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Abstract

Ascheme is proposed for the generation of entangled coherent states of two spatially separated cavity
mirrors. In the scheme, a two-level atom is sent through two cavities, each having a movable mirror,
to produce an entangled photon state for the cavity fields. Then the optomechanical effects further
entangle the mirror motions with the cavity fields. A second two-level atom, passing through the
cavities, is state-selectively measured, which reduces the mirror motions to an entangled coherent
state. We also show how to distinguish such an entangled state from a classical mixture.

1. Introduction

Over the past few years, much effort has been directed to the so-called Schrödinger cat
states (Schrödinger 1935), i.e. superpositions of macroscopically distinguishable quantum
states. In quantum optics these states are usually given as superpositions of two coher-
ent states |α〉 and |−α〉, which are separated in phase by π. Though formed by quantum
states closest to the classical ones, such superposition states may exhibit various non-
classical properties, such as squeezing and sub-Poissonian statistics (Janszky et al. 1993,
1995; Janszky and Vinogradov 1990; Xia and Guo 1989). Recently, such cat states have
been realised for both a cavity field (Brune et al. 1996) and the motion of a trapped ion
(Monroe et al. 1996).

In a recent paper, Mancini et al. (1997) have shown that a cavity with a movable mirror
can also be used to produce Schrödinger cat states of the cavity field. More recently, Bose
et al. (1997) have shown that such a system can lead to a large variety of nonclassical
states of the cavity field. Moreover, it is shown that the mirror can also be prepared in a
Schrödinger cat state with many components by a quadrature measurement of the cavity
field after its interaction with the moving mirror. The idea of Bose et al. (1997) offers a
way to generate nonclassical states for a macroscopic object. Recently, we have proposed
a scheme to put the mirror into the even or odd coherent states (Zheng 1998).

On the other hand, there have been multi-mode generalisations of the cat states, which
are called entangled coherent states (Sanders 1992a, 1992b), also referred to as super-
positions of two-mode coherent states (Chai 1992; Ansari and Man’ko 1994; Dodonov
et al. 1995). These superposition states may exhibit various nonclassical properties, such
as two-mode squeezing and violation of the Cauchy–Schwarz inequality. It has been shown
that, under certain conditions, superpositions of two-mode coherent states can exhibit
various nonclassical features such as sub-Poissonian photon number statistics, two-mode
squeezing, and violations of the Cauchy–Schwarz inequalities (Chai 1992). The strong cor-
relations between these modes can be responsible for the nonclassical features especially
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for the two-mode case. A number of schemes have been proposed for the generation of
entangled coherent states for light fields (Sanders 1992a, 1992b; Wielinga and Sanders
1993; Davidovich et al. 1993; Guo and Zheng 1997) and the motions of a trapped ion
(Gerry 1997). In this paper we propose a method for preparing such states for two spatially
separated cavity mirrors.

This paper is organised as follows. In Section 2 we present a scheme for preparing
entangled coherent states for two separatedmirrors. In Section 3we showhow to distinguish
an entangled coherent state froman incoherentmixture. The conclusion appears in Section 4.

2. Generation of Entangled Coherent States

We consider the system composed of a cavity field and a movable mirror. Treating the
mirror as a quantum harmonic oscillator we obtain the Hamiltonian for such a system as
(Bose et al. 1997; Mancini et al. 1997)

H = hω0a
+a +hωmb+b −hga+a(b+ + b), (1)

where a+ and b+ denote the creation operators for the cavity mode with frequency ω0 and
mirror with frequency ωm, respectively, and

g = ω0

L

√
h

2mωm

, (2)

with L and m being the length of the cavity and mass of the mirror respectively. In the
interaction picture (omitting the free evolution of the field), the relevant time evolution
operator is

U(t) = eik2(a+a)2[ωmt−sin(ωmt)] eka+a(ηb+−η∗b) e−ib+bωmt, (3)

where k = g/ωm and η = 1 − e−iωmt.

Our purpose is to prepare the entangled coherent states for the mirror motions of two
cavities of the above-mentioned type. We assume that the cavity fields are initially in
the vacuum state |0〉1 |0〉2, and the movable mirrors in the coherent state |α〉1 |α〉2. Zurek
et al. (1993) have found the coherent state as the minimum entropy state under a particular
condition. By lowering the temperature themirrors (a harmonic oscillator) may be put in the
vacuum state, which can be converted into a coherent state by some kind of kick. In order
to generate entangled coherent states for the mirrors we require two-level atoms resonant
with the cavity fields. Suppose an atom of such a type initially prepared in the excited state
|e〉1 is sent through the cavity system.We assume that the atom–field coupling strength � is
much larger than the mirror frequency ωm and the field–mirror coupling strength g. In this
case during the atom passing through the cavity the field–mirror coupling can be neglected.
Upon the passage of the atom through the first cavity, the whole system is in the state√

1
2 [cos(�τ1) |e〉1 |0〉1 − i sin(�τ1) |g〉1 |1〉1] |0〉2 |α〉1 |α〉2, (4)

where τ1 is the interaction time of the atom with the first cavity. After the passage through
the second cavity, the state of the whole system is√

1
2 [cos(�τ1) cos(�τ2) |e〉1 |0〉1 |0〉2 − i cos(�τ1) sin(�τ2) |g〉1 |0〉1 |1〉2
−i sin(�τ1) |g〉1 |1〉1 |0〉2] |α〉1 |α〉2. (5)
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We select the interaction times appropriately so that �τ1 = π/4, �τ2 = π/2. Then we
obtain −i√

2
[|0〉1 |1〉2 + |1〉1 |0〉2]|α〉1|α〉2, (6)

with the atom left in the ground state |g〉1. Here we assume the transit time of the atom
through each cavity is π/2�. The interaction time of the atom with the first cavity field
can be shortened by using a static electric field to Stark shift the atom out of resonance
for a proper time during the passage through this cavity (Davidovich et al. 1994). After an
interaction time t the field–mirror coupling leads to the state

−i√
2
eik2[ωmt−sin(ωmt)][|1〉1 |0〉2 |αe−iωmt + k(1 − e−iωmt)〉1 |αe−iωmt〉2

+ |0〉1 |1〉2 |αe−iωmt〉1 |αe−iωmt + k(1 − e−iωmt)〉2], (7)

where we have discarded the atomic state. We choose the interaction time t appropriately
so that ωmt = π. Thus we have

−i√
2
eik2π[|1〉1 |0〉2 |−α + 2k〉1 |−α〉2 + |0〉1 |1〉2 |−α〉1 |−α + 2k〉2]. (8)

We now send a second resonant two-level atom, initially in the ground state |g〉2 through
the cavity system. After the first cavity, the system is in the state

−i√
2
eik2π{[cos(�τ′

1) |g〉2 |1〉1 |0〉2 − i sin(�τ′
1) |e〉2 |0〉1 |0〉2]|−α + 2k〉1 |−α〉2

+ |g〉2 |0〉1 |1〉2 |−α〉1 |−α + 2k〉2}. (9)

When the atom emerges from the second cavity the system evolves to

−i√
2
eik2π{[cos(�τ′

1) |g〉2 |1〉1 |0〉2 − i sin(�τ′
1) cos(�τ′

2) |e〉2 |0〉1 |0〉2
− sin(�τ′

1) sin(�τ′
2) |g〉2 |0〉1 |1〉2]|−α + 2k〉1 |−α〉2

+ [cos(�τ′
2) |g〉2 |0〉1 |1〉2 − i sin(�τ′

2) |e〉2 |0〉1 |0〉2]|−α〉1 |−α + 2k〉2}. (10)

We choose the interaction times τ′
1 and τ′

2 appropriately so that �τ′
1 = π/2, �τ′

2 = π/4.
Then we have

−i

2
eik2π{[−i|e〉2 |0〉1 |0〉2 − |g〉2 |0〉1 |1〉2]|−α + 2k〉1 |−α〉2
+ [|g〉2 |0〉1 |1〉2 − i|e〉2 |0〉1 |0〉2]|−α〉1 |−α + 2k〉2}. (11)

It should be noted that in a realistic experiment the two atoms will have the same velocity.
Thus, during the passage of the second atom through the second cavitywe should use a Stark
field to shorten the corresponding atom–field interaction time as we do during the passage
of the first atom through the first cavity. The field–mirror interaction time is essentially the
time interval between the two atoms.

We now perform a state-selective measurement on the atom. If we detect the atom in the
excited state |e〉2, the two cavity mirrors are projected to the entangled coherent state

N+(|−α + 2k〉1 |−α〉2 + |−α〉1 |−α + 2k〉2), (12)
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and the cavity fields are left in the vacuum state |0〉1 |0〉2. Here N+ is a normalisation
factor. On the other hand, the detection of the ground state |g〉2 leads to the entangled
state

N−(|−α + 2k〉1 |−α〉2 − |−α〉1 |−α + 2k〉2), (13)

and the cavity fields are left in the state |0〉1 |1〉2. In this case the motion of the mirror
of the second cavity will be further modified by the photon in the second cavity. Thus, it
is difficult to observe this entangled state. Choosing the value of α appropriately we can
obtain entangled coherent states of special interest. For the case where α = 0 we obtain the
following entangled state (Sanders 1992a, 1992b):

N+(|2k〉1 |0〉2 + |0〉1 |2k〉2). (14)

When α = k we obtain a two-mode cat state of another type (Chai 1992;Ansari andMan’ko
1994; Dodonov et al. 1995):

N+(|k〉1 | − k〉2 + | − k〉1 |k〉2). (15)

3. An Entangled Coherent State versus an Incoherent Mixture

In this section we suggest a method to distinguish the superposition state of equation (12)
from a classical mixture of the form

1
2 [|−α + 2k〉1 |−α〉22 〈−α|1 〈−α + 2k| + |−α〉1 |−α + 2k〉22 〈−α + 2k|1 〈−α|]. (16)

In order to do so we send an atom initially in the excited state |e〉3 through the cavity system.
We choose the interaction times of the atom with the two cavities in the same way as those
of the first atom. After the cavity fields interact with the mirror for a time π/ωm, another
atom initially in the ground state |g〉4 is sent through the cavity system. We choose the
atom–field interaction times in the same way as those of the second atom. If the mirror state
is given by equation (12) the system finally evolves to

−iN+
2

eik2π{|g〉4 |0〉1 |1〉2[|α − 2k〉1 |α + 2k〉2 − |α + 2k〉1 |α − 2k〉2]

− i|e〉4 |0〉1 |0〉2[2|α〉1 |α〉2 + |α − 2k〉1 |α + 2k〉2 + |α + 2k〉1 |α − 2k〉2]}. (17)

Now the probability of finding the atom in the excited state |e〉4 is given by

Pe = 1

4
(
1 + e−4k2

) (
3 + e−16k2 + 4e−4k2

)
. (18)

For simplicity we here have assumed that α is real. On the other hand, if the mirror is
initially in a classical mixture of equation (16) the probability of finding the atom in the
state |e〉4 is

P ′
e = 1

2

(
1 + e−4k2

)
. (19)
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Therefore, by measuring the probability of the atom in the excited state we can determine
whether the two cavity mirrors are in a superposition or a incoherent mixture of two two-
mode coherent states.

4. Conclusion

It is necessary to give a brief discussion on the experimental feasibility of the pro-
posed scheme. We set the following parameters (Bose et al. 1997; Mancini et al. 1997):
ω0 ≈ 1016 s−1, ωm ≈ 103 s−1, L ≈ 1 cm, m ≈ 10mg, Tc ≈ 10−2 s, with Tc being the cavity
lifetime. In this case we obtain g ≈ 0.7× 103 s−1. The required field–mirror interaction
time is about π × 10−3 s. The atomic radiative time Tr is of the order of 10−2 s, and the
atom–field coupling strength can be set to � = 2π × 24 kHz (Brune et al. 1996), much
larger than g. The corresponding atom–field interaction time is π/2� ∼ 10−5 s. Thus, both
the atom–field interaction time and the field–mirror coupling time are shorter than Tc and
Tr. At present, we are not able to make an estimate of the decoherence time-scale Tm of
the mirror motion. However, Tm depends on ωm as Tm ∼ (ωm)3 (Bose et al. 1997). Thus,
in principle we can control Tm by choosing ωm appropriately. For the above-mentioned
values of g and ωm, we get k = g/ωm = 0.7. Then we have Pe � 0.78 and P ′

e � 0.57. The
difference between these two probabilities should be large enough for us to distinguish an
entangled state from a classical mixture.

In summary, we have proposed a scheme for the generation and detection of entangled
coherent states of the motions of two cavity mirrors. Our scheme provides a way to produce
and measure entanglement between two spatially separated macroscopic objects.
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