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Summary 

The efficiencies obtained in curve fitting by the method of grouping are discussed 
.In terms of two parameters K2' K3 which specify the departure from uniform spacing. 
For polynomials of the first and second degree the efficiencies practically always exceed 
O· 7, but the efficiencies for the third degree polynomial may be less than this value if 
the spacing is markedly non-uniform. 

1. INTRODUCTION 

In an earlier paper (Guest 1952) a method of fitting polynomials to unequally 
spaced observations was described, the method being named the method of 
grouping. Although intended for use in cases where the spacing was non
uniform, it was only possible at that time to discuss the efficiencies for cases in 
which the variation from uniformity was random and the standard errors did· 
not differ markedly from the errors in the equally spaced case. 

Since the publication of this paper a method of treating cases in which the 
spacing is non-uniform has been devised, the departure from uniform spacing 
being characterized by two parameters X2' Xa. The behaviour of the standard 
errors in the least squares problem has been described in terms of the two para
meters (Guest 1953). In the present paper the calculation of the efficiencies of 
the values obtained by the method of grouping will be carried out in terms of 
these same parameters. 

II. CALCULATION OF THE STANDARD ERRORS 

The coefficients bpj in the fitted polynomial 

p 

up(m) = ~ bp.mi 
j=o ~ 

are determined in the method of grouping by the solution of the "normal" 
equations 

~w k(m){y(m) -.-£ bpjm1} =0, 
r 3=0 

k =0 to p, • • • • • • • • •• (1) 

where the y(m) represent the observations and the W k(m) are step functions. The 
methods of solving these equations consist in eliminating in turn the coefficients 
b po, b pH etc. The most convenient method is some variant of what Dwyer 
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(1951) calls the method of single division. Equations (1) are in effect converted 
to the set 

~Wk.k(X){Y(X)-rbpja:3}=O, k=O to p, ...... (2) 

where the functions W u(x) are linear combinations of the functions W k(X) 
sucb that 

~Wu(X)xm=O, m<k ....................... (3) 
a: 

W u(x) may be expanded in the form 
k-l 

W u(x) = W k(X) + ~ !Xkm W m.m(x), ...•..... (4) 
m=O 

and it follows from (3) that 

!Xkm= - ~Wk(x)xm/~Wm.m(x)xm • ........ (5) 

The value !Xu is defined to be -1. From the coefficients !Xkm the coefficients 
~ km defined by the equations 

k 
Wu(X) = ~ ~kmWm(x) .................. (6) 

m=O 

may be derived. In fact 
k-l 

~km= ~ !Xkr~rm' .................... (7) 
'f=m 

For the coefficient of degree p, equation (2) with k=p gives 

bpp=~Wp.p(X)Y(X)/~WP.p(X)XP, 
a: a: 

and so 

(j2(bpp)/(j2(y)=~[ 1¥p.p(X)f/[;Wp.p(X)Xpf • ••.....•.. (8) 

The expression ;[ WP.p(X)] 2 can be evaluated from (6) when the values of 

~Wk2(X), ~Wk(x)Wm(x) are known. 
a: a: 

If the efficiencies of the other coefficients bpj or the efficiencies of the fitted 
values are required, it is necessary to complete the inversion of the matrix 
~W k(X)xm~ _ :funct~ons W k.P(X) may be defined for which 

~Wk.P(X)xm=O, m<p, m=l=k, •••••••• (9) 
a: 

and then 

- LW k.P(ilJ)y(ilJ) =~ t Akm W m(x)y(x), ••.•••.• (10) 
bpk- ~w (x)rok a: m=O • t.p 
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where AkID are the elements of the inverse matrix. These elements can be built 
up from the quantities ~jk,~Wj.j(~)mt in the following way. Wk.P(~) is expanded 
in the form 

W 10 p(~) = W 10 k(~) + f otkm W m.p· (~), 
. • k+l . 

where, from (9) 

~W k.k(~)a;m ~W k.k(~)a;m 
otkm= - ~W m·.p(~)a;m = - ~W m.m(~)a;m· 

Therefore 

Wk.p(~)/~W k'P(~)mt=[ Wk.k(~)-:{~W k.k(~)a;m }~::.:(~:~ ]/~w k.k(~)mi 
II) 

= [~~kr Wr(~) -;:{ ~W k.k(~)a;m }~Amr Wr(~)] I~w k.k(~)~1: 
=~Akr Wr(~)' 

'f 

Hence 

Akr= [~kr-k~l Amr{ ~Wk.k(~)a;m }]/~w k.k(~)mt. .••••••.• (11) 

The standard error of the coefficient b pk is given by 

0'2(bpk)/0'2(y)=~{ fAkmWm(~)}2, ............ (12) 
II) m=O 

and the standard error of the fitted value by 

0'2[Up(~)] =E[~bpja;3] 2 = ~ ~;~E[bpjbpk]' 
j 3, k 

or 

0'2[Up(~)]/0'2(y)= ~ ~;mt~{~A;rWr(~)}{~AkSW,(~)}, .. ;. (t3t 
j, k II) 'f' B 

The method of matrix inversion outlined above is the same as that described: 
by Fox and Hayes (1951), but they deal with a general matrix for which the· 
functions. Wj(~) are not defined. The present discussion brings out the, 
significance of the intermedi~te terms occurring in their method. In the usual! 
method of calculation the quantities are arranged in a square array, as shown 
below: 

~WO.O ~WO.~ ~WO.~2 ~Wo.oX3 
(-) otl0 ~Wl.lx ~Wl.1X2 ~Wl.lX3 

(- )ot20 (- )ot21 ~W2.2X2 ~W2.#3 
(-)ot311 (- )ot31 (- )ot32 ~W3.3~3. 
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The lower triangular matrix (-)~ is then inverted; the elements of _~-1 are 
the qua,ntities ~km' as is clea,r from (7). Finally the rows Ajk are built up in turn, 
beginning with Apk' However, when a large number of inversions have to be 
made it is more convenient to tabulate the IX km, ~km' etc., in columns and perform 
the same calculations for all the matrices at the same time. 

It is illuminating to put some of the above equations into matrix notation. 
The quantities ~W/w);:vk form a matrix W, the quantities IXjk a lower triangular 

a: 
matrix IX, and the quantities ~Wj./w);:vk an upper triangular matrix <.u. Then, 

- a: -
from equation (4) 

or 

k-l 
~Wk.k(m)wr=~Wk(W)wr+ ~ IXkm~Wm.m(w)wr, 
a: a: m=O a: 

W=-IX<.u. 

Then from equation (7) 

~~=-I, 

and so 
~=_~-l. 

Finally equation (11) may be written 

:and so 

:and 

UlkkAkr=~kr -~<.ukmAmr' 
m 

~ =c:>~, 

~ =c:>-l~ = -c:>-1~-1 
=W-l. 

III. EFFICIENCIES IN TERMS OF THE PARAMETERS "2' "3 
The symbol e: will be used to denote the variable which takes the integral 

Qr half-integral values from +t(n-1) to -t(n-1) at the points of observation, 
where n is the number of observations. In the method of grouping (Guest 1952, 
Section III) 

~W·e:m [l-IXJ.m+1-~J.m+l+ .... . ],m+j even, (14) nm+l } 
J (m+1)2m .. 

€ =0, m +j odd, 

where IXj' ~j' etc., are the parameters which determine the location of the groups. 
Equation (14) can be written in the form 

nm+1 
~Wje:m I I 1 \o..,y,jm· 
€ 
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The quantities tjljm may be readily calculated from the values of the parameters 
(Xj' ~j, etc., given in the previous paper (Guest 1952). The numerical values of 
tjljm are listed in Table 1. If the variable e =2eJn is introduced, then 

n-r~::w;em=tjljmJ(m+1) . .............. (15) 

In accordance with the treatment given in an earlier paper (Guest 1953r 
p. 132), the independent variable I1J is replaced by the variable ~, where 

~=e+X2n-l(e2-An2)+2xan-2(ea_~n2e), .... (16) 

and X2, Xa are the parameters which specify the departure from uniform spacing. 

Now 

12n-l~ =6e+x2(3e2-1) +3xa(eS-e), 

and so 

n-l~Wj(12n-l~) =3tj1jl +x3(itjlja -~tjljl) +x2 ( tjlj2 -tjljo) 

(36 ) 2(9 18 ) n-l~Wj(12n-l~)2 =12tj1j2 +xa 5tj1j4 -12tj1j2 +xa '7 tjlj6-fj tjlj4 +3tj1j2 

+X22(~ tjlj4 -2tj1j2 +tjljO ) 

+x2[(9tj1)a -6tj1jl) +Xa(3tj1j5 -6tj1ja +3tj1jl)]' 

2(81 81 ) n-l~Wj(12n-l~)3 =54tj1ia+xa(54tj1j5 -81tj1ja) +xs 4" tjlj7 -54tj1ji +2" tjlja 

a(27 81 27 27) 
+xa 10tjlj9-Stjlj7+2tj1j5-4"tjlja 

[ ( 81 45 63 9)] +X22 (27tj1j5-27 tj1ia+9tj1jl) +xa gtjlj7- 2tj1j5+4 tjlja- 2tj1jl 

[(324 ) (324 432 ) +X2 Ttjlj4 -36tj1j2 +xa Ttjlj6- Ttjlj4 +36tj1j2 

+xa2(9tj1j8 -27 tjlj6 +27tj1j4 -9tj1j2) 

2(27 27 )] +x2 7tj1j6-5tj1j4+3tj1j2-tjljO . 

Using Table 1, it is a simple matter to calculate ~Wj~m as a function of 
X2, XS' These expressions are tabulated in Table 2, together with the quantities 
~Wj2, ~Wj W k , which are needed for the evaluation of the standard errors. 
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1\120 
~22 
~24 
~26 
1\128 

-0·2943 
+0·385331 
+0·669354 
+0·809080 
+0· 885873 

n-1:EWo 
n-1:EW1 

n-1:EW2 

n-1:EW. 

4n-2:EWO!; 
4n-2:EW1!; 

4n-:3:EW2!; 
4n-2:EW.!; 

12n-8:EWo!;2 
12n-8:EW1!;1 

12n-8:EW2!;2 
!'2n-3:E W.!;2 

32n-':EWo!;' 
32n-':Ew1!;a 

32n-':E Ws!;" 
32n-':E W.1;3 

n-1:EWo2 

n-1:EWl 

n-1:EW2' 

n-1:EW38 

n-1:EWoW2 

n-1:EW1W3 

P. G. GUEST 

TABLE 1 

THE QUANTITIES I\Ijm 

, 
p=I,2 

1\111 +0·888889 

1\113 +0·987654 
+0·998628 

417 415 I +0·999848 

419 +0·999983 

1 

° -0·2943 

° 
° 

TABLE 2 

:EWj!;m 

p=3 

+0·502270 
+0·752265 
+0·876695 
+0·938627 
+0·969453 

0·888889-0· 19753IK. (p=I,2) 
0·502270-0·063069)(3 (p=3) 
O· 226544)(2 

-0·514459+0·211856)(3 

1\131 
1\133 
43. 
437 
439 

1-0· 400000)(.+0· 057143)(.2+0· 066667)(22 

)(2[0·296296-0·021948)(3] (p=I,2) 
)(2[0· 313064-0· 03139IKa] (p=3) 

I 

O· 385331 +0· 01628IK.-0· 017786)(,2 +0· 011656Kal 

)(2[0·121108-0· 018177)(.] 

)(2[0· 533333-0· 076190)(. +0· 008466)(12] 
0· 752265-0· 251702)(,+0· 039489)(32-0. 002379x.3 

+)(,2[0·145927-0·011742)(.] 

-0·514459 
-0·181496 
+0·078761 
+0·275442 
+0·425384 

)(.[0· 546337 -0·120582)(3+0· 01356IK.2 +O· 017713)(11 ] 

-0·181496+0· 351005)(3-0.111592)(.2+0.012001)( •• 
+)(,'[0· 044385 +0· 008764x.] 

0·666667 
0·2945 
0·7265 
0·7894 

-0·2943 
-0·0417 

(p=I,2) 
(p=3) 

The standard errors of the coefficients b pp can be calculated for selected 
values of X2' ~X3 from the values ~Wj~k, using the scheme developed in Section II. 
The efficiencies can then be calculated by comparison with the corresponding 
'errors obtained for the least squares curve in the earlier paper. The efficiencies 
.obtained in this way for the coefficients bw b22, b33, are listed in Table 3. 
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In Table 4 the efficiencies of the fitted values have been· tabulated for 
various values of X 2, X3' For the second and third degree polynomials the 
variable used is 

k=e-x2/5, 

which was introduced in the treatment of the least squares standard errors 
(Guest 1953, equation (41)). The range of interpolation, that is, the range of 
values of k within which the observations occur, is roughly from k= +1 to 
k=-l. 

TABLE 3 

EFFICIENCIES OF THE COEFFICIENTS b PfJ 

I 
I 

bll b" b .. \ x. 0 0·5 1·0 1·5 2·0 0 0·25 0·5 0·75 1·0 0 0·25 0'5 

-1·0 0·911 0·891 0·871 0·853 0·835 0·853 0·801 0·751 0·705 0·660 0·813 0·641 0·498 
-0·8 0·909 0·887 0·866 0·847 0·828 0·872 0·819 0·768 0·720 0·675 0·861 0·692 0·548 
-0·6 0·906 0·882 0·860 0·839 0·819 0·887 0·834 0·783 0·734 0·687 0·897 0·735 0·593 
-0·4 0·901 0·876 0·853 0·830 0·809 0·897 0·844 0·793 0·744 0·696 0·921 0·769 0·632 
-0·2 0·896 0·869 0·844 0·820 0·798 0·902 0·851 0·801 0·751 0·703 0·934 0·793 0·663 

0 0·889 0·860 0·833 0·808 0·784 0·902 0·853 0·804 0·755 0·707 0·937 0·807 0·685 
0·2 0·880 0·849 0·821 0·794 0·769 0·897 0·851 0·803 0·755 0·708 0·929 0·810 0·699 
0·4 0·869 0·836 0·806 0·777 0·751 0·888 0·844 0·799 0·752 0·705 0·913 0·804 0·702 
0·6 0·855 0·820 0·788 0·758 0·731 0·874 0·833 0·790 0·745 0·698 0·888 0·789 0·696 
0·8 0·839 0·801 0·767 0·736 0·707 0·855 0·818 0·777 0·733 0·688 0·856 0·765 0·681 
1·0 0·818 0·779 0·743 0·710 0·680 0·833 0·799 0·760 0·718 0·673 0·817 0·733 0·657 

1·2 0·794 0·752 0·715 0·681 0·808 0·776 0·739 0·698 0·653 0·770 0·693 0·626 
1·4 0·764 0·721 0·682 0·780 0·749 0·713 0·672 0·628 0·715 0·645 0·587 
1·6 0·729 0·684 0·644 0·751 0·719 0·683 0·641 0·596 
1·8 0·688 0·642 0·602 0·719 0·686 0·647 0·604 0·556 
2·0 0·640 0·594 0·554 0·687 0·649 0·606 0·558 0·507 

---- -------- -_ ... _-

In a practical example the efficiencies may be expected to differ somewhat 
from the values given in Tables 3 and 4, because of the neglect in the present 
discussion of higher parameters X 4, X5' etc. In Table 5 are shown the efficiencie8 
of the coefficients bpp for the three examples discussed in an earlier paper (Guest 
1953), with the values calculated from the parameters X2, X3 in brackets. It is 
seen that there is in each case a reasonable agreement between the two values for 
the efficiency. 

IV. CONCLUSION 

From Table 3 it will be seen that the efficiencies of the coefficients bPb are 
always less than the corresponding efficiencies in the equally spaced case (X2 =0, 
X3 =0), except for the coefficient bu when X3 is negative, where the efficiency may: 
be slightly higher. .As a consequence, the value of 90 per cent. suggested in the 
earlier paper for the efficiencies must be regarded as an upper limit to the 
efficiencies which would be found in any practical example. 
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I x.1 

~ 1.1 

1·4 
1·2 
1'0 
0·8 
0'6 
0-4 
0·2 
0 

I x.1 

x, 

It/ 
1·4 
1-2 
1·0 
0'8 
0·6 
0·4 
0-2 

0 
0·2 
0·4 
0'6 
0-8 
1-0 
1·2 
1-4 

I x.1 

x, 

It I 
1·4 
1-2 
1-0 
0·8 
0·6 
0-4 
0·2 

0 
0·2 
0'4 
0·6 
0·8 
1'0 
1-2 
1·4 

P. G. GUEST 

TABLE 4 
EFFICIENCIES OF THE FITTED VALUES 

First Degree Polynomial 

0 0·5 

-1,0 -0,5 0 +0·5 +1'0 -1'0 -0'5 0 +0'5 +1'0 

0'923 0'917 0'903 0'880 0'840 0·914 0'906 0'891 0·865 0·822 
0·927 0·920 0·908 0'885 0'847 0'918 0·910 0'895 0·871 0'830 
0'932 0'926 0'914 0·893 0'857 0'924 0'916 0·903 0'879 0'840 
0'940 0'935 0'924 0'905 0·873 0'933 0'926 0·914 0'893 0·857 
0·952 0'948 0'939 0'924 0'897 0·946 0'941 0'931 0-913 0·884 
0·969 0·967 0'961 0'951 0'933 0'966 0·962 0-955 0·944 0·924 I 0'990 0'989 0'987 0·983 0·977 0'988 0'987 0·985 0-1)81 0'974 
1 1 1 1 1 1 1 1 1 1· 

Second Degree Polynomial 

0 0·5 

-1·0 -0,5 0 +0·5 +1·0 -1,0 -0·5 0 +0·5 +1·0 

(kx. negative) 
0'868 0'898 0·903 0'880 0·833 0·835 0-871 0'887 0-877 0'838 
0·879 0'902 0'904 0'881 0'835 0·854 0·883 0·896 0·885 0·846 
0·901 0·911 0·908 0'884 0'838 0·893 0·905 0·911 0·898 0·858 
0·940 0·930 0-918 0·893 0'848 0-950 0-942 0'935 0·919 0'879 
0'952 0'952 0'939 0'915 0'874 0'938 0·951 0'950 0'940 0-911 
0·924 0·946 0·950 0'938 0'912 0'886 0'914 0·926 0·927 0'921 
0'904 0'935 0'946 0'941 0·925 0·863' 0'896 0'911 0'911 0'904 

(kx. positive) 
0·898 0'931 0'943 0'939 0'924' 0'861 0·898 0'916 0'918 0-906 
0'904 0'935 0'946 0'941 0-925 0·876 0·913 0'934 0'936 0'920 
0'924 0'946 0'950 0'938 0'912 0'911 0·941 0'951 0·942 0·910 
0·952 0'952 0'939 0-915 0'874 0'950 0·948 0'928 0'895 0'848 
0·940 0·930 0·918 0-893 0'848 0·922 0·902 0'877 0·842 0·794 
0'901 0'911 0'908 0'884 0'838 0'865 0'862 0·848 0-819 0·774 
0·879 0'902 0'904 0'881 0·835 0·833 0-845 0-839 0·813 0·768 

1·0 

-1'0 -0'5 0 +0·5 +1'0 

0'888 0·875 0·854 0'821 0-772 
0·893 0 ·881 0 ·860 0 ·829 0 ·781 
0·900 0·889 0'870 0·840 0-794 
0'912 0'901 0'884 0·857 0-815 
0'929 0'920 0·906 0'883 0·848 
0-954 0·949 0'939 0'924 0·899 
0·984 0·982 0·979 0·973 0'9114 
1 1 1 1 1 

1-0 

-1'0 -0'5 0 +0'5 +1-0 

0·726 0-757 0-775 0-775 0·748 
0·766 0·786 0·799 0·7960·765 
0·855 0·847 0'844 0·831 0·795 
0'962 0'948 0'927 0'899 0'852 
0·872 0·914 0'943. 0·957 0·942 
0·779 0'815 0'840 0'859 0'877 
0·750 0·785 0'807 0'816 0'810 

0·754 0·793 0·821 0-834 0-826 
0·786 0-831 0·865 0'883 0'876 
0·858 0'902 0'929 0'937 0-918 
0-942 0·946 0-927 0'894 0'848 
0-894 0'860 0·819 0·775 0-725 
0·786 0·769 0-743 0·708 0·663 
0-726 0·725 0-710 0·683 0·641 

0-868 0·898 0'903 0·880 0·833 0-818 0'838 0'837 0'813 0-768 I 0·697 0·705 0'697 0-675 0-635 

ThIrd Degree Polynomial 

0 0-5 

-1-0 -0-5 0 +0·5 +1·0 -10() -0-5 0 +0·5 +1·0 

(kx. negative) 
0·830 0'910 0'926 0·887 0-805 0·625 0·747 0·818 0'826 0-779 
0-842 0'909 0'919 0·881 0'802 0'648 0·756 0·823 0·832 0·787 
0-870 0·902 0·905 0'871 0·802 0·736 0·790 0'836 0'842 0'802 
n·874 0'889 0'887 0'870 0-834 0·872 0'897 0-881 0-866 0-834 
0·844 0'902 0'917 0·914 0·901 0·711 0·835 0·895 0'903 0·884 
0·852 0-914 0·936 0·932 0·908 0·695 0·816 0'891 0'918 . 0·911 
0'879 0·925 0·942 0·936 0·918 0·759 0·858 0'919 0·942 0'939 

(kx. positive) 
0·898 0'931 0·943 0·939 0·924 0·889 0·927 0'938 0·923 0·886 
0'879 0·925 0·942 0'986 0'918 0·907 0'915 0·903 0'873 0'824 
0'852 0'914 0·936 0·932 0·908 0·821 0·860 0·871 0·864 0'836 
0·844 0·902 0'917 0'914 0·901 0·767 0'834 0'872 0·891 0·894 
0'874 0·889 0'887 0·870 0·884 0'820 0'874 0'888 0'875 0·848 
0'870 0·902 0·905 0·871 0'802 0·887 0'879 0'850 0·795 0'714 
0'842 0'909 0'919 0·881 0·802 0·800 0·886 0·826 0·774 0·688 
0·830 0·910 0·926 0·887 0'805 0·752 0'813 0·817 0·772 0·687 
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TABLE 5 

EFFIcmNOIES IN PRACTICAL EXAMPLES 

Values calculated from Xa. X3 in brackets 

XII X8 bll bIB 

0·015 -0·642 O' 878 (0' 906) O· 878 (0· 881) 
0·345 +0·740 0·825 (0·818) 0·824 (0·806) 
0·221 -0·392 0·884 (0'890) 0·839 (0'850) 

369 

baa 

0·902 (0'879) 
O· 751 (0· 739) 
0·823 (0,788) 

The effect of departures from uniform spacing may be roughly summarized 
in the following way: 

Departure from 
Uniformity 

Slight I x21, I xal <0 ·25 
Moderate I x21, I x31 <0·5 
Pronounced I x21, I xal <0 ·75 

bn 

>0·875 
>0·850 
>0·800 

Efficiency 
b22 

>0·875 
>0·840 
>0·750 

bas 

>0·900 
>0 ·750 
>0·550 

Since the efficiency of the fitted value 'U/J(x) is at worst only slightly less than 
the efficiency of the coefficient b PP' the limiting efficiencies of the fitted values will 
also be given roughly by the above table. However, from Table 4 it will be seen 
that the efficiency of the fitted value vari,es quite rapidly with the location of the 
point (i.e. the coordinate k) in the second and third degree polynomials when 
the departure from uniformity becomes pronounced. 

The value that would be considered acceptable for the efficiency depends 
very much on the purpose for which the curve is required. If the curve is to 
summarize the results of 6 months' research, then clearly the least squares curve 
should be calculated. If a large number of curves are to be plotted, then the 
method of grouping may well be more appropriate because of the saving in time. 
Jeffreys' (1948) statement on this point is worth quoting in full. 

"If [the estimate] a' has an efficiency of 50 per cent., a' will habitually 
differ from [the least squares estimate] a by more than the standard error of the 
latter. This is very liable to be serious. No general rule can be given; we 
have in particular cases to balance accuracy against the time that would be 
needed for an accurate calculation, but as a rough guide it may be said that 
efficiencies' over 90 per cent. are practically always acceptable, those between 
70 and 90 per cent. usually acceptable, but those under 50 per cent. should be 
avoided." 

Cases in which I x21 or I x31 exceed unity will be very rare. It can be said 
then that the efficiencies for polynomials of the first and second degree fall into 
the " usually acceptable" category, while for the third degree polynomial the 
efficiencies will only fall into this category when the departure from uniformity 
is not very pronounced. 

For the fourth degree polynomial the representation in terms of the two 
parameters X2' X3 is not very satisfactory, but a calculation of the standard errors 
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for the case X3 =0 has shown that the drop in efficiency as I X2 I increases is 
even more pronounced than is the case with the third degree polynomial. Conse
quently the method of grouping should not be used with a polynomial of the 
fourth degree unless the spacing is roughly uniform. 
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