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Abstract

We investigate the metal–insulator transition in 2D electron systems assuming a percolation mechanism
connecting through a network of metallic domains. The size of the domains is determined by the level of
disorder and the strength of the electron correlations. The domains are linked through quantum tunneling.
We determine the dependence of the resistivity on electron density and temperature by calculating the
tunnelling transmission through the potential barriers between the domains. The results are in good
agreement with recent experimental measurements.

The interplay between electron correlations and disorder plays a central role in the metal–
insulator transition in 2D electron systems (Simonian et al. 1997). For 2D systems the
random potential fluctuations associated with disorder will always localise the electrons if
the interactions between the electrons are neglected. In the opposite limit of very strong
electron correlations and weak disorder the ground state will be the Wigner solid. Thus,
the nature of the localised states is determined by a competition between the disorder and
electron correlations.

The random potential fluctuations destroy any first order transition, but may create a
percolative second-order transition in the transport coefficients. It has been proposed near
the transition that these potential fluctuations create domains (regions of slightly lower and
slightly higher density) (Efros 1989; Davies et al. 1999; Shklovskii and Efros 1984). As
the electron density is decreased this can lead to a classical metal–insulator transition
(Nixon and Davies 1990). Experimental evidence for localised domains has recently been
found in gated GaAs heterostructures using near field spectroscopy with sub-wavelength
resolution (Eytan et al. 1999). Negatively charged exciton luminescence is used to image
the spatial distribution of the electrons in a 2D layer. In the range of gate voltages where
the conductivity drops, the electrons have been shown to be localised inside the potential
fluctuations of the remote ionised donors. The spectral signature of regions filled with
localised electrons was very different from regions containing conducting electrons.

* Refereed paper based on a contribution to the Ninth Gordon Godfrey Workshop on Condensed Matter
in Zero, One and Two Dimensions held at the University of New South Wales, Sydney, in November 1999.
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Within the domain model it is assumed that the random potential associated with the
impurities Vimp(r) varies smoothly. When the linear dimensions of the domains lV exceed
the correlation lengths, the local energy density is given by E(µ − Vimp(r)) for the chemical
potential µ. Recently, such a model was employed by Shimshoni et al. (1998) to study
transport properties near the phase transition for quantum Hall insulators and super-
conductors.

We apply the model by Shimshoni et al. (1998) to determine the transport properties of
the 2D metal–insulator transition. A Vimp(r) which varies smoothly on a scale long
compared with correlation lengths leads to spatial inhomogeneities in the local electron
density. The transition is density driven so, when the system is very close to the transition
boundary, the variations in the carrier density can lead to the formation of domains of
coexisting metal and insulating phases, the metallic domains forming in regions of higher
electron density Vimp(r) < µ, and the insulating domains taking up the remaining regions.

For 2D systems, the percolation threshold occurs when the total areas of the two types
of domains are equal, that is the critical metal area fraction p is p = pc = ��. For this unique
value both the metal and the insulating domains contain at least one connected path across
the sample. Right at the transition all neighbouring domains will touch just at one point.
Since Vimp(r) increases from the contact point as we move into either of the two adjacent
metal domains and decreases as we move into either of the insulating domains, it must
form a saddle point centred on the contact point.

As the carrier density moves away from the transition, the minority phase retreats from
the centre of the junction and is replaced by the majority phase. The area of the majority
phase at the junction exceeds the area of the minority phase by δA = �� log(lV/d) d2, where
d is the average distance separating adjacent minority phase domains. For Nsp junctions in
a system of total area A, the total excess area fraction of the majority phase is

(1)

with γ = (Nsp/2A)log(lV/d). Writing the density within the metal and insulating domains as
nm(p) and nI(p), the total density for excess area fraction p is

(2)

Here λ = (nm
c − nI

c ) + (nm′ + nI′ ) depends on the impurity density in the particular sample.
Also nm

c − nI
c  is the density discontinuity between the metal and insulating phases at the

transition boundary, and the derivatives nm′ + nI′ = dnm/dp + dnm/dp are evaluated at pc.
Equations (1) and (2) relate the carrier density n(p) to the junction width d.

To determine the resistivity we express the transmission across the quantum junctions
in terms of n(p). The junction barrier height is Vbarr = �� V ″(d/2)2, so the tunnelling trans-
mission ���� = ����0exp(−2S(d)) through the barrier at zero temperature is

(3)

where S(d) � S(0) + �� S ″d2 is the action across the barrier and ����0 is the transmission for
d = 0. It is easy to show S ″ � d2S/dd2 = (π/2�)���mV ″. At high temperatures transport
across the junction is by thermally activated hopping and the transmission

���� ~ �
∞

Vbarr
exp(−E/kBT)dE
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is

(4)

Combining equations (3) and (4) and using equation (2), the probability for trans-
mission across the junction in terms of n − nc is

(5)

where we take α = (γ/S ″) and β = (8kB/V″) as adjustable parameters. Thus, our final
expression for the resistivity ρ = (�/e2)(1 − ����/����0) is

(6)
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Fig. 1. Best fits to the resistivity data from Simmons and Hamilton (2000): (a) Comparison with
experimental data for T = 400 mK. (b) Comparison for T = 1400 mK. Calculated values are the dashed
curves and experimental values the solid curves.
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Fig. 1 plots the resistivity as a function of carrier density n for two different tempera-
tures, T = 400 mK and 1400 mK. We show experimental values taken from Simmons and
Hamilton (2000). We obtain a good fit for densities within ± 20 % of nc and a very close
fit for the range ± 10 % of nc. The best fit values of the parameters are λα = 0.196 cm−2

and λβ = 6.24 × 10−4 cm−2K−1. In Fig. 2 we compare our results with the experimental
data from Hanein et al. (1999) at T = 57 mK and 214 mK. The agreement is again good.

In conclusion, a model of formation of domains of metallic and insulating regions near
the phase boundary for the metal–insulator transition due to the randomly fluctuating
impurity potential leads to calculated resistivities which are in good agreement with two
sets of independent measurements of the resisitivity as functions of both carrier density
and temperature.

ρ
ρ

Fig. 2. Best fits to the resistivity data from Hanein et al. (1999): (a) Comparison with experimental data
for T = 57 mK. (b) Comparison for T = 214 mK. Calculated values are the dashed curves and
experimental values the solid curves.
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