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Abstract

Maxwell’s equations applied to low-dimensional magnetic structures result in a number of interesting
features. For example, the magnetic fields generated by two-dimensional arrays of Heisenberg spins can
stabilise long range magnetic order and determine critical temperatures. Aspects of this problem are
discussed, and considerations for the dynamic response of weakly coupled arrays of fine magnetic
particles are presented. Finally, a form of effective medium theory designed to overcome difficulties in
treating magnetostatic interactions in magnetic nanostructures is described.

1. Introduction

The important interactions responsible for ordering and critical phenomena in magnetic
materials are usually considered to be due to strong, but short ranged correlations between
electrons. Weak, long range interactions caused by the magnetic fields generated by mag-
netisation are of course also present, but the corresponding energies are usually negligible
in comparison to the short range interaction energies. Critical temperatures and magnetic
excitation energies are therefore mainly determined by the short range interactions, and
the weak long range dipolar interactions are significant only for long wavelength dynamic
behaviour and phenomena related to domain formation.

The situation is quite different in the case of low-dimensional magnetic structures. A
well-known example is the two-dimensional Heisenberg magnet, where nearest neighbour
interactions are believed to be insufficient to stabilise long range order (Mermin and
Wagner 1966), whereas long range order may be possible if dipolar interactions are taken
into account (Yafet et al. 1986). There are numerous other questions of interest for two-
and one-dimensional magnetic structures, and because experimental models of low-
dimensional magnetic systems are readily available, there has been extensive work over
the years on the theory and measurement of magnetic phenomena in low dimensions. The
literature of the field is extensive and no attempt to reference it is made here. Some
sources particularly relevant to the present paper include a review of theoretical work on
thin ferromagnetic films given by Mills (1991), and an overview of theoretical and experi-
mental studies of critical phenomena in low-dimensional magnetic systems is presented in
the book by Collins (1989).

One approach towards understanding the importance of weak, long range dipolar inter-
actions in magnetic systems is through the study of the dynamics associated with the
magnetic system. The fundamental excitations of the magnetic system are spin waves. The
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purpose of this paper is to explore the impact of dipolar interactions on spin wave
excitations in three different contexts: (1) low and high temperature behaviour of two-
dimensional ferromagnets; (2) microwave response and switching of arrays of nanometre
sized magnetic dots; and (3) infrared response of antiferromagnetic multilayers.

2. Spin Waves in Two Dimensions

The Heisenberg Hamiltonian is a useful model for describing properties of localised
moment magnetic structures. The simplest form contains an exchange energy term repre-
senting a short range interaction between neighbouring spins:

. (1)

In this expression, Jij is the exchange interaction between spins located at sites i and j. The
angle brackets on the sum indicate that the sum includes nearest neighbours only.

Linearised spin waves calculated from this Hamiltonian have energies that go as the
square of the momentum. If the lattice spacing is a, and the spin wave has a plane wave
form, exp[i(k.r − ωt)], where the frequency of the spin wave is ω and the wavevector is k,
then the dispersion relation is ω = 2 S J a2 k2 for ferromagnetic coupling (J > 0). The low
temperature thermal reduction of the total magnetisation ∆ M can be calculated by
summing the thermally occupied spin wave states according to

. (2)

In three dimensions, this gives the well-known Bloch T 3/2 law. In two dimensions, the
k2 dependence of the energy causes a divergence at k = 0, leading to instability of the
ferromagnetic ground state at finite temperatures. Dipolar interactions remove this
divergence by modifying the long wavelength dependence of the frequency on k (Yafet et
al. 1986; Pescia and Pokrovsky 1990; Erickson and Mills 1991). Written as a discrete sum
over magnetic dipoles, the dipolar Hamiltonian is

. (3)

The frequency of long wavelength spin waves in an ultra-thin film of thickness d can
be shown to be (Stamps and Hillebrands 1991)

. (4)

Here M is the saturation magnetisation and φ is an angle specifying the direction of spin
wave propagation in the film plane relative to the direction of M. The parameter D
contains the exchange integral J between spins at neighbouring lattice sites in addition to
geometrical factors. The gyromagnetic ratio is γ, and f is a numerical factor obtained by
summing the contributions to the magnetic field at a lattice point due to the other point
magnetic dipoles at the lattice sites throughout the film. This factor is unity in the limit of
a continuous distribution of dipoles, and is less than one if the dipoles are arranged on a
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lattice. The terms linear in k are sufficient to remove the divergence in the sum over states
of equation (2).

Experimental evidence exists for significantly reduced critical temperatures in two-
dimensional ferromagnets (see e.g. Gradmann 1984), and an interesting theoretical ques-
tion is how the dipolar interaction affects high temperature behaviour. Whereas existing
work has been largely formulated in terms of scaling theory (Pokrovskii and Feigelman
1977), little has been done using spin wave theory.

An interesting approach is to examine spin wave interactions mediated by the dipole
field. This has been attempted for the exchange part of the Hamiltonian (Wang and Mills
1993), but has not been rigorously carried out for the dipolar terms of equation (3). One
approach is to expand the spin operators S± = Sx ± iSy in magnon variables in a perturb-
ation treatment. For S+ , the lowest order interaction terms are

, (5)

with a corresponding expression for S− . Here S is the total spin at a lattice site, N is the
number of spins in the array, and the ak are boson operators for the magnon excitations.
The full calculation is rather involved, but the end result is a spin wave frequency that is a
function of the total number of spinwaves in the system, Σknk , where nk is the number of
spin waves with momentum k. The thermal reduction in the magnetisation given by
equation (2) must then be solved self-consistently:

. (6)

This equation has been solved numerically for a two-dimensional array of spins using
parameters for M and D appropriate to bulk Fe. Results are shown in Fig. 1 where M − ∆ M
is shown as a function of temperature. The magnetisation decreases steadily until about
250 K where the magnetisation suddenly drops toward zero. Physically what happens it
that the spin waves create fluctuations in the dipole field. When the magnitude of these
fluctuations becomes large, the dipole field acting at a lattice site averages to zero, and the
two-dimensional array of ferromagnetically coupled spins is no longer stable to thermal

Fig. 1. Magnetisation of a two-dimensional
ferromagnet calculated as a function of
temperature. The reduction in the magnet-
isation is calculated using spin wave
theory. Note the critical point at 250 K, due
to fluctuations destroying the ability of
demagnetising fields to stabilise long range
order.
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fluctuations. It is interesting to note that the spin wave eigenfunctions are highly elliptical
at low temperatures in the sense that |Sx| ≠ |Sy| . This is due to the demagnetising fields
created by the dipolar interactions. As the temperature is increased, fluctuations decrease
the magnitude of the demagnetising fields, causing the eigenfunctions to become more
circular and |Sx| = |Sy| when the magnetisation becomes unstable.

While the result is a critical temperature significantly lower than that for bulk Fe, in
agreement with experiment (Gradmann 1984), one must interpret the above argument with
great care. Iron is only approximately represented by a local spin Hamiltonian such as that
of equation (1), and there are several other contributions to local effective fields, such as
anisotropy (Krams et al. 1992), that may dominate the behaviour of the system. Further-
more, for any actual comparison to experiment, it would be necessary to use values for
exchange and magnetisation appropriate for a thin film.

3. Weakly Interacting Dot Arrays

The technology to fabricate high quality magnetic wire and dot structures with physical
dimensions in the nanometre range has advanced rapidly in the past few years. One poten-
tial application of great current interest is for construction of magnetic random access
memory devices. As a consequence, relevant magnetic processes involve dynamics of the
magnetisation under application of moderately large magnetic fields.

Except in the special case of small amplitude spin wave excitations, magnetisation
dynamics are governed by highly nonlinear equations of motion. Some classes of insulat-
ing magnetic compounds, such as yttrium iron garnet, have in fact served as model
systems for studying nonlinear effects via absorption of high power microwaves (Rezende
et al. 1986). In such processes, spin wave interactions determine the response, and mag-
netostatic interactions can be very important.

To date, investigations of these phenomena have only been performed for large, con-
tinuous magnetic films, ellipsoids and spheres. An interesting question is how high power
absorption occurs in patterned arrays of sub-micron sized magnetic dots. A model system
can be examined as follows. Suppose a nanoscale single domain magnetic element is
approximated as a giant magnetic moment m. The classical equation of motion for a single
m in a static field h, and an applied microwave field hω = xhωeiωdrt, is

(7)

Here α describes the rate at which the magnetisation dissipates energy. The anisotropy
constant k represents an effective anisotropy field that describes preferential orientation of
m with respect to a symmetry axis of the underlying crystal lattice. In equation (7), x is
normal to the film plane, and the sign of k means that m has its lowest energy static
configuration for orientation in the film plane. The driving field is applied normal to the
film plane and oscillates with frequency ωdr.

Dynamics of an array of interacting dots can be described by writing equations of
motion of the form in equation (7) for each m in the array. The interaction is specified by
a dipolar field hd added to the other fields in the equations motion. The field hd is
produced by the other m in the array and can be constructed from equation (3) by
replacing the spin operators with vector equivalents m, and calculating hd = −(∂/∂m)Hd.
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The ferromagnetic resonance mode (FMR) is typically measured in power absorption
experiments. This mode corresponds to the situation where all of the m precess in phase.
The power absorption was calculated by numerically integrating equation (7). An example
of the power spectrum is shown in Fig. 2a for a 3 × 3 array of magnetic dots. The upper
panel shows the linear response for a small hω. The large peak contains the FMR mode,
but there are contributions from many nearly degenerate modes of the array in both peaks.

As the intensity of the driving field is increased, the modes of the array interact, and
the power absorption spectrum acquires more structure. This behaviour is shown in the
lower panel where a number of sharp peaks appear. The precession amplitudes associated
with the FMR peak frequency are shown in Fig. 2b. The linear response shown in the
upper panel is characterised by precession amplitudes that are the same for each m. The
high power response in the lower panel shows localisation to the centre dots of the array.
Increasing the intensity of the driving field leads to greater localisation, and can even
result in complete reversal of the central m. A more complete analysis is given in Stamps
and Camley (1999).

The process of switching, in which the direction of magnetisation is reversed by
applying a magnetic field, involves the dissipation of energy from the spins to the lattice
rather than the absorption of energy from a large amplitude field. Even so, the resulting

Fig. 2. (a) Microwave power absorption calculated for different microwave field
intensities. The upper panel shows the linear response for low intensities and the
lower panel shows the nonlinear response at higher intensities. (b) Sketch of the
relative amplitudes of the magnetisation in the dot array.
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dynamics are highly nonlinear even for isolated, single domain magnetic particles. For
switching of a single magnetic moment m by a constant field h, the equation of motion is

(8)

In equation (8), the choice of zk for the anisotropy means the system can be thought of as
a two-state system with m preferentially lying either along the +z or −z directions at
equilibrium.

If the reversal process is assumed long compared to the precession time, equation (7)
can be averaged over time scales long compared to the precession and short compared to
the reversal. The resulting equation can be solved exactly in the case k = 0 with a
characteristic reversal time τs given by (Stamps and Hillebrands 1999)

(9)

in the case hx << hz.
The switching dynamics of an array of dots is strongly affected by dipolar interactions

represented by the field hd. This was studied by Stamps and Camley (1999), and it was
found that the switching time is a sharply peaked function of the magnitude of hd. In terms
of packing density of the array, this means that fast switching occurs for densely packed
arrays, where hd is largest, and for large array spacings, where hd is small. In between
these two limits there is a range of array spacings where the switching rate is slowed
significantly due to excitation of dipolar modes in the array.

4. Effective Medium Theory

As a final example of how dipolar interactions between magnetic moments are important
in determining the dynamics of nanostructured materials, mention is made of a very
different class of systems from those considered so far: antiferromagnets. Because the
dipole field in Maxwell’s equations is generated by a net magnetic moment, it is not too
surprising that it can be important in ferromagnetic systems. This is usually not the case in

Fig. 3. Sketch of the easy plane antiferromagnet with out-of-plane fluctuations.
Demagnetising fields are due to spins within a two-dimensional plane, so that even
the net magnetisation of a unit cell vanishes, the local effective fields acting on each
sublattice contain demagnetising effects.
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antiferromagnets where there is no net macroscopic magnetic moment, and dipole inter-
actions are often ignorable.

It turns out that dipolar fields are important for understanding the optical response of
easy plane antiferromagnets. These materials, such as NiO and EuTe, typically have
responses in the far infrared that are governed by the dynamics of the antiferromagnetic
sublattices. The easy plane geometry of these systems means that spins of a given sub-
lattice are aligned parallel in two-dimensional sheets. As a result, fluctuations out of plane
involve a demagnetising field due to other spins in the same two-dimensional sheet, even
though the magnetisation of the unit cell remains zero. This idea is shown schematically in
Fig. 3 where a unit cell of an easy plane antiferromagnet is depicted. The net out of plane
moment associated with an individual sublattice results in a demagnetising field acting on
the same sublattice.

The consequences of this idea were explored by calculating response functions for the
easy plane structure by including explicit sums over the dipole moments produced by each
sublattice spin in a manner similar to the calculation of spin wave frequencies, as
described in the Introduction (Stamps et al. 1993). The result was compared to an effective
medium calculation in which demagnetising effects are included by applying electro-
magnetic boundary conditions during the calculation of electromagnetic susceptibilities.

The effective medium susceptibilities are defined by the relation

, (10)

where

, (11)

. (12)

The magnetisation of the two sublattices are a and b, and the corresponding dipole fields
acting on each sublattice are ha and hb. The effective medium approximation is used to
relate ha and hb subject to the requirement that components tangential to the sublattice
planes are continuous, while components normal to the planes are discontinuous by an
amount proportional to the sublattice magnetisation. This means imposing the relations

, (13)

, (14)

on the calculation of χ.
The results for χ calculated in this way agree well with the equation of motion

approach using dipole sums (Stamps et al. 1993). The primary effect is to introduce a term
in χzz that shifts the pole frequency by an amount 4πM, where M is the sublattice
magnetisation. This represents the effects of local demagnetisation on the individual
sublattices. The effective medium method has turned out to be quite useful, and has since
been extended to describe accurately the response of thin films (Stamps and Camley
1996).
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5. Summary

Three examples have been presented in this paper illustrating some consequences of the
macroscopic Maxwell equations for electromagnetism on the dynamics of sub-micro-
scopic magnetic structures. Magnetic properties and the dynamic response of magnetic
systems are strongly dependent on dimensionality, and weak, long ranged interactions
between magnetic dipoles can be surprisingly important for one- and two-dimensional
magnetic structures.

By modifying the long wavelength spin wave energies of two-dimensional ferro-
magnets, long range magnetic order can exist at finite temperatures. Spin wave inter-
actions mediated by the dipole coupling can destabilise the order and lead to a critical
temperature significantly reduced from that of a three-dimensional system.

High power microwave absorption, which is known to produce a variety of interesting
nonlinear effects in continuous ferromagnetic films, can also strongly modify the response
of arrays of nanoscale magnetic particles. In particular, mode localisations can occur,
lifting degeneracies in the magnetostatic mode spectrum and causing large amplitude
fluctuations on selected particles.

Finally, the necessity of accounting for demagnetising effects in layered antiferro-
magnets was discussed. This is an interesting example of how demagnetising fields are
formed, in that it is shown how demagnetising effects can appear even when the net
magnetisation of the material is zero.
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