the order of unity. Here J? ≡ 2J /ā2R̄ ∼ 1 is the normalised Jacobian.

We now derive the expressions for the cross-field ‘source terms’ S⊥1 (curvature
term) and S⊥2 (diamagnetic term). Recalling the definition of the unit normal
vector n̂ ≡ ∇s/(∇s .∇s) 1

2 , we write the diamagnetic term as

S⊥2 =
ā
√
gss

B?
ê|| . (n̂× ê⊥)

=
ā2√gss
qB?

ê|| .

[ ∇s√
gss
× (∇α+ q̇θk∇s)

]

=
ā2ψ̇

qBB?
(∇α×∇s) . [∇s×∇α+ q̇θk∇s×∇s]

=
ā2ψ̇B0

qB2 (∇α×∇s) . (∇s×∇α)

= − ā
2B0

qψ̇
= −2 , (B9)

where we have used the definition of the enclosed toroidal flux Ψ(s) = B0πā
2s,

from which one easily obtains ψ̇ = B0ā
2/2q. As apparent from equation (B9),

S⊥2 is independent of θk. We would like to point out that the result S⊥2 = const
applies to both axi-symmetric plasmas (e.g. tokamak plasmas) and asymmetric
plasmas (e.g. stellarator plasmas).

We now calculate the curvature term, S⊥1. We note that the magnetic field
curvature can be written in the form κ = κNn̂ + κGb̂, where b̂ ≡ ê|| × n̂ is the
unit binormal vector (D’haeseleer et al. 1983). Here κN ≡ n̂ .κ and κG ≡ b̂ .κ are
the normal and geodesic components of the magnetic field curvature, respectively.
In the low-β approximation, the magnetic field curvature can be written as
κ ' (n̂n̂ + b̂b̂) .∇B/B. Since the unit vectors ê|| and n̂ are known, we can
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calculate the unit binormal b̂ = ê|| × n̂ (see also Appendix A). Then, the
perpendicular tensor n̂n̂ + b̂b̂ is known. To calculate the ∇B term, we use the
flux surface quantity (B5) to obtain

∇B
B

= 1
2

(
Ḟ

F
− 1
J

∂J
∂s

)
∇s− 1

2J
∂J
∂θ
∇θ − 1

2J
∂J
∂ζ
∇ζ . (B10)

Using equation (B10) and noting that

ê|| × ê =
ψ̇

B
(∇α×∇s)× ā

q
(∇α+ q̇θk∇s)

=
āψ̇

qB
[(∇α×∇s)×∇α+ q̇θk∇s× (∇s×∇α)]

=
āψ̇

qB
[(gαα + q̇θkg

sα)∇s− (gsα + q̇θkg
ss)∇α] , (B11)

we may write the curvature term as

S⊥1 =
Lnā

3

2(qB?)2

[(
1
F

dF

ds
− 1
J

∂J
∂s

)
[gss(gαα + q̇θkg

sα)− gsα(gsα + q̇θkg
ss)]

− 1
J

∂J
∂θ

[gsθ(gαα + q̇θkg
sα)− gθα(gsα + q̇θkg

ss)]

− 1
J

∂J
∂ζ

[gsζ(gαα + q̇θkg
sα)− gζα(gsα + q̇θkg

ss)]
]
.

(B12)

All quantities on the right-hand side of equation (B12) are evaluated along
the extended toroidal angle. We note that the inclusion of finite θk leads to
the appearance of many new secular terms. If we consider the limit θk→ 0, we
recover the previously determined results (Lewandowski 1997a, 1997b). Although
it is not apparent in equation (B12), the curvature effects of the magnetic surface
are actually contained in the partial derivatives of the Jacobian. For example,
the explicit form for ∂J /∂ζ in equation (B12) is given by

∂J
∂ζ

= Gsζ . (eθ × eζ) + es . (Gθζ × eζ + eθ ×Gζζ) , (B13)

where Gij ≡ ∂2r/∂i∂j, for (i, j) = {s, θ, ζ}, is the curvature of the local position
vector r. All of the elements Gij can be easily calculated using the results of
Appendix A.
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