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Abstract

The twinkling of stars is a familiar example of scintillations, due to turbulence in the Earth’s
atmosphere causing fluctuations in the refractive index of the air along the line of sight.
Scintillations lead to time variations in the apparent position of the source, and hence to
an angular broadening on integration over an observation time. Scintillations also lead to
fluctuations in the intensity of the source. Pointlike astronomical radio sources such as pulsars
and (the compact cores of some) quasars scintillate due to fluctuations in the electron density
along the line of sight through the interstellar medium. For quasars, low-frequency (100s of
MHz) variability over periods of years is a scintillation effect, as are probably more rapid (as
short as an hour) intensity variations at higher radio frequencies. Unlike the twinkling of
stars, which is due to weak scintillations, the scintillations of radio sources are usually strong.
Important qualitative effects associated with strong scattering are multipath propagation and
a clear separation into diffractive and refractive scintillations. Quasars exhibit only refractive
scintillations.

Pulsars are extremely small and bright, and they vary temporally on a very short time
scale, making them almost ideal sources on which to test our ideas on scintillations. Pulsars
exhibit a variety of scintillation phenomena, due to both refractive and diffractive effects, the
latter seen most clearly in dynamic spectra. These data are used to model the distribution of
electrons through the Galaxy, to determine the distribution of pulsar velocities, and potentially
to resolve the source region in a pulsar magnetosphere.

These scintillation phenomena and their interpretation in terms of the theory of strong
scintillations are reviewed briefly. The generalisation of the theory to include the birefringence
of the plasma (Faraday effect), and its possible implications on the interpretation of circular
polarisation, are then outlined. An attempt to generalise the theory to describe scattering by
a distribution of discrete scattering objects is also discussed briefly.

1. Introduction

The twinkling of stars is the most familiar scintillation phenomenon in astronomy.
Twinkling is due to local inhomogeneities in one or more turbulent layers in
the atmosphere, typically hundreds of metres above the ground, causing local
refractive index variations, and hence distorting the wavefront of the incoming
light. The direction of ray propagation is the normal to the wavefront, so
that these variations cause the apparent direction of propagation, and hence the
apparent position of the star, to change with time as the distorted wavefront is
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swept across the observer by the wind in the turbulent layer. The distortions
include both convex and concave portions of the wavefront, and these correspond
to focusing and defocusing regions, which lead to changes in the intensity of the
starlight. Given the size of the inhomogeneities, ∼10 cm, and the speed of the
wind, 100 m s−1, one can estimate the typical time scale for these variations,
∼1 ms. Conversely, the observed properties of the scintillation pattern may be
used to deduce information about the properties of the turbulence. In most
applications the turbulence is consistent with a Kolmogorov spectrum for density
fluctuations, ∝ k−5/3, where k is the wave number of the turbulent eddies.

Scintillations of radio astronomical sources result from fluctuations in the
plasma density along the line of sight to the source. This effect was first studied
in detail in radio astronomy in connection with propagation through the solar
wind. Radio sources that pass close to the Sun are viewed through denser
regions nearer to the Sun, providing information on the inner regions of the
solar wind. Some features of the radio observations of quasars and of pulsars are
interpreted in terms of scintillations in the interstellar medium (ISM). Pulsars,
being extremely small, extremely bright, and varying systematically on the pulse
period, are almost ideal probes of the ISM, allowing construction of a model for
the three-dimensional distribution of plasma through the Galaxy (e.g. Taylor and
Cordes 1993).

Scintillations in the ISM can be in the regime of ‘strong’ scattering, whereas
the twinkling of stars is usually in the regime of ‘weak’ scattering. The distinction
between weak and strong scattering may be understood in terms of two parameters,
the diffractive scale of the turbulence and the Fresnel scale. The diffractive scale,
rdiff , is the distance across the wavefront over which the distortions cause the
fluctuations in the phase to be of order a radian; a more formal definition of rdiff

is in terms of the phase structure function, defined in (2 ·9) below. The value
of rdiff is determined primarily by the strength of the turbulence. The Fresnel
scale, defined here as rF = (Lλ/2π) 1

2 , is the size of a disk at a distance L such
that the phase change due to the different pathlengths from the centre to the
edge of the disk is of order a radian. Weak scattering corresponds to rdiff À rF,
in which case only small fluctuations in phase can be observed. Strong scattering
corresponds to rdiff ¿ rF, and this leads to multipath propagation. Strong
scattering need not require a particularly high level of turbulence: scattering
tends to be strong in radio astronomy because both L (a sizable fraction of the
distance across the Galaxy) and λ are relatively large, so that rF/rdiff can be
large even for a modest value of rdiff . The theory of strong scintillations was
developed in the laser physics literature before its importance in radio astronomy
was recognised. This theory needed only minor modifications for application to
these radioastronomical applications.

The theory of strong scattering can account for a rich variety of propagation
effects observed in quasars and pulsars, but there are some phenomena that
require modification of the standard theory. Extreme scattering events (ESEs)
(Fiedler et al . 1987, 1994) appear to be due to discrete structures moving across
the line of sight and a different theory is required to account for such events (e.g.
Clegg, Fey and Lazio 1998). Recently two of my colleagues (Walker and Wardle
1998) have proposed an interpretation of such events in terms of a new class
of interstellar clouds, and this model has much wider astrophysical implications.
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There are also features in the dynamic spectra of pulsars that suggest scattering
by discrete structures (e.g. Rickett 1990). An attempt to generalise the theory to
describe scattering by a distribution of discrete structure encounters a difficulty,
explained briefly below, and a satisfactory resolution of this has yet to be achieved.

In this this paper I discuss scintillations in the ISM emphasising recent work
by myself and my colleagues and students. The paper is arranged as follows. The
theory of strong scintillations is reviewed briefly in Section 2, the applications of
the theory to quasars is discussed in Section 3 and to pulsars in Section 4. The
effect of the birefringence of the plasma is introduced in Section 5 and applied
to the interpretation of polarisation data. The attempt to generalise the theory
to describe scattering by a distribution of discrete objects is summarised briefly
in Section 6. The results are discussed in Section 7.

2. Scintillation Theory

In the theory of strong scattering (e.g. Prokhorov et al . 1975; Ishimaru 1978)
the effect of the fluctuations in the medium is described in terms of a hierarchy
of moments of the wave amplitude. For most purposes, only two moments of the
wave field are relevant: the second moment, which gives the mutual coherence
or visibility function, and a fourth moment which gives the correlation function
for intensity fluctuations. The turbulence is described in terms of the correlation
function for the density fluctuations, which determines the correlation function
for the refractive index fluctuations, and hence the correlation function for the
phase fluctuations of the wave. The actual quantity used in practice is the
phase structure function, D(r), which is simply related to the phase correlation
function.

The Wave Equation

The starting point for a discussion of scattering of electromagnetic waves in
an isotropic, turbulent medium is the wave equation with the dielectric constant,
K(x), separated into a uniform component part, KI , and a fluctuating part,
δK(x). The turbulence is assumed stationary, and the wave amplitude is assumed
to vary with time as e−iωt. The objective is to derive relevant moments of the
wave amplitude. A perturbation method is needed to solve the equation for the
wave amplitude. The simplest perturbation method is the Born approximation,
which corresponds to a single scattering, but this is too severe a limitation to be
useful in the theory of scintillation. The Rytov method (e.g. Chernov 1960, p. 61)
involves writing the (scalar) wave amplitude in the form E = A exp(iS) = exp(ψ),
with the complex phase ψ = lnA + iS, and solving by making a perturbation
expansion in this phase. The Rytov method gives good agreement for propagation
of light through the Earth’s atmosphere for distances of order a kilometre or so,
but it breaks down for propagation over longer distances.

The theory of strong scattering (e.g. Gochelashvily and Shishov 1971; Prokhorov
et al . 1975; Uscinski 1977; Ishimaru 1978) is based on the parabolic approximation
to the wave equation, in which the wave amplitude is assumed to be of the form
E = ueikz, where u is a slowly varying function of distance z along the line
of sight between the source and the observer. The first order solution of this
equation is used to derive differential equations for the moments of the wave
field. The most useful solutions for the second and fourth order moments may
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be derived more simply using a phase averaging method (e.g. Fante 1975, 1980).
An assumption common to these methods is that all the scattering is assumed
to occur at a single scattering screen. An alternative method that allows for an
extended region of scattering is the Feynman integral method (e.g. Tatarski and
Zavorotnyi 1980), but this leads to much more cumbersome analytic expressions
for the moments.

The Fresnel–Kirchhoff Integral

Let the mean ray direction be along the z axis, and let either transverse
(along the x or y axes) component of the wave equation be denoted u. The
wave equation then reduces to(

∇2 +
ω2

c2
[
KI + δK(x)

])
(ueikz) = 0. (2 ·1)

The parabolic approximation to (2 ·1) involves writing ∇2 = ∂2/∂z2 + ∇2
⊥,

∇2
⊥ = ∂2/∂x2 + ∂2/∂y2, ignoring the second derivative with respect to z, and

identifying k2 = (ω2/c2)KI . Then (2 ·1) implies(
2ik

∂

∂z
+∇2

⊥ +
ω2

c2
δK

)
u = 0. (2 ·2)

The solution of (2 ·2) in the absence of the term δK is

u(z, r) = − ik

2π(z − z′)

∫
d2r′ u(z′, r′) exp

[
ik(r− r′)2

2(z − z′)

]
. (2 ·3)

The integral (2 ·3) may be interpreted as relating the amplitude at a plane
z = constant, which is to be identified as the image plane with z = L, to the
amplitude at the plane z′ = constant, which is to be identified as the scattering
screen, with z′ = 0. The solution (2 ·3) then becomes the Fresnel–Kirchhoff
integral

u(L, r) = − i

2πr2
F

∫
d2r′ u(0, r′) exp

[
i
(r− r′)2

2r2
F

]
, (2 ·4)

where the characteristic distance

rF = (L/k) 1
2 (2 ·5)

is the Fresnel scale.

The Phase Structure Function

In the method of Prokhorov et al . (1975), the differential equation (2 ·2) for
the wave field is combined with a perturbation solution based on (2 ·4) to derive
differential equations for the moments of the wave field, and the moments are
found by solving these differential equations. A simpler approach, based on the
thin screen approximation, is to regard the plane z = L as a phase screen, and
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Fig. 1. The thin screen model. An incoming plane wave has phase variations imposed on it
on passing through a phase screen.

to assume that the turbulence causes an incident plane wave (amplitude u0) to
have a phase fluctuation, such that it is transformed into u0 exp[iφ(r)] at the
phase screen, as illustrated in Fig. 1. Then (2 ·4) is replaced by

u(z, r) = − ike
ik(z−z′)

2π(z − z′)

∫
d2r′ u0e

iφ(r) exp

[
ik(r− r′)2

2(z − z′)

]
. (2 ·6)

The statistical average over the phase is performed assuming gaussian statistics,
which gives

〈ei[φ(r)−φ(r′)]〉 = e−D(r−r′)/2, (2 ·7)

where the phase structure function is defined by

D(r) = 〈[φ(r′)− φ(r′ + r)]2〉. (2 ·8)

The phase structure function is related to the the autocorrelation function for
the fluctuations δK(x), and hence to the correlation function for the density
fluctuations in the turbulence. For a power law spectrum of isotropic density
fluctuations one has

D(r) =

(
r

rdiff

)β−2

, (2 ·9)

with β = 11
3 , β − 2 = 5

3 for a Kolmogorov spectrum, and where the definition
of the diffractive scale, rdiff , incorporates all the normalisation constants. For
some purposes it is necessary to include inner and outer scales of the turbulence,
which imply cutoffs to the form (2 ·9) at small and large r, but many results are
insensitive to these cutoffs.
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The Mutual Coherence Function

The mutual coherence function is the second moment

I(r) = 〈u(r′ + r)u∗(r′)〉, (2 ·10)

which is also the visibility function. The thin screen approximation for an incident
plane wave gives

I(r)
I(0)

= exp[−1
2D(r)]. (2 ·11)

The function I(r) gives the spatial distribution of the image, and the two-dimensional
spatial Fourier transform of I(r) gives its angular distribution.

Intensity Fluctuations

The fourth order moment is defined by analogy with (2 ·8), with a product
of four, rather than two, wave fields. The only case considered here is for the
correlation in the intensities. For an incident plane wave and for a thin screen,
the intensity fluctuations may be described by

BI(r) =
〈I(r′ + r)I(r′)〉

[I(0)]2
− 1 =

∫
d2q

(2π)2 e
−iq·rW (q)− 1, (2 ·12)

W (q) =
∫

d2r exp(iq · r) exp[−D(r)−D(r2
Fq)

+ 1
2D(r + r2

Fq) + 1
2D(r− r2

Fq)] . (2 ·13)

The (integrated) power in intensity fluctuations with a wave number q may be
estimated from q2W (q).

Weak and Strong Scattering

The parameter

ξ =
rF

rdiff

(2 ·14)

determines whether the scattering is weak (ξ ¿ 1) or strong (ξ À 1). The
Fresnel scale, rF, determines the maximum size of the coherent patch on the
scattering screen when the difference in pathlength to the observer is taken into
account. The diffractive scale, rdiff , determines the size of the ‘scattering disk’
over which the turbulence causes a phase change by about a radian. In weak
scattering the maximum phase change due to the turbulence that an observer
can detect is [D(rF)] 1

2 ¿ 1, cf. (2 ·9). The exponent in (2 ·13) involving the
D(r) with different arguments is then always small, and may be approximated
by expanding the exponential and retaining only the linear term. This leads to
considerable mathematical simplification for weak scattering.
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In weak scattering, the small phase change across the scattering disk causes
two effects. First, there is a displacement of the image due to the slope of
the wavefront, with the ray direction being normal to the wavefront. Second,
the (weak) curvature of the wavefront implies a focusing (concave portion of
the wavefront) or a defocusing (convex portion of the wavefront). The image
sweeps across the observer’s plane due to motion of the source or the scattering
screen relative to the observer. This leads to temporal changes in the centroid
of the image and in the intensity of the image as portions of the wavefront with
different slope and curvature, respectively, sweep by. The power in intensity
fluctuations on a spatial scale ∼1/q is determined by the function q2W (q). As
the image sweeps by, this leads to fluctuations in the intensity on a time scale
∼1/qv , where v is determined by the velocities of the source and the turbulence
relative to the observer.

refr
diffr

Fr

Fig. 2. Strong scattering. An observer sees many images of the source, each corresponding
to a coherent patch of size rdiff in an envelope of size rref .

The most important qualitative change as the scattering passes from weak
to strong is that multipath propagation becomes important. In weak scattering
there is a single coherent patch of size ∼ rF ¿ rdiff . In strong scattering there
are many coherent patches of size ∼ rdiff inside a Fresnel radius, and one can
also see coherent patches of size ∼ rdiff outside a Fresnel radius, due to refraction
causing the normals to the coherent patches to deviate from the direction of an
undeflected ray. As illustrated in Fig. 2, the envelope of these coherent patches
extends to a so-called refractive scale, rref , with

rref =
r2
F

rdiff

. (2 ·15)
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Fig. 3. Power spectrum W (q) of intensity fluctuations for different values of the parameter
ξ that describes the strength of the scattering [after Rickett (1990)]. The power observed
may be estimated from q2W (q), and for ξ À 1 this has a diffractive peak at q ∼ 1/rdiff , and
the factor q2 converts the broad shoulder at larger q into a refractive peak at q ∼ 1/rref .

Intensity Fluctuations in Strong Scattering
Scintillation theory implies that the power spectrum of the intensity fluctuations,

W (q), is given by (2 ·13). The most important differences between weak and
strong scattering may be understood by considering how the quantity q2W (q)
changes as the parameter ξ is increased from ξ < 1 to ξ > 1, as illustrated in
Fig. 3. For ξ ¿ 1, there is a single broad peak in the intensity fluctuations
at a scale 1/q ∼ rF, and the height of this peak rises as the strength, ξ, of
the scattering increases. As ξ passes through unity, the peak bifurcates, and
for ξ À 1 there are two distinct peaks, at the diffractive scale, 1/q ∼ rdiff , and
the refractive scale, 1/q ∼ rref . The separation into these two scales may be
understood (e.g. Tatarski and Zavorotnyi 1980) by noting that the exponent
involving the functions D(r) in (2 ·13) is small for r <∼ rdiff and for qr2

F
<∼ rdiff when

one expands in r/rdiff and qr2
F/rdiff , respectively. Thus, in strong scattering, the

intensity fluctuations separate into diffractive and refractive scales, which are quite
different and have quite different properties (e.g. Narayan 1992). In particular,
diffractive scattering occurs on a time scale tdiff ∼ rdiff/v and decorrelates over a
narrow frequency range, ωdc = ω/ξ2, and refractive scattering occurs on a longer
time scale tref ∼ rref/v over a broad frequency range. As indicated schematically
in Fig. 4, as the scattering becomes strong, the scintillation index m, with

m2 =
〈I2〉 − 〈I〉2
〈I〉2

= BI(0), (2 ·16)

remains at unity for diffractive scattering, and decreases with increasing ξ for
refractive scattering.



Twinkle, Twinkle Little Pulsar/Quasar 9

0 1 2-1
-2

 0

 2

weak
refractive

diffractive

0 1 2-1
-1

 -0.5

weak

refractive

diffractive
 0

(a) (b)

ln ( )F diffrr / ln ( )F diffrr /

ln
(

)
/

Ft
sc

in
t

t ln
m

Fig. 4. Schematic plot of the variation of the scintillation time scale and the scintillation
index as a function of the parameter ξ that describes the strength of the scattering [after
Narayan (1992)].

Fig. 5. Variations in the quasar PKS 0405–385: (a) at 8 ·6/8 ·4 GHz and (b) at 4 ·8/5 ·0 GHz.
The circles denote data from the Australia Telescope and the triangles denote data from a
South African telescope [after Kedziora-Chudczer et al . (1997)].
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3. Flux Variations of Quasars

Flux variations of many quasars are attributed to refractive scintillations in the
interstellar medium (RISS). However, the interpretation of variability is confused
because of compelling evidence in some cases for RISS, and strong evidence in
other cases for variability that is intrinsic to the source.

Flux Variations in Quasars

Some quasars have long been known to vary at high frequencies (À 1 GHz),
typically involving outbursts in which a new compact component appears and
evolves by expanding and ultimately fading into the overall spectrum of the quasar
(e.g. Kellerman and Pauliny-Toth 1981). It was a surprise when it was recognised
that some quasars also exhibit low-frequency ( < 1 GHz) variability (LFV) on
a time scale of years (Hunstead 1972). If such variations were intrinsic to the
source, they would imply brightness temperatures in excess of the limit of 1012 K
set by the inverse Compton catastrophe for a synchrotron source (Kellerman and
Pauliny-Toth 1969; Jones and Burbidge 1973).

Subsequently more rapid variations were found, and these are referred to as
flickering and intra-day variability (IDV) (e.g. Rickett 1990). Flickering involves
flux variations of a few per cent on a time scale of several days. IDV was
reviewed by Wagner and Witzel (1995), who argued that it is intrinsic to the
source. Their argument is based primarily on apparently correlated variations
at radio and optical wavelengths, and the latter certainly cannot be due to
RISS.

An extreme example of IDV was reported by Kedziora-Chudczer et al . (1997)
for observations with the Australia Telescope of the source PKS 0405–385, cf.
Fig. 5. This source varied rapidly, with a time scale of an hour or so, but this
extreme activity lasted only several weeks. A notable feature of the intensity
fluctuations is that they do not increase with decreasing frequency, as one would
expect for weak scintillations. Also notable is the change in the linear and
circular polarisations as the source scintillates. The Australia Telescope is well
designed to measure circular polarisation accurately, and the changes in circular
polarisation have no standard explanation.

Application of RISS to Quasars

The interpretation of low-frequency flux variability in terms of RISS was
proposed by Shapirovskaya (1978), but did not become widely accepted until
somewhat later (e.g. Rickett, Coles and Bourgois 1984). This interpretation
overcomes the difficulty with brightness temperature > 1012 K and allows the
synchrotron hypothesis to be retained for quasars that exhibit LFV.

The interpretation of flickering and of IDV is not as clear as for LFV. The
interpretation is obscured by there being strong evidence for both RISS and for
intrinsic variability, and it is thought that both contribute to the variations of
different sources. The sources for which the variations are probably intrinsic tend
to be sources in which there is evidence for relativistic jets, with the strongest
such evidence from apparent superluminal expansion (e.g. Blandford 1990). In
a model in which the transverse separation is between an oncoming source
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(embedded in a jet) and a stationary core component, the apparent transverse
expansion speed is

βobs =
β sin θ

1− β cos θ
, (3 ·1)

where the jet has speed βc and Lorentz factor γ = 1/(1 − β2) 1
2 and is viewed

at an angle θ. The maximum transverse expansion speed is for cos θ = β, when
one has βobs = γβ, which is superluminal for β > 1/

√
2 or γ >

√
2.

For a relativistic jet, the observed brightness temperature is higher than the
brightness temperature inferred from the variability by a Doppler boost factor
D3, with D = [γ(1 − β cos θ)]−1. By postulating a sufficiently large D, any
observed brightness temperature can be made consistent with Tb < 1012 K in the
rest frame of the jet. There is evidence for values of γ ∼ 10 from superluminal
motions, but the values γ > 103 required to explain IDV by this mechanism are
considered implausible.

Kedziora-Chudczer et al . (1997) argued that the IDV in the source PKS
0405–385 is due to RISS. The component of the source causing the variability,
presumably associated with an outburst in the source, must be very small. The
small size implies a high brightness temperature, estimated to be Tb > 5×1014 K.
Doppler boosting is still required for the inverse Compton limit not to be violated,
and in this case the boost factor is only a single power of D. Hence an extreme
value, γ >∼ 103, for the Lorentz factor of the bulk flow is still required.

Walker (1998) discussed the application of RISS to extragalactic sources in
detail using a model for the distribution of plasma in the interstellar medium
developed by Taylor and Cordes (1993) from pulsar data. He pointed out that
the condition ξ = 1, with ξ ∝ ω−1 ·7, defines a transition frequency between weak
and strong scattering. This frequency is in the range over which observations
of extragalactic sources are usually made: it is ∼ 5 GHz for sources at high
Galactic latitudes, and at higher frequencies for sources near the Galactic plane.
An important qualitative point is that for sources at high Galactic latitudes
varying due to RISS one predicts that the scintillation index should have a
maximum at ∼ 5 GHz, and should decrease towards both higher frequencies
(as the scattering becomes weak) and lower frequencies, in accord with Fig. 4
for strong scattering. The fact that PKS 0405–385 showed such a dependence
supports the interpretation in terms of RISS.

In summary, it appears that variability of quasars can be explained in terms
of one of three effects, RISS, intrinsic variability or Doppler boosting. However,
all three effects are required for different sources. Moreover, in some cases the
parameters (notably the Lorentz factor of the jet) required are rather extreme,
and it is desirable to reconsider the assumptions involved in estimating the inverse
Compton limit to see whether it can be relaxed (to allow Tb somewhat greater
than 1012 K) without implying catastrophic inverse Compton losses.

4. Scintillations of Pulsars

Pulsars are extremely small (a few 100 m) and extremely bright (Tb >∼ 1025 K) and
vary in a characteristic, repeatable way on a very short time scale ( ∼ 10−1±2 s). As
such they are almost ideal examples to test ideas on scintillations. Unlike quasars,
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whose angular sizes are too large to allow DISS, pulsars exhibit scintillation
phenomena including effects due to both RISS and DISS.

Propagation Phenomena Observed in Pulsars

Propagation phenomena observed in pulsars include dispersion of pulses, secular
variations in pulse to pulse height, pulse broadening, and timing noise. Dispersion
results from the frequency dependence of the refractive index, n(ω) ≈ 1−ω2

p/2ω
2.

The group speed is cn(ω), and hence the propagation speed decreases as the
frequency decreases. As a consequence the lower frequencies arrive later than
the higher frequencies. Observation of this effect allows one to determine an
observational parameter which is the integral along the line of sight of ω2

p. The
quantity actually estimated is the dispersion measure, DM, defined by

DM =
∫
ds ne. (4 ·1)

With an appropriate estimate of the plasma density along the line of sight, DM
may be used as a measure of the distance to the pulsar. Any independent
information on the distances to pulsars allows refinement of the model for the
plasma distribution in the ISM, and so of the relation between DM and distance.

As with quasars the first evidence for RISS in pulsars was unexpected. Sieber
(1982) noted that secular variations in different pulsars correlated with the
positions, suggesting a propagation effect, for which RISS provided a natural
explanation (Rickett, Coles and Bourgois 1984). Observations of RISS enable
one to determine a parameter related to the strength of the scattering. In an
analogous way to the definition of DM, a scattering measure, SM =

∫
dsC2

N , is
defined, where C2

N is the constant of proportionality in the power law spectrum
of density fluctuations, ∝ C2

Nq
−β . Both DM and SM, as well as other data, are

used in constructing models for the distribution of plasma in the ISM throughout
the Galaxy (e.g. Taylor and Cordes 1993).

Pulse broadening is another propagation effect, the theory for which (e.g.
Lee and Jokipii 1975) implies a characteristic profile, as illustrated in Fig. 6.
Observed pulse profiles of a number of pulsars are consistent with this profile
suggesting that such pulse broadening is a propagation effect rather than being
intrinsic to the source (e.g. Rickett 1977).

I

t

Fig. 6. Characteristic pulse shape
(intensity and a function of time)
imposed on an impulse by propagation
through a turbulent plasma [after
Lee and Jokipii (1975)].
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Scintillation Velocities

The clearest demonstration of DISS in pulsars is shown by dynamic spectra, as
illustrated in Fig. 7. The dynamic spectra often exhibit a highly structured pattern
characteristic of interference fringes. The bright patches in the frequency–time
plane are called scintles, which are interpreted in terms of the characteristic
time, tdiff , and (decorrelation) bandwidth, ωdc ∼ ω/ξ2, expected for DISS. The
observed pattern of scintles is quite variable from pulsar to pulsar, and can also
be quite variable for a given pulsar from one epoch to another. The scintillation
pattern can include drifting bands, criss–cross patterns and periodic patterns.

Fig. 7. Example of a dynamic spectrum of a pulsar (PSR 1456–6843) showing diffractive
scintillations [after Johnston, Nicastro and Koribalski (1998)].

The scintillation pattern may be used to estimate the transverse velocity
of pulsars (Cordes 1986). The idea is based on the slope of scintles in the
frequency–time plane depending on the relative velocity of the pulsar to the
scattering screen and the observer, and hence the pattern may be used to
estimate this velocity. When combined with other methods for measuring the
transverse velocity (measuring proper motions through radio interferometry at
different epochs or timing observations over many years) this method provides
a statistical distribution of transverse velocities for a large number of pulsars
(Gupta 1995; Johnston, Nicastro and Koribalski 1998). The speeds of pulsars
are unexpectedly high, with a mean of several 100 km s−1. This implies that
neutron stars are given a large kick at their birth in a supernova explosion, and
at present there is no entirely satisfactory explanation for this.
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Resolving the Pulsar Magnetosphere

In principle, scintillations may be used to resolve an otherwise unresolvable
source. Qualititatively, this may be understood by regarding the largest scale
density inhomogeneities associated with the turbulence as acting like large lenses.
Although the inhomogeneities are far from ideal lenses, a statistical distribution
of such inhomogeneities can allow one, in principle, to deduce similar information
that one could obtain with an ideal lens. However, existing attempts to resolve
the source region in a pulsar magnetosphere (Wolszczan and Cordes 1987; Gwinn
et al . 1997) have yet to lead to unambiguously positive results. Nevertheless,
the principle seems clear (e.g. Cornwall and Narayan 1993), and it is anticipated
that some convincing evidence on the structure of pulsar source regions will
ultimately be deduced using scintillations.

Fig. 8. Variations in the quasar PKS 0405–385 showing the linear and circular polarisations
[after Kedziora-Chudczer et al . (1997)].

5. Circular Polarisation of Extragalactic Sources

Circular polarisation is unmeasurably small for most extragalactic radio sources.
However, there is subclass of (flat-spectrum) sources for which circular polarisation
is detectable, e.g. Fig. 8, and for which there is no satisfactory explanation (e.g.
Roberts et al . 1975). Synchrotron theory implies a small circular polarisation, but
with a characteristic frequency dependence which is not consistent with the data.
The observed circular polarisation is also variable, and this is consistent with
it being a scintillation effect. The following model for circular polarisation due
to a propagation effect is being developed in collaboration with J.-P. Macquart,
and appears here in preliminary form for the first time.
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Scintillations in a Birefringent Plasma

The ISM is birefringent due to the interstellar magnetic field. The natural
modes are circularly polarised (the ellipticity is extremely small). Scintillation
theory was generalised to take account of the birefringence by Kukushkin and
Ol’yak (1990, 1991) and Melrose (1993a, 1993b). A somewhat different (but
essentially equivalent) form of the generalisation is summarised in Appendix A.

Stochastic Faraday Rotation

Before discussing circular polarisation, it is relevant to discuss the effect of
the birefringence on the linear polarisation. As in the case of the effects of
dispersion, there is a systematic effect due to the homogeneous component of the
ISM. This leads to Faraday rotation, which is a steady rotation of the plane of
linear polarisation due to the right- and left-hand polarisation components getting
systematically out of phase due to the small difference in refractive index. As
with dispersion and the DM, the characteristic frequency dependence of Faraday
rotation allows the measurement of a parameter, called the rotation measure
RM, which is proportional to the integral along the line of sight of the electron
number density times the line of sight component of the magnetic field,

RM =
∫
ds ·Bne, (5 ·1)

where the ds denotes an infinitesimal displacement along the ray path.
It is conventional to express the intensity for polarised radiation in terms of

the Stokes parameters, I, Q, U , V . In the theory outlined in Appendix A, the
specific intensities Iσσ′ in the two orthogonally polarised natural modes (denoted
σ, σ′ = ±) appear, and in the present case the natural modes are circularly
polarised. For circularly polarised natural modes (denoted σ, σ′ = r or l) one has

I = 1
2 (Irr + Ill), Q = 1

2 (Irl + Ilr), U = i1
2 (Irl − Ilr), V = 1

2 (Irr − Ill),

Irr = I + V, Ill = I − V, Irl = Q− iU, Ilr = Q+ iU. (5 ·2)

The relations (5 ·2) apply to the visibilities, e.g. I(r) with r nonzero, as well as to
the Stokes parameters themselves, that is, for r = 0. As noted following equation
(A ·10) in Appendix A, Faraday rotation remains in the theory of scintillation
in a birefringent plasma when the turbulence is absent, and then it affects only
the Stokes parameters Q and U , which describe the linear polarisation.

Turbulence in the ISM causes a random component of Faraday rotation.
This may be described by the fourth order moment of the wave amplitude,
cf. equation (A ·14) of Appendix A. The resulting equations for 〈Q2〉, 〈U2〉,
〈QU〉 may be derived using a much simpler model in which the Faraday angle
(through which the plane of polarisation rotates) has a random component that
obeys gaussian statistics (Burn 1966). Thus this effect is equivalent to stochastic
Faraday rotation, which can lead to a form of depolarisation (Burn 1966). This
type of depolarisation has a characteristic feature (〈Q〉 and 〈U〉 decrease with
〈Q2 +U2〉 remaining constant) that allows one to distinguish it from other types
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of depolarisation (Melrose and Macquart 1998). Observation of this effect would
provide a further measure of quantities along the line of sight; in this case the
parameter is effectively the variance of RM (Melrose and Macquart 1998).

plasma wedge

LH

RH

Fig. 9. Model for a Faraday wedge. An incident unpolarised ray splits into two rays in
the different modes inside the plasma wedge, and these emerge with an angular separation
between them.

The Faraday Wedge

The fourth order moment, given by equation (A ·14) of Appendix A, implies
that 〈V 2〉 is nonzero. Thus, even for unpolarised incident radiation, the scattered
radiation is partially circularly polarised in general. This effect is not due to
imposition of a specific handedness because the mean circular polarisation remains
zero, 〈V 〉 = 0.

The expression for 〈V 2〉 implied by (A ·14) is equivalent to an expression
derived using a simple model for refraction in a Faraday wedge, as illustrated
in Fig. 9. An essential requirement is a gradient in RM perpendicular to the
line of sight. Such a wedge acts like a birefringent crystal in separating the rays
corresponding to the two modes. This separation may be treated using geometric
optics as follows.

The equation for a ray in mode σ is

d(nσ κ)
dz

=
∂nσ

∂r
, (5 ·3)

where κ is the ray direction, which is assumed to be very nearly along the mean
ray direction, which is the z axis. In a weakly anisotropic medium, as is the
case here, one may write

nσ = n+ σ∆n, (5 ·4)

with σ = ±1 denoting the two modes. In terms of the magnetoionic parameters,
assuming both X = ω2

p/ω
2 ¿ 1 and Y = Ωe/ω ¿ 1, where Ωe = eB/m is the

electron cyclotron frequency, one has n = 1− 1
2X, ∆n = 1

2XY . In the simplest
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model the inhomogeneity is only in the plasma density, so that X but not Y is
a function of position. The change, δκσ, across a wedge of thickness δz is

δκσ = δκ+ 1
2σδ∆κ, δκ =

1
n

∫ δz

0

dz
∂n

∂r
,

δ∆κ = −∆n
n

δκ+
1
n

∫ δz

0

dz
∂∆n
∂r

. (5 ·5)

If the gradient is confined to say the x-z plane, with ∆ψ the angle between ∆κ
and the x axis, then (5 ·5) implies the different angles, ∆ψσ, through which the
two modes are refracted:

δψσ = δψ + 1
2σδ∆ψ, δψ =

1
n

∫ δz

0

dz
∂n

∂x
,

δ∆ψ = −∆n
n

δψ +
1
n

∫ δz

0

dz
∂∆n
∂x

. (5 ·6)

Thus, if the wedge is a distance L from the observer, the displacement of the
centres of the images in the two modes on the observer’s plane is L∆α with

∆α = −∆n
n

∫ δz

0

dz
∂n

∂x
+
∫ δz

0

dz
∂∆n
∂x

. (5 ·7)

The circular polarisation arises in this model because the rays corresponding
to the opposite circular polarisations emerge from the Faraday wedge propagating
in slightly different directions. When viewed from a sufficient distance, the small
separation between the rays can lead to two images, in right- and left-hand
polarisations, which do not overlap exactly. If the displacement between the
centres of these images exceeds their size, then in strong scattering one has many
overlapping images half of which have right-hand polarisation and half of which
have left-hand polarisation. Even if the images partially overlap, the opposite
edges must be circular polarised. For such a model, 〈V 2〉 is nonzero and its value
depends on the number of images (determined statistically by the parameter ξ)
and the degree of separation of the right- and left-hand components in each
image.

Application to the Vela Pulsar

Numerical estimates for the foregoing effect have been made by J.-P. Macquart
(private communication) for a Faraday wedge inferred from data on the Vela
pulsar. Hamilton, Hall and Costa (1985) reported a temporal change in the RM
of dRM/dt = 0 ·73 rad m−2 yr−1 for the Vela pulsar. This was interpreted as a
magnetised interstellar cloud crossing the line of sight, and we identify this as
the Faraday wedge. The temporal change translates into a spatial gradient in
|grad RM| = |dRM/dt|/v, where v is the speed of the wedge transverse to the line
of sight. The speed of the wedge is uncertain, but probably no less than 100 km
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s−1, which is the scintillation speed for Vela, but possibly as high as 500 km s−1

(Hamilton, Hall and Costa 1985). The magnetic field in the wedge is assumed at
a typical value for the ISM, B = 0 ·3 nT. The size of the scattering disk for the
Vela pulsar was estimated by Gwinn et al . (1997) to be ∼1 AU at ∼2 ·3 GHz.

Consider whether this Faraday wedge can account for an observed root mean
square (rms) value of circular polarisation for the Vela pulsar of ∼10−3 at
660 MHz. If we assume the scaling implied by a Kolmogorov spectrum of density
inhomogeneities, the scattering disk has a size rref ∼ 15 AU at 660 MHz. The
change in the Faraday angle across the scattering disk is φF = α∆φ = α[D(rref)]

1
2 ,

with α = eB/mω, and where ∆φ is the phase change due to the density gradient
in the wedge. With these numbers the foregoing theory implies an rms value
for V/I of 0 ·28 for v = 100 km s−1 and 0 ·07 for v = 500 km s−1. This is of
the correct order of magnitude, and suggests that the mechanism may provide
a viable explanation for the observed circular polarisation of the Vela pulsar.
However, the circular polarisation of the Vela pulsar is consistently right-hand
and apparently stronger at higher frequencies (Han et al . 1998), and this does not
appear to be consistent with the Faraday wedge interpretation. The suggestion
that this mechanism might account for the circular polarisation of a much wider
class of sources is currently being explored.

6. Scattering by a Distribution of Discrete Objects

The observational evidence for scattering by discrete objects in the ISM is
strongest for ESEs (Fiedler et al . 1987, 1994), and these require a specific type
of large-scale discrete structure to account for them (e.g. Walker and Wardle
1998). There are other less spectacular features observed in the dynamic spectra
of pulsars that suggest that discrete structures contribute to scattering in the
ISM (Rickett 1990). This raises the question as to how the theory for scattering
needs to be generalised to include scattering by discrete structures. Such a
generalisation has been attempted by the author and J.-P. Macquart and this is
described briefly here. A difficulty is encountered, and it appears that this can
be overcome only by relaxing the thin screen approximation.

As an aside, it is appropriate to note one general feature of a theory for
scattering by a distribution of discrete objects. This is that the power spectrum
of the intensity fluctuations can be determined by two effects in a model for
discrete scatterers, and these two dependences apply in different ranges of wave
number. Given a distribution of scatterers of different sizes, the power spectrum
is determined primarily by the distribution of the sizes of the scattering objects.
However, at sufficiently high wave numbers (small scales) the structure of the
individual objects can be resolved. For example, if the discrete objects have sharp
edges, then the power spectrum at high q is determined by these edges, and this
implies a β = 4 spectrum in (2 ·9) and thence in (2 ·13). Thus, in principle the
high-q dependence of the scintillation patterns should show the effects of discrete
structures if they are present.

Phase Correlation Function for Scattering by N Fixed Objects

Consider scattering of a plane wave propagating in the z direction by N
discrete objects. In the paraxial approximation the ith object causes a phase
change ∆φi(r). Let the ith object be centred at r = ri, and assume it to cause
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a phase change ∆φifi(r − ri), where ∆φi is a constant and fi(r) characterises
the profile of the ith object. For simplicity we assume here the N objects to
be identical (an assumption which is readily relaxed, cf. Appendix B), with
∆φi = ∆φ0 and fi(r) = f(r).

The net effect of the N objects is to cause a phase change

∆φ(r) =
N∑
i=1

∆φifi(r− ri). (6 ·1)

The phase correlation function is

C(r) =
1
A

∫
d2r′∆φ(r′)∆φ(r′ + r), (6 ·2)

where A is a normalisation area. The phase structure function is

D(r) = 2[C(0)− C(r)]. (6 ·3)

The Fourier transform of C(r) is

C̃(q) =
N∑

i,j=1

∆φi∆φj
A

f̃i(q)f̃∗j (q) e−iq·(ri−rj), (6 ·4)

which is convenient for performing the averages over the locations of the objects.
The sum in (6 ·4) may be separated into the diagonal terms, i = j, which are
independent of the locations, ri, of the scatterers, and the off-diagonal terms,
i 6= j, which depend only on the separations, ri − rj , between each pair of
scatterers.

There is an accepted physical separation into ‘incoherent scattering’ in which
interference between different scatterers is zero or is neglected, and ‘coherent
scattering’ which is due to interference between the effects of the different
scatterers. The incoherent and coherent scattering terms correspond here to the
diagonal and off-diagonal terms, respectively. On physical grounds we expect
the relative importance of incoherent and coherent scattering to depend on the
number of objects that overlap when projected onto the scattering screen, that is,
on the number of objects through which a particular ray passes. The packing of
the objects may be said to be dense if a given ray passes through many objects,
and sparse if a ray has a small probability of passing through an object. Coherent
scattering should dominate in the limit of dense packing. In the continuum limit,
corresponding to a very large number of discrete objects, dense packing should
dominate completely.

Statistical Average of the Locations of the Scatterers

However, we encounter a difficulty in formulating a theory based on coherent
scattering: in the simplest case the effect averages to zero. Specifically, the
average over the distribution of locations gives zero for coherent scattering for
a statistically uniform distribution of scatterers (e.g. Lax 1951). It follows that
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some assumption in the foregoing model needs to be relaxed to obtain a nonzero
result for coherent scattering.

Let us reconsider the assumption of a spatially uniform (across the scattering
screen) distribution of scatterers. A nonzero result is obtained for a nonuniform
distribution, which may be described by the two-point correlation function, g(r).
For example, in systems where there is a nonuniformity due to internal forces,
such as in a self-gravitating system (e.g. Peebles 1993) or a thermal plasma (e.g.
Klimontovich 1967, p. 125), g(r) may be calculated within the framework of the
specific model. In another type of application, in which a discrete model is used to
simulate a turbulent spectrum with a given density autocorrelation function, Cn(r),
the two-point correlation function is to be chosen to satisfy g(r) = Cn(r)/Cn(0)−1
(Keller 1964). However, neither of these ways of determining g(r) is relevant in
the application here, and there seems to be no reason to have g(r) 6= 0 in the
present context.

Another assumption that needs to be reconsidered is that of a single scattering
screen. This is equivalent to assuming that all the scattering objects are in a
single plane. The separation of two objects along the line of sight implies that
the wavefront changes its shape in propagating from one object to the next, and
this effect is ignored in assuming a single scattering screen. Thus the next step
in this investigation is to relax the assumption of a single scattering screen and
to take account of the locations of the scattering objects in three dimensions
explicitly.

7. Conclusions

The most notable features of the theory of strong scintillations are multipath
propagation and intensity fluctuations splitting into two well separated ‘diffractive’
and ‘refractive’ length scales and associated time scales.

The theory applied to scattering in the interstellar medium provides satisfactory
explanations for many radioastronomical phenomena in quasars and pulsars. For
quasars it provides the accepted interpretation for low-frequency variability on
a time scale of years, and it can account for the more rapid variations at
higher frequencies known as flickering and intra-day variability. Even for the
most extreme example known (Kedziora-Chudczer et al . 1997) the theory of
strong scattering is favoured, provided a suggested correlation between radio
and optical variations (Wagner and Witzel 1995) is ignored. For quasars only
refractive interstellar scattering (RISS) can be observed because, even in the
most extreme case, the angular size of the source is too large for diffractive
scattering (DISS) to be observed. For pulsars, there is a rich variety of phenomena
due to propagation effects, including pulse dispersion, pulse broadening, some
pulse-to-pulse variations, some timing noise and image wander. Diffractive effects
are most obvious in the variety of fringe patterns observed in dynamic spectra,
which are used to infer the transverse velocity of the pulsar.

Two aspects of the theory of scintillations that are currently under investigation
are a possible explanation of circular polarisation for some sources, and the
possible role of discrete objects in the scattering. As discussed in Section 6, it
is possible in principle to account for variable circular polarisation of the order
of magnitude observed, and which changes on the appropriate (refractive) time
scale. Although this result is a preliminary one, the suggestion that circular
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polarisation in sources that otherwise exhibit RISS is quite favourable. The
attempt to formulate a model for scattering by a distribution of discrete objects
encounters a difficulty that has yet to be overcome. However, it is already
apparent that the discrete model is useful in itself, and the procedure by which
it may be used to simulate scattering by a turbulent field with given spectrum
is well established.
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Appendix A: Scattering in a Birefringent Medium

The theory of strong scattering is generalised to an anisotropic medium in
the case where the propagation of the two natural modes may be treated
independently.

In a weakly anisotropic medium there are two wave modes with approximately
transverse, orthogonal polarisations. Waves in these two modes propagate
independently of each other provided that the medium is homogeneous, and this
continues to be the case in a weakly inhomogeneous except near ‘coupling points’
where the two modes are degenerate and coupling between them needs to be taken
into account. Such mode coupling is ignored here. The treatment of the transfer
of radiation then involves separating the incident radiation into components in
the two modes, treating the propagation of the two modes independently, and
combining the components again at the image plane.

As in Section 2, let the mean ray direction be along the z axis. The transverse
(x and y) components are denoted by greek superscripts, and the two modes are
labelled σ = ±, with wavenumber kσ. The amplitude Eα is written as the sum
of components uσ(z, r)eασ exp(ikσz) in the two modes, with eασ the (unimodular)
polarisation vector. The wave equation, generalising (2 ·2), is(

∇2δαβ +
ω2

c2
Kαβ

)
(uβeikσz) = 0, (A ·1)

which is solved for the eigenvalues k = kσ and the eigenfunctions eασ . Initially the
turbulence is ignored. This involves writing Kαβ = 〈Kαβ〉+ δKαβ and retaining
only the average part of the the response tensor, 〈Kαβ〉. The polarisation vectors
are orthogonal elliptical of the form

eσ = (1, iTσ), T+T− = −1, (A ·2)

where Tσ is the axial ratio of the polarisation ellipse (with the sign denoting the
handedness of the circular polarisation).

The parabolic approximation to (A ·1) is(
2ikσ

∂

∂z
+∇2

⊥ +
ω2

c2
δKσ

)
uσ = 0, (A ·3)

with δKσ = e∗ασ eβσδK
αβ . The solution of (A ·3) in the absence of the term δKσ is

uσ(z, r) = − ikσ

2π(z − z′)

∫
d2r′ uσ(z′, r′) exp

[
ikσ(r− r′)2

2(z − z′)

]
, (A ·4)

which generalises (2 ·3). Similarly,

uσ(L, r) = − i

2πr2
Fσ

∫
d2r′uσ(0, r′) exp

[
i
(r− r′)2

2r2
Fσ

]
(A.5)
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generalises (2 ·4) with (2 ·5) generalised to

rσ = (L/kσ) 1
2 . (A ·6)

On including the term involving δKσ in (A ·3), a perturbation expansion gives
(A ·4) as the zeroth order solution, and the first order solution is

u(1)
σ (z, r) =

ω2

4πc2

∫ z

0

dz′

z − z′
∫
d2r′ δKσ(z′, r′)uσ(z′, r′) exp

[
ikσ(r− r′)2

2(z − z′)

]
. (A ·7)

The generalisation of (2 ·6) is

uσ(z, r) = − ikσe
ikσ(z−z′)

2π(z − z′)

∫
d2r′ uσ(z′, r′) eiφσ(r) exp

[
ikσ(r− r′)2

2(z − z′)

]
, (A ·8)

where the phase φσ(r) includes the effects of the fluctuations at the screen. The
statistical average over the phases is performed assuming gaussian phases with,
in place of (2 ·7),

〈ei[φσ(r)−φσ′ (r′)]〉 = e−Dσσ′ (r−r′)/2, (A ·9)

where Dσσ′ is the phase structure function. The mutual coherence function
generalises to

〈Iσσ′(z, r− s)〉 =
kσkσ′

(2π)2z2

∫
d2r′d2s′ 〈Iσσ′(0, r′ − s′)〉 e−Dσσ′ (r′−s′)/2

× exp

[
i(kσ − kσ′)z +

ikσ(r− r′)2 − ikσ′(s− s′)2

2z

]
. (A ·10)

For σ 6= σ′ the phase factor (kσ − kσ′)z describes the effects of Faraday rotation
in the case of circularly polarised wave modes.

The fourth order moment in general involves four different positions (ρ1, ρ2,
ρ′1, ρ′2 say). The only case considered here is for the correlation in the intensities
in the two modes. For an incident plane wave the fourth order moment can
depend only on two combinations of the locations of the four fields on the wave
screen. Specifically, one has

Γσσ′(z, r1, r2) = 〈uσ(z, ρ1)uσ′(z, ρ2)u∗σ(z, ρ′1)u∗σ′(z, ρ
′
2)〉, (A ·11)

r1 = 1
2 (ρ1 − ρ2 + ρ′1 − ρ′2),

r2 = 1
2 (ρ1 − ρ2 − ρ′1 + ρ′2). (A ·12)
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In the case of a thin screen, the solution for this quantity is

Γσσ′(z, r1, r2) =

(
k

2πz

)2 ∫
d2r′1d

2r′2 〈I2〉(0)

× exp
[
ik(r1 − r′1) · (r2 − r′2)

z
−Gσσ′(r1, r2)

]
,

Gσσ′(r1, r2) = −Dσσ′(r1 + r2) + 2Dσσ′(r2) + 2Dσσ′(r1)

+Dσ′σ′(r2)−Dσσ′(r1 − r2)

− 2Dσσ′(r2) +Dσσ(r2) +Dσ′σ′(r2). (A ·13)

The fact that the phase structure function is an even function implies

Γσσ′(z, r1, r2) = Γσ′σ(z, r2, r1). (A ·14)

The intensity fluctuations may be described in terms of the power spectrum,
Wσσ′(q), by writing

Γσσ′(z, r1,0) =
∫
d2r1 e

iq·r1 Wσσ′(q), (A ·14)

which generalises (2 ·13).

Appendix B: Scattering by Discrete Objects

Consider N scatterers with the ith scatterer at r = ri and described by some
set of parameters, αi, that includes its size, shape, orientation, density profile and
so on. Then ∆φifi(r− ri) in equation (6 ·1) may be replaced by ∆φ0f(r− ri;αi),
so that equation (6 ·1) becomes

∆φ̃(q) =
N∑
i=1

∆φ0 f̃(q;αi) e−iq·ri . (B ·1)

Correspondingly, (6 ·4) is replaced by

C̃(q) =
N∑

i,j=1

(∆φ0)2

A
f̃i(q, αi)f̃∗j (q, αj) e−iq·(ri−rj). (B ·2)

The next step is to average equation (B ·2) over the distribution of discrete
objects.

Suppressing the parameters αi for the present, to describe the distribution of loca-
tions of the objects in equation (B ·2), let p(r1, . . . , rN ) d2r1 . . . d

2rN be the probabil-
ity that theN scatterers are in the regions d2r1, . . . , d

2rN . The probability for a single
scatterer, p(r1), is obtained from p(r1, . . . , rN ) by integrating over d2r2 . . . d

2rN . The
probability function for a pair of scatterers, p(r1, r2), is obtained from p(r1, . . . , rN ) by
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integrating over d2r3 . . . d
2rN . For a distribution that is random, there is only

one nontrivial probability function, p(r), and all the other probability functions
are outer products of it. Specifically, one has p(r1, . . . , rN ) = p(r1) . . . p(rN ).
For a uniform distribution over an area A, one has p(r) = 1/A. The two-point
correlation function, defined by

g(r1 − r2) = p(r1, r2)− p(r1)p(r2), (B ·3)

is a measure of nonuniformity in the spatial distribution of objects.
The parameters αi describe the size, shape, and so on, and the averages over these

parameters are assumed statistically independent of each other and of the average
over locations. Let dαi denote the product of infinitesimal ranges of each of these
parameters. The probability distribution for the locations introduced above then
becomes the generalised probability distribution pN = p(r1, . . . , rN ;α1, . . . , αN ),
which is the probability that the N scatterers are in the regions d2r1, . . . , d

2rN
and the parameter ranges dα1, . . . , dαN . The probability for a single scatterer,
p(r1;α1), is obtained by integrating pN over d2r2 . . . d

2rNdα2 . . . dαN . The
probability function for a pair of scatterers, p(r1, r2;α1, α2), is obtained by
integrating pN over d2r3 . . . d

2rNdα3 . . . dαN .
The averages over the parameters αi may be performed over equation (B ·1)

directly. Denoting the average by a tilde, we have

∆φ̃(q) =
N∑
i=1

∆φ0

∫
dαi f̃(q;αi) e−iq·ri . (B ·4)

These averages may then be combined with the average over locations trivially.
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