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Abstract

The dynamic acoustics of the Australian didjeridu are studied by separately considering transverse
and longitudinal lip vibration models in the context of highly non-sinusoidal lip motion. Time-
domain computer simulations are performed based on these lipmodels coupled to the input impedance
function of a straight pipe. For the purposes of direct comparison, detailed results are reported
here for lip motion leading to both sinusoidal lip opening area functions (characteristic of higher
frequency brass instruments) and the more complex non-sinusoidal (approximately half-closed cycle)
case characteristic of the didjeridu. Over a range of lip resonance frequencies, the sounding frequency
for the transverse (longitudinal) model is found to be below (above) both the lip and fundamental pipe
resonance frequencies, in qualitative agreement with linear theory for these value types. A striking
difference is found between the twomodels when comparing the effect of significant lip closure in the
non-sinusoidal cycle—the sounding frequency in the transverse case is raised by up to 10%, whilst
essentially unaltered in the longitudinal model. The effect the lips sticking during the non-sinusoidal
cycle was considered by increasing the damping force upon closure, and was found in both transverse
and longitudinal models to weaken significantly the generation of harmonics in the sound.

1. Introduction

The Australian yidaki, commonly known as the didjeridu, is an ancient wind instrument
originating from the northern regions of the continent. The didjeridu is made from a slender
tree trunk or branch, initially hollowed out by white ants. Subsequent finishing of the
instrument by boring out the dead wood and thinning the walls produces a tube of length
1–1.5m with varying taper. The small end usually has a diameter of about 3–5 cm and,
with no modification other than a ring of beeswax or resin for player comfort, serves as the
mouthpiece of the instrument.
To play the didjeridu one buzzes the lips, with the appropriate tension, to sound a low

drone, which is usually blowncontinuously by the techniqueof circular breathing. Obtaining
just this basic drone note is a matter of considerable control: the unskilled will most likely
produce a ‘blurting’ note. Careful adjustment of the lip position and tension must be made
until the cleaner sound of the drone is triggered.
The natural breathing cycle, and movement/position of the cheeks, jaw and tongue

are used to produce percussive rhythms and great variation in the timbre of the sound.
Vocalisation is also added to great effect: oftentimes mimicking the sounds of animals
reverberating in a background of the rhythmic drone. Excitations of individual resonances
above the fundamental, known as ‘overblown notes’ (similar in sound to a horn), are
occasionally used to punctuate the sound. It is quite striking the degree to which the physical
simplicity of the instrument belies its potential for highly developed music. In fact, in
ethno-musicological terms the didjeridu is unique in that the music developed on it by the
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indigenous people ofAustralia, without any technological improvements, has considerably
greater complexity to that produced on similar wind instruments by any other culture (Jones
1967).
The didjeridu has become popular worldwide, however, it is only recently that the study

of the acoustics of this instrument has received any attention. The technical works to date
are the pioneering theoretical treatment of Fletcher (1983, 1996) and the measurements of
lip motion and input impedance carried out by Wiggins (1985). A frequency spectrum of
the sound is given in Fig. 1, for the case of the drone note with minimal formant production,
and shows the basic structure of dominant odd harmonics (roughly corresponding in fre-
quency to the resonances of the pipe), interspersed with suppressed even harmonics. Vocal
tract resonances, at around 1500Hz and higher, can be manipulated by the player in both
frequency and strength.
While the passive acoustics of the didjeridu pipe (straight and flared) are well described

(Fletcher 1983, 1996), there does not yet exist a quantitative analysis of the generation of
sound in this instrument as has been carried out for various Western wind instruments. The
dynamic acoustics of this instrument remain unexplored. Given the origin of the instrument
itself and the complexity of the playing style, it perhaps comes as no surprise that the
dynamic acoustics are far more interesting than a simple valve driven oscillating column
of air. For the sake of clarity we can break the acoustic system down into four main
components—didjeridu pipe, lip-valve, vocal tract cavity and vocal folds.
The first part of this system to consider is the didjeridu itself. UnlikemostWestern instru-

ments, there is no standard to which the didjeridu is traditionally made, although the pipe
can be tuned to a particular fundamental pitch by cutting to the appropriate length. Natural
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Fig. 1. Low frequency spectrum measured during the sounding of the drone note on a 1250mm
pipe (radius 20mm).
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variations in the degree of conical flare, bore smoothness, and curvature all contribute to
the uniqueness of each instrument. Fortunately for our purposes, these unpredictable and
complex characteristics, which would be extremely difficult to model, have a relatively
small effect; for example, one can obtain an authentic sound (at least indistinguishable to
the untrained ear) from a length of plastic pipe. This of course reflects the fact that the
acoustic impedance of the didjeridu is well approximated by that of a smooth bore pipe
(possibly flared) and is well understood; for this reason (and the added simplicity of the
absence of a mouthpiece) the didjeridu may hold an important place in computer simula-
tion of lip-driven wind instruments. In these preliminary investigations we will model the
didjeridu itself as a straight pipe.

Fig. 2. Strobemeasurement sequence showing (semi side-on view) one cycle of the lipmotion during
the sounding of the drone note on a 1000mm pipe (85Hz fundamental, radius 20mm). Frames 1 and
20 correspond to maximum lip opening. For calibration, the bright strip in each frame is 10mmwide.
[Strobe measurements taken in collaboration with J. Oates.]
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Fig. 3. Wiggins’ lip area analysis
showing the half-closed cycle
[reproduced fromWiggins (1985)].

It is well known that the biomechanical modelling of the vocal tract and vocal folds is a
considerable challenge in its own right, let alone in conjunction with the valve/air-column
system. However, it also turns out that the coupling between the didjeridu pipe and the lip
valve is quite unusual and more complex, compared with other lip-driven instruments. A
stroboscopic study of the lip motion carried out byWiggins shows a very interesting, highly
non-sinusoidal lip motion where the lips actually stay closed on contact for a relatively long
time—up to half the cycle. Independent observations shown in Fig. 2 confirm these long
closure times. The summary of the analysis of lip opening areas carried out by Wiggins
is reproduced in Fig. 3. Such complexity of lip motion is perhaps not too surprising in
this context as it is reminiscent of low frequency vocal-fold motion. In no other dynamical
treatment of lip- or reed-driven wind instruments has such an extreme cycle been taken into
account.
Before all components of the didjeridu can be modelled in unison, a major undertaking,

we first seek an understanding of the effect of the unusual lip motion on the harmonic
generation in the valve/air-column system. To this extent, thework presented here represents
a first attempt at understanding the dynamic acoustics of the didjeridu, by time-domain
simulation. Both longitudinal and transverse models of lip motion are considered in the
regime of non-sinusoidal oscillation—the (approximately) half-closed cycle. In the context
of whether brass players’ lips are best modelled by a transverse or longitudinal ‘reed’, there
are relevant works by Yoshikawa (1995), who carried out an experimental study of the
type of lip motion supported with and without a mouthpiece for varying frequencies, and
Chen and Weinreich (1996) who concurred with Yoshikawa’s findings (in the frequency
range 200–350Hz) that human lips function mainly as ‘outward striking’ reeds. In the
case of the didjeridu the frequencies involved are much lower (the longest pipe length
in Yoshikawa’s work was 400mm), and it is not at all clear that these conclusions hold
given the non-sinusoidal motion of the lips. In this work the components of lip motion in
the transverse and longitudinal directions are considered separately in order to avoid the
proliferation of parameters in a two-dimensional, multi-mass lip model. Such complexities
can be introduced at a later stage with the guidance of quantitative strobe measurements.
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Given a specific lip model, the changing character of harmonic generation in the non-
sinusoidal regime is studied for various lip parameters. Furthermore, the case of sinusoidal
oscillation is also considered in order to directly ascertain the differences between the non-
sinusoidal didjeridu regime and the typical lip motion used in trumpet simulations (Adachi
and Sato 1995, 1996). The differences between harmonic generation in longitudinal and
transverse models also turns out to be quite significant, perhaps indicating their relative
importance in a more complex combined model.
The paper is set out as follows. In Section 2 a brief review is presented of the time-

domain formalism connecting pressure and volume flow through the input impedance and
reflection function. Section 3 deals with the two lip models in the context of the didjeridu
model. A short discussion of the numeric aspects of the simulation is given in Section 4,
and the results discussed in Section 5. Conclusions are presented in Section 6.

2. Input Impedance and Reflection Function

To begin the treatment of the didjeridu, we first note that we are primarily interested in
calculating the pressure and volume flow at the mouth end of the pipe as a function of time
(p(t) and U(t) respectively). In the frequency domain these quantities are related simply
by the acoustic input impedance Z(ω) (ω = 2πf ). However, as the lip dynamics are (so
far) most conveniently modelled in the time domain, the relationship between pressure and
volume at the mouthpiece is more complicated, requiring lengthy calculation of the Green
function. Schumacher (1981) developed a technically simpler approach using the reflection
function r(t), for which p(t) and U(t) are related by the integral equation

p(t) = Z0U(t) +
∫ ∞

0
r(t′)[Z0U(t − t′) + p(t − t′)] dt′, (1)

where

r(t) ≡ 1

2π

∫ ∞

−∞
Z(ω) − Z0

Z(ω) + Z0
ejωt dω. (2)

The characteristic impedance of a pipe of radius a is Z0 = ρc/πa2, where ρ and c are
the density of air and the speed of sound respectively. The input impedance Z(ω) of the
didjeridu (assuming only plane wave propagation), at angular frequency ω = 2πf , can be
written down analytically. In the idealised case of zero load impedance at the open end and
no propagation losses, the input impedance of a cylindrical pipe of physical length L0, and
hence the acoustic length L = L0 + 0.61a, is

Zideal(ω) = jZ0 tan
ωL

c
. (3)

This simple approximation provides a guide to the form of the reflection function which in
this case can be calculated exactly to give a delta function return spike:

rideal(t) = −δ(t − 2L/c). (4)

It is possible to calculate a more physically relevant reflection function which includes
thermal and viscous losses and radiation corrections at the open end; the input impedance
in this case is given by (Pratt et al. 1977)

Z(ω) = Z0
tanh α(ω) + j tan β(ω)

1+ j tanh α(ω) tan β(ω)
, (5)
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where

α(ω) = L

ca

√
ω

2ρ

[√
η + (γ − 1)

√
κ

CP

]
+

[
β(ω)a

2

]2
,

β(ω) = ωL

c
, (6)

and the various constants are

ρ = density of air,
η = coefficient of shear viscosity of air,
κ = thermal conductivity of air,

CP = specific heat of air at constant pressure,
γ = ratio of specific heats for air.
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Fig. 4. Theoretical input impedance
curve Z(ω) relative to the
characteristic impedance Z0 for a
straight pipe of length 1250mm and
radius 20mm. The fundamental
frequency occurs in this case at 68Hz.
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Fig. 5. (a) Calculated reflection function r(t) based on the input impedance Z(ω) for a straight pipe
of length 1250mm and radius 20mm. (b) An enlarged view of the return spike in Fig. 5a.
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The reflection function can be calculated numerically to high accuracy by careful quadra-
ture of equation (2). For the choice of tube parameters used here (L0 = 1250mm and
a = 20mm) the input impedance and reflection function are plotted in Figs 4 and 5 respect-
ively (all calculations were carried out at T = 20◦C). Since we are restricting ourselves to a
straight pipe the maxima in |Z(ω)| correspond to the resonant frequencies at odd multiples
of the fundamental, f1 = c/4L (68Hz in this case). The return spike of the reflection
function at t = 2L/c is more spread out than rideal(t) due to radiation corrections and
propagation losses.

3. Lip Vibration Models and Airflow Dynamics

The formalism we use to model the lip dynamics is based to a large extent, albeit with
several differences, to that developed byAdachi and Sato (1995) for the trumpet. The basic
geometry of the didjeridu model is shown in Fig. 6. The pressure inside the mouth cavity p0
is assumed to be static, while the average pressure on the surface of the lip opening plip(t)
and at the mouthpiece of the didjeridu (x = 0) p(t) vary with time. In any future study
which includes vocal tract resonances the pressure in the mouth cavity will no longer be
static. Given the symmetry of the instrument we have so far assumed the airflow in the pipe
can be treated as one dimensional. Around the lips, this is a more drastic approximation,
but allows one to relate pressure and volume flow analytically, rather than attempting to
solve the three-dimensional Navier–Stokes problem.We thus follow the standard reduction
to one-dimensional flow.
In region I the air undergoes contraction, while remaining laminar, so that energy and

momentum are conserved. In the expansion in region II the flow has a large Reynold’s
number and forms a jet, conserving only momentum and dissipating energy as heat. The
one-dimensional reduction gives the following non-linear equations for the pressures and

Mouth

(t)

cavity

Lip opening

x=L0

0.61 a

Didjeridu pipe Radius, a

End correction

II

Lips

I

x=0

Pressure p
0

p p(t)
lip

Fig. 6. Schematic of the side view of the didjeridu and lip opening, defining the blowing pressure
p0, and pressures at the mouthpiece and lip p(t) and plip(t) respectively.
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volume flow (Adachi and Sato 1995):

p0 − plip(t) = ρ

2

[
U(t)

Alip(t)

]2
+ ρd

Alip(t)

∂U(t)

∂t
, (7)

plip(t) − p(t) = ρU(t)2

[
Alip(t) − AD

A2
DAlip(t)

]
, (8)

where Alip(t) is the time dependent area of the lip opening, AD = πa2 (the cross sectional
area of the didjeridu) and d is the lip thickness. These equations will be used in conjunction
with the reflection function integral equation to determine the pressure p(t) and the volume
flow U(t).
The one-dimensional lip vibration models (Adachi and Sato 1995) separately describe

transverse and longitudinal motion. For both models the lip opening is rectangular with
breadth b: the upper and lower lips are geometrically identical and move symmetrically.
In the transverse ‘sliding door’ model (see Fig. 7a), the dynamical variable is the dis-

placement y(t) and is governed by the equation (the superscript ‘T’ denotes the transverse
case)

m
d2y(t)

dt2
= FT

damping + FT
Bernoulli + FT

restore + FT
closure, (9)

where

FT
damping = −

√
mk

Q
dy(t)/dt,

FT
Bernoulli = dbplip(t),

FT
restore = −k(y(t) − y0),

FT
closure = −kcly(t), for y(t) < 0.

In the above expressions m is the lip mass, k the spring stiffness, Q the quality factor, b
the lip breadth and y0 the equilibrium displacement. The closure force acts only when the
lips touch. The lip displacement y(t) is coupled to the pressure and volume flow equations
through plip(t) and the area of the lip opening

AT
lip(t) = 2by(t). (10)

θ2y

Sliding Door a) Swinging Doorb)

LongitudinalTransverse

Fig. 7. One-dimensional lip
models representing transverse
and longitudinal motion.
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In the longitudinal ‘swinging door’model (Fig. 7b), the equation of motion for the lip angle
θ(t) is (the superscript ‘L’ denotes the longitudinal case)

ml
d2θ(t)

dt2
= FL

damping + FL
pressure + FL

Bernoulli + FL
restore + FL

closure, (11)

where

FL
damping = − l

√
mk

Q
dθ(t)/dt,

FL
pressure = 1

2bl(p0 − p(t)),

FL
Bernoulli = dbplip(t) sin θ(t),

FL
restore = −kl(θ(t) − θ0),

FL
closure = −kcll(θ(t) − θcl), for θ(t) < θcl,

where l is the lip length, θ0 the equilibrium angle and θcl the closure angle. The time
dependent lip opening area function is

AL
lip(t) = 2bl(cos θcl − cos θ(t)). (12)

For the swinging door model an extra term, bl2dθ(t)/dt corresponding to the air swept out
by the lips, must be added to the volume flow.

4. Numerics

For a given set of parameters we are interested primarily in solving for the functions p(t)
and U(t), and thus the lip area Alip(t) over a sequence of time steps. At a given time step tn
the ODEs for the lip dynamical variables are solved to give y(tn) or θ(tn) (depending on the
model) and hence the lip area Alip(tn). A relation between p(tn) and U(tn) is obtained by
eliminating the lip pressure plip(t) from the non-linear airflow equations (7) and (8). When
combined with the discretised integral equation (1) we finally obtain a quadratic in U(tn),
from which the solutions for p(tn) and plip(tn) follow.
Apotentially time consuming aspect of the numerical solution is the quadrature required

in the calculation of the reflection function r(t). This is a crucial step in the calculation
as all the information about the pipe resonances are encapsulated in r(t) through the input
impedance Z(ω). Since we have chosen a particular set of pipe parameters (e.g. the length
and radius of the pipe was held fixed), it is far more efficient to calculate r(tn) at each
time step to high accuracy once beforehand and read the array from disk at the start of
each simulation. It was explicitly demonstrated that the quadrature precision in r(tn) had a
negligible effect on the final calculations.
Initial runs exploring the parameter space were made at a sampling rate of 125 kHz over

400ms. All data shown here are for a sampling rate of 250 kHz over 1000ms. Appreciable
differences in the results for the two step sizes occurred only in the case of unusual, and
relatively rare, oscillation regimes (i.e. unstable or chaotic oscillation); the results shown
here are stable with respect to step size.
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Table 1. Predeterminedmodel parameter values used in all
simulations

Parameter Value

Tube length L0 1250mm
Tube radius a 20mm
Lip breadth b 10mm
Lip thickness d 3mm
Quality factorQ 5
Closing angle (L model) θcl 40◦

5. Results and Discussion

In each of the models we consider there is a large number of parameters, typical of a
biomechanical problem. In Table 1 we list the non-varying parameters values used in the
simulations. The fundamental frequency of our theoretical pipe is 68Hz—the same as for
the data in Fig. 1. From the initial strobe measurements study it became clear that between
players there are considerable variations in basic lip geometry, symmetry, and motion, so
the values used are representative only. For the same reason only symmetric lip model
geometries are considered.
FollowingAdachi and Sato we assume the vibrating lip massm is inversely proportional

to the lip resonance frequency flip. That is, we write m ≡ λ/4π2flip, which accordingly
gives a spring constant k = λflip. The introduced parameter λ is then used to control the
spring constant (or stiffness), while at the same time maintaining a frequency dependence
in the mass. Here, consistency is maintained by adjusting the lip geometry such that the
geometrical mass is the same as the vibrating mass, i.e. for a constant lip breadth b and
thickness d, the lip length l is adjusted for a given λ so that m = bdlρlip (typically l is of
order 3–8mm). Thus, the parameters that are used here to control the intrinsic lip dynamics
are flip and λ. Presumably, the player has some control over lip tension and hence the
parameter flip, so it is of interest to study how the final sounding frequency varies with the
lip resonance frequency.
In adjusting the various model parameters we aim to achieve a lip motion with a sensible

area function, Alip(t). We can broadly define two regimes of lip oscillation: a sinusoidal
area function (where the lips just barely touch), and non-sinusoidal area function (where
the lips stay closed for a significant fraction of the cycle). The stroboscopic measurements
indicate a motion where the lips actually stick together, while still in combined motion, and
close for an appreciable time—for 50% of the cycle or more.
Such a half-closed cycle is very different to that in other lip-driven instruments, such

as the trumpet, sounding for the most part at higher frequencies. In order to be able to
make a direct comparison of the effect of such large closure times on harmonic generation
we consider both types of oscillations. Furthermore, we omit the closure force, which in
the trumpet simulations was added with an arbitrary spring constant of kcl = 3k. For the
sinusoidal case the closure force is in fact negligible because the relative time that the lips
are closed is short and the magnitude of the closure force induced is very small. On the other
hand, the non-sinusoidal cycle occurs in this low frequency regime precisely because the lips
stick on contact, which is opposite to the closure force defined in the trumpet simulations.
In the non-sinusoidal simulations the effect of such a ‘sticking’ force is also considered.
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(5a) Sinusoidal Lip Area Function

Detailed simulation results for typical sinusoidal area functions are shown in Figs 8 and 9
for the transverse and longitudinal models respectively. In order to avoid unusually large
lip area openings (i.e. > 100mm2), a lower blowing pressure was required in the trans-
verse model compared to that in the longitudinal model. Typical lip area openings, as
observed by Wiggins, were achieved using static mouth pressure values of p0 = 1.2 kPa
and 2.0 kPa in the transverse and longitudinal models respectively. The basic strategy for
simulation in either model was as follows: for a given lip resonance frequency, spring
constant, lip geometry (i.e. length, breadth and thickness) and blowing pressure, the
equilibrium position (θ0 or y0) was adjusted until the desired cycle was obtained (i.e.
in the sinusoidal case the lips touch for a minimal fraction of the cycle) as a steady
state. Typically, the system took about 50–100ms to settle down to its cyclic steady state
behaviour.

 

 Transverse: Sinusoidal
 p(t)/p0  U(t)/U0  Alip (t)  Spectrum

 flip = 60 Hz
 λ  = 1.00
 y0 = 2.2 mm

 fsound  = 53.0 Hz
 Amax  = 89 mm2

 Umax  = 0.99 U0

 pmax  = 1.04 p0

   

 

 flip = 65 Hz
 λ  = 1.00
 y0 = 1.90 mm

 fsound  = 56.8 Hz
 Amax  = 76 mm2

 Umax  = 0.80 U0

 pmax  = 1.04 p0

   

 

 flip = 70 Hz
 λ  = 1.00
 y0 = 1.65 mm

 fsound  = 60.1 Hz
 Amax  = 66 mm2

 Umax  = 0.66 U0
 pmax  = 1.03 p0

   

 

 flip = 75 Hz
 λ  = 1.00
 y0 = 1.47 mm

 fsound  = 61.9 Hz
 Amax  = 58 mm2

 Umax  = 0.55 U0

 pmax  = 1.02 p0

   

 

 flip = 80 Hz
 λ  = 1.00
 y0 = 1.26 mm

 fsound  = 63.8 Hz
 Amax  = 50 mm2

 Umax  = 0.45 U0
 pmax  = 1.00 p0

   

 

 flip = 85 Hz
 λ  = 1.00
 y0 = 1.07 mm

 fsound  = 65.1 Hz
 Amax  = 43 mm2

 Umax  = 0.39 U0

 pmax  = 1.00 p0

   

 

 flip = 90 Hz
 λ  = 1.00
 y0 = 0.90 mm

 fsound  = 65.8 Hz
 Amax  = 36 mm2

 Umax  = 0.34 U0
 pmax  = 1.01 p0

   

Fig. 8. Sinusoidal lip-motion simulation results (960 to 1000ms): transverse model (p0 = 1.2 kPa).
For each quantity, the plot scales are all the same (maximum values of the data set given as a guide).
The horizontal dashed lines indicate unity in the case of p(t)/p0 and zero otherwise. The log plots
(base 10) of the power spectra shown for the pressure wave all have the same scale: ranging from−11
to +2. Resonance frequencies of the pipe are shown as vertical dotted lines.
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 Longitudinal: Sinusoidal
 p(t)/p0  U(t)/U0  Alip (t)  Spectrum

 flip = 45 Hz
 λ  = 0.55
 θ0 = 26.0o

 fsound  = 70.2 Hz
 Amax  = 50 mm2

 Umax  = 0.31 U0

 pmax  = 1.02 p0

 flip = 50 Hz
 λ  = 0.55
 θ0 = 29.5o

 fsound  = 70.2 Hz
 Amax  = 51 mm2

 Umax  = 0.34 U0

 pmax  = 1.03 p0

 flip = 55 Hz
 λ  = 0.55
 θ0 = 32.5o

 fsound  = 71.0 Hz
 Amax  = 52 mm2

 Umax  = 0.36 U0
 pmax  = 1.03 p0

 flip = 60 Hz
 λ  = 0.55
 θ0 = 34.9o

 fsound  = 72.7 Hz
 Amax  = 51 mm2

 Umax  = 0.39 U0

 pmax  = 1.02 p0

 flip = 65 Hz
 λ  = 0.55
 θ0 = 36.8o

 fsound  = 75.3 Hz
 Amax  = 48 mm2

 Umax  = 0.40 U0
 pmax  = 0.98 p0

 flip = 70 Hz
 λ  = 0.55
 θ0 = 36.7o

 fsound  = 76.2 Hz
 Amax  = 40 mm2

 Umax  = 0.36 U0

 pmax  = 0.83 p0

 flip = 75 Hz
 λ  = 0.55
 θ0 = 32.1o

 fsound  = 78.1 Hz
 Amax  = 18 mm2

 Umax  = 0.17 U0
 pmax  = 0.34 p0

Fig. 9. Sinusoidal lip-motion simulation results (960 to 1000ms): longitudinal model (p0 =
2.0 kPa). For each quantity, the plot scales are all the same (maximum values of the data set given as
a guide). The horizontal dashed line indicates unity in the case of p(t)/p0 and zero otherwise. The
log plots (base 10) of the power spectra shown for the pressure wave all have the same scale: ranging
from −11 to +2. Resonance frequencies of the pipe are shown as vertical dotted lines.

In broad terms the results in this low frequency regime compare well with the analogous
simulations carried out for the trumpet. It appears that the steady state condition in the
longitudinal case can be supportedwith relatively low lip resonance frequencies flip—in the
case shown down to at least 45Hz. The sounding frequency fsound in the longitudinal case is
correspondinglymuch higher thanflip, especially at low frequency (see Fig. 12). In contrast,
the transverse model has the opposite behaviour—relatively high lip resonance frequencies,
with fsound < flip in general. The lip resonance frequencies shown approximately define
the operating limits of the two models for the set of parameters in Table 1.
The relative magnitude of fsound and flip in both models agrees with the predictions of

linear theory (Fletcher 1993; Adachi and Sato 1995) where the longitudinal valve (+,−)

acts as a generator only above the resonance frequency of the pipe and valve resonance
frequency, while the transverse valve (+,+) acts only below these two frequency limits.
Harmonic generation in a lip-driven instrument occurs due to the non-linear airflow

around the lips, in tandem with the natural resonances of the linear acoustic device
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 Transverse: Non-sinusoidal
 p(t)/p0  U(t)/U0  Alip (t)  Spectrum

 flip = 55 Hz
 λ  = 1.00
 y0 = 0.20 mm

 fsound  = 54.5 Hz
 Amax  = 22 mm2

 Umax  = 0.27 U0

 pmax  = 0.44 p0

 flip = 60 Hz
 λ  = 1.00
 y0 = 0.20 mm

 fsound  = 58.3 Hz
 Amax  = 36 mm2

 Umax  = 0.42 U0

 pmax  = 0.86 p0

 flip = 65 Hz
 λ  = 1.00
 y0 = 0.30 mm

 fsound  = 61.2 Hz
 Amax  = 41 mm2

 Umax  = 0.43 U0
 pmax  = 0.99 p0

 flip = 70 Hz
 λ  = 1.00
 y0 = 0.30 mm

 fsound  = 63.8 Hz
 Amax  = 37 mm2

 Umax  = 0.32 U0

 pmax  = 1.00 p0

 flip = 75 Hz
 λ  = 1.00
 y0 = 0.40 mm

 fsound  = 65.5 Hz
 Amax  = 33 mm2

 Umax  = 0.26 U0
 pmax  = 1.00 p0

 flip = 80 Hz
 λ  = 1.00
 y0 = 0.40 mm

 fsound  = 66.3 Hz
 Amax  = 27 mm2

 Umax  = 0.22 U0

 pmax  = 1.00 p0

 flip = 85 Hz
 λ  = 1.00
 y0 = 0.50 mm

 fsound  = 66.5 Hz
 Amax  = 26 mm2

 Umax  = 0.22 U0
 pmax  = 1.00 p0

Fig. 10. Non-sinusoidal lip-motion simulation results (960 to 1000ms): transverse model (p0 =
1.2 kPa) with significant closure fractions (30% to 40%). For each quantity, the plot scales are all the
same (maximum values of the data set given as a guide). The horizontal dashed line indicates unity
in the case of p(t)/p0 and zero otherwise. The log plots (base 10) of the power spectra shown for the
pressure wave all have the same scale: ranging from −11 to +2. Resonance frequencies of the pipe
are shown as vertical dotted lines.

(the maxima in the input impedance). The details of harmonic generation will depend
on the dynamics of the lips and the resulting non-linear airflow. For the case of the straight
pipe didjeridu, one would expect the odd harmonics, corresponding to the maxima of the
input impedance, to dominate, however, in the actual spectra (see Fig. 1) one also finds the
generation of even harmonics which is stronger than the theoretical input impedance curves
would suggest, but still significantly weaker than the odd harmonics. It is interesting to note
that, in general, the generation of even harmonics is stronger in the transverse model, and
the variation with model parameters of the character of harmonic generation is greater.

(5b) Non-sinusoidal Lip Area Function

Within the one-dimensional models considered here, the relatively large closure times
required for the half-closed cycle, together with the combined motion upon closure, can
be achieved by allowing the lips to pass through each other, with non-zero velocity during
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 Longitudinal: Non-sinusoidal
 p(t)/p0  U(t)/U0  Alip (t)  Spectrum

 flip = 40 Hz
 λ  = 0.55
 θ0 = 26.0o

 fsound  = 69.6 Hz
 Amax  = 29 mm2

 Umax  = 0.20 U0

 pmax  = 1.07 p0

 flip = 45 Hz
 λ  = 0.55
 θ0 = 28.5o

 fsound  = 70.0 Hz
 Amax  = 31 mm2

 Umax  = 0.23 U0

 pmax  = 1.06 p0

 flip = 50 Hz
 λ  = 0.55
 θ0 = 29.5o

 fsound  = 70.4 Hz
 Amax  = 33 mm2

 Umax  = 0.24 U0
 pmax  = 1.06 p0

 flip = 55 Hz
 λ  = 0.55
 θ0 = 30.5o

 fsound  = 71.0 Hz
 Amax  = 35 mm2

 Umax  = 0.26 U0

 pmax  = 1.05 p0

 flip = 60 Hz
 λ  = 0.55
 θ0 = 31.5o

 fsound  = 72.1 Hz
 Amax  = 37 mm2

 Umax  = 0.31 U0
 pmax  = 1.04 p0

 flip = 65 Hz
 λ  = 0.55
 θ0 = 32.5o

 fsound  = 73.8 Hz
 Amax  = 40 mm2

 Umax  = 0.38 U0

 pmax  = 1.03 p0

 flip = 70 Hz
 λ  = 0.55
 θ0 = 33.5o

 fsound  = 75.8 Hz
 Amax  = 40 mm2

 Umax  = 0.44 U0
 pmax  = 1.00 p0

Fig. 11. Non-sinusoidal lip-motion simulation results (960 to 1000ms): longitudinal model (p0 =
1.2 kPa) with significant closure fractions (30% to 40%). For each quantity, the plot scales are all the
same (maximum values of the data set given as a guide). The horizontal dashed line indicates unity
in the case of p(t)/p0 and zero otherwise. The log plots (base 10) of the power spectra shown for the
pressure wave all have the same scale: ranging from −11 to +2. Resonance frequencies of the pipe
are shown as vertical dotted lines.

closure. The equilibrium position in both models was adjusted until an approximately
half-closed cycle was obtained. The detailed results for these simulations are shown in
Figs 10 and 11 for the transverse and longitudinalmodels respectively. Typically, the closure
fractions shown (around 40% of the cycle) represent the maximum one could achieve
and still maintain a steady state motion. The summary of sounding frequency versus lip
resonance frequency is given in Fig. 12 in conjunction with the sinusoidal cycle results.
In the non-sinusoidal cycle one obtains, perhaps not surprisingly, a more complex pres-

sure and volume flow waveform. The third harmonic in particular seems to be slightly
enhanced and there is a clearer suppression of even harmonics (in all power spectra plots
shown in Figs 8–11 the scale is the same). Higher frequency harmonics are slightly stronger
in the non-sinusoidal case. The steady state motion is also supported at slightly lower
frequencies to that of the sinusoidal case in both longitudinal and transverse models.
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Fig. 12. Summary of sounding frequency versus lip resonance frequency for the simulations shown
in Figs 8–11. Sinusoidal cycle results are shown as squares and those of the non-sinusoidal cycle as
triangles. The horizontal dashed line is the fundamental resonance for the pipe and the fsound = flip
line is shown as a guide.

Again the plot of sounding frequency versus lip resonance frequency shows qualitative
agreement with linear theory, even for such an extreme cycle. However, perhaps the most
striking feature of the non-sinusoidal cycle results can be seen in Fig. 12—while there is a
definite increase in sounding frequency for the non-sinusoidal cycle in the transversemodel,
there is virtually no change in the longitudinal model. This difference is perhaps due to the
fact that the motion in the longitudinal model, with non-zero velocity during closure, has
a significant component along the axis of airflow such that, during closure, the acoustic
component of the volume flow is dominated by that induced by the lip motion, bθ̇/2.
The possible effect of a sticking collision was studied by enforcing a rapid increase in

the Q factor on closure, effectively halting the motion by damping. The universal effect
of inducing such a damped cycle was the strangulation of virtually all harmonics resulting
in a somewhat unnatural, pure sound wave. This effect occurred in Q-damped cycles for
both transverse and longitudinal models. Given that such harmonic suppression is not an
observed effect, these observations may be indicative of the importance of the combined
motion of the lips during closure.

6. Conclusion

The work presented here represents a first step towards a realistic time-domain simula-
tion of the didjeridu. Low frequency harmonic generation was studied for both sinusoidal
and non-sinusoidal lip area functions. In working towards a more complete treatment and
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understanding of the dynamic acoustics of this instrument, several significant improve-
ments must be made. To model in more detail a non-sinusoidal lip cycle with relatively
large closure times, the one-dimensional models employed here should be extended to two
dimensions (Adachi and Sato 1996). Such calculations, with an even larger parameter space
than presented here, should only be carried out with quantitative guidance from a compre-
hensive stroboscopic analysis (as reported in Copley and Strong 1996 for the trombone),
and measurements of blowing pressure (as reported in Fletcher and Tarnopolsky 1999 for
the trumpet). Given the low frequency domain of lip oscillation, it may transpire that a
two-mass lip model might be more appropriate in analogy with vocal-fold motion at low
frequency (Ishizaka and Flanagan 1972).
Once the lip dynamics are better understood, the next important component of the sound

production system can be included, namely the coupling to the vocal tract, which gives
rise to broad and relatively strong formants in the spectrum starting at about 1500Hz. Such
calculations would involve the introduction of a variable volume vocal tract cavity coupled
to the valve/pipe system, operating at its half-closed cycle, in order to mimic the many ways
the vocal tract is changed during play.
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