EFFICIENCIES IN THE METHOD OF GROUPING

By P. G. Guest*
[Manuscript received July 27, 1953]

Summary

The efficiencies obtained in curve fitting by the method of grouping are discussed in terms of two parameters x_{2}, x_{3} which specify the departure from uniform spacing. For polynomials of the first and second degree the efficiencies practically always exceed $0 \cdot 7$, but the efficiencies for the third degree polynomial may be less than this value if the spacing is markedly non-uniform.

I. Introduction

In an earlier paper (Guest 1952) a method of fitting polynomials to unequally spaced observations was described, the method being named the method of grouping. Although intended for use in cases where the spacing was nonuniform, it was only possible at that time to discuss the efficiencies for cases in which the variation from uniformity was random and the standard errors did not differ markedly from the errors in the equally spaced case.

Since the publication of this paper a method of treating cases in which the spacing is non-uniform has been devised, the departure from uniform spacing being characterized by two parameters x_{2}, x_{3}. The behaviour of the standard errors in the least squares problem has been described in terms of the two parameters (Guest 1953). In the present paper the calculation of the efficiencies of the values obtained by the method of grouping will be carried out in terms of these same parameters.

II. Calculation of the Standard Errors

The coefficients $b_{p j}$ in the fitted polynomial

$$
u_{p}(x)=\sum_{j=0}^{p} b_{p j} x^{j}
$$

are determined in the method of grouping by the solution of the " normal" equations

$$
\begin{equation*}
\sum_{r} W_{k}(x)\left\{y(x)-\sum_{j=0}^{p} b_{p j} x^{j}\right\}=0, \quad k=0 \text { to } p, \ldots \ldots \ldots \ldots \tag{1}
\end{equation*}
$$

where the $y(x)$ represent the observations and the $W_{k}(x)$ are step functions. The methods of solving these equations consist in eliminating in turn the coefficients $b_{p 0}, b_{b 1}$, etc. The most convenient method is some variant of what Dwyer

[^0](1951) calls the method of single division. Equations (1) are in effect converted to the set
\[

$$
\begin{equation*}
\sum_{x} W_{k . k}(x)\left\{y(x)-\Sigma_{j} b_{p j} x^{j}\right\}=0, \quad k=0 \text { to } p \tag{2}
\end{equation*}
$$

\]

where the functions $W_{k . k}(x)$ are linear combinations of the functions $W_{k}(x)$ such that

$$
\begin{equation*}
\sum_{x} W_{k . k}(x) x^{m}=0, \quad m<k . \tag{3}
\end{equation*}
$$

$W_{k . k}(x)$ may be expanded in the form

$$
\begin{equation*}
W_{k \cdot k}(x)=W_{k}(x)+\sum_{m=0}^{k-1} \alpha_{k m} W_{m \cdot m}(x) \tag{4}
\end{equation*}
$$

and it follows from (3) that

$$
\begin{equation*}
\alpha_{k m}=-\Sigma W_{k}(x) x^{m} / \Sigma W_{m \cdot m}(x) x^{m} \tag{5}
\end{equation*}
$$

The value $\alpha_{k k}$ is defined to be -1. From the coefficients $\alpha_{k m}$ the coefficients $\beta_{k m}$ defined by the equations

$$
\begin{equation*}
W_{k . k}(x)=\sum_{m=0}^{k} \beta_{k m} W_{m}(x) \tag{6}
\end{equation*}
$$

may be derived. In fact

$$
\begin{equation*}
\beta_{k m}={ }_{r=m}^{k-1} \alpha_{k r} \beta_{r m} \tag{7}
\end{equation*}
$$

For the coefficient of degree p, equation (2) with $k=p$ gives

$$
b_{p p}=\sum_{x} W_{p . p}(x) y(x) / \sum_{x} W_{p . p}(x) x^{p}
$$

and so

$$
\begin{equation*}
\sigma^{2}\left(b_{p p}\right) / \sigma^{2}(y)=\Sigma_{x}\left[W_{p . p}(x)\right]^{2} /\left[\sum_{x} W_{p . p}(x) x^{p}\right]^{2} \tag{8}
\end{equation*}
$$

The expression $\sum_{x}\left[W_{p . p}(x)\right]^{2}$ can be evaluated from (6) when the values of $\sum_{x} W_{k}^{2}(x),{\underset{x}{x}}^{x} W_{k}(x) W_{m}(x)$ are known.

If the efficiencies of the other coefficients $b_{p j}$ or the efficiencies of the fitted values are required, it is necessary to complete the inversion of the matrix $\Sigma W_{k}(x) x^{m}$. Functions $W_{k . p}(x)$ may be defined for which

$$
\begin{equation*}
\sum_{x} W_{k \cdot p}(x) x^{m}=0, \quad m \leqslant p, \quad m \neq k \tag{9}
\end{equation*}
$$

and then

$$
\begin{equation*}
b_{p k}=\frac{\Sigma W_{k . p}(x) y(x)}{\Sigma W_{k . p}(x) x^{k}}=\Sigma \sum_{x=0}^{p} \lambda_{k m} W_{m}(x) y(x) \tag{10}
\end{equation*}
$$

where $\lambda_{k m}$ are the elements of the inverse matrix. These elements can be built up from the quantities $\beta_{j k}, \Sigma W_{j . j}(x) x^{k}$ in the following way. $\quad W_{k . p}(x)$ is expanded in the form

$$
W_{k, p}(x)=W_{k . k}(x)+\sum_{k+1}^{p} \alpha_{k m} W_{m . p}(x),
$$

where, from (9)

$$
\alpha_{k m}=-\frac{\Sigma W_{k \cdot k}(x) x^{m}}{\Sigma W_{m . p}(x) x^{m}}=-\frac{\Sigma W_{k \cdot k}(x) x^{m}}{\Sigma W_{m . m}(x) x^{m}} .
$$

Therefore

$$
\begin{aligned}
W_{k . p}(x) \sum_{x} W_{k . p}(x) x^{k} & \left.=\left[W_{k . k}(x)-\Sigma_{m}\left\{\sum_{x} W_{k . k}(x) x^{m}\right\} \frac{W_{m \cdot p}(x)^{\cdot}}{\Sigma W_{m . m}(x) x^{m}}\right] \right\rvert\, \sum_{x} W_{k . k}(x) x^{k} \\
& =\left[\sum_{r} \beta_{k r} W_{r}(x)-\sum_{m}\left\{\sum_{x} W_{k . k}(x) x^{m}\right\}_{r} \sum_{r} \lambda_{m r} W_{r}(x)\right] / \sum_{x} W_{k . k}(x) x^{k} \\
& =\sum_{r} \lambda_{k r} W_{r}(x) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\lambda_{k r}=\left[\beta_{k r}-\sum_{k+1}^{p} \lambda_{m r}\left\{\sum_{x} W_{k . k}(x) x^{m}\right\}\right] / \sum_{x} W_{k . k}(x) x^{k} . \ldots \ldots \ldots \tag{11}
\end{equation*}
$$

The standard error of the coefficient $b_{p k}$ is given by

$$
\begin{equation*}
\sigma^{2}\left(b_{p k}\right) / \sigma^{2}(y)=\sum_{x}\left\{\sum_{m=0}^{p} \lambda_{k m} W_{m}(x)\right\}^{2} \tag{12}
\end{equation*}
$$

and the standard error of the fitted value by

$$
\sigma^{2}\left[u_{p}(x)\right]=E\left[\sum_{j} b_{p j} x^{j}\right]^{2}=\sum_{j, k} x^{j} x^{k} E\left[b_{p j} b_{p k}\right],
$$

or

$$
\begin{equation*}
\sigma^{2}\left[u_{p}(x)\right] / \sigma^{2}(y)=\sum_{j, k} x^{j} x^{k} \sum_{x}\left\{\Sigma_{r} \lambda_{i r} W_{r}(x)\right\}\left\{\sum_{s} \lambda_{k s} W_{s}(x)\right\} . \tag{13}
\end{equation*}
$$

The method of matrix inversion outlined above is the same as that described by Fox and Hayes (1951), but they deal with a general matrix for which the functions $W_{j}(x)$ are not defined. The present discussion brings out the significance of the intermediate terms occurring in their method. In the usual method of calculation the quantities are arranged in a square array, as shown below :

$$
\begin{array}{llll}
\Sigma W_{0.0} & \Sigma W_{0.0} x & \Sigma W_{0.0} x^{2} & \Sigma W_{0.0} x^{3} \\
(-) \alpha_{10} & \Sigma W_{1.1} x & \Sigma W_{1.1} x^{2} & \Sigma W_{1.1} x^{3} \\
(-) \alpha_{20} & (-) \alpha_{21} & \Sigma W_{2.2} x^{2} & \Sigma W_{2.2} x^{3} \\
(-) \alpha_{30} & (-) \alpha_{31} & (-) \alpha_{32} & \Sigma W_{3.3} x^{3} .
\end{array}
$$

The lower triangular matrix $(-) \alpha$ is then inverted ; the elements of $-\alpha^{-1}$ are the quantities $\beta_{k m}$, as is clear from (7). Finally the rows $\lambda_{j k}$ are built up in turn, beginning with $\lambda_{p k}$. However, when a large number of inversions have to be made it is more convenient to tabulate the $\alpha_{k m}, \beta_{k m}$, etc., in columns and perform the same calculations for all the matrices at the same time.

It is illuminating to put some of the above equations into matrix notation. The quantities $\sum_{x} W_{j}(x) x^{k}$ form a matrix \mathbf{W}, the quantities $\alpha_{j k}$ a lower triangular matrix $\underset{\sim}{\alpha}$, and the quantities $\sum_{x} W_{j . j}(x) x^{k}$ an upper triangular matrix $\underset{\sim}{\omega}$. Then, from equation (4)

$$
\sum_{x} W_{k \cdot k}(x) x^{r}=\sum_{x} W_{k}(x) x^{r}+\sum_{m=0}^{k-1} \alpha_{k m} \sum_{x} W_{m \cdot m}(x) x^{r}
$$

or

$$
\mathbf{W}=-\underset{\sim}{\alpha} \underset{\sim}{\omega}
$$

Then from equation (7)

$$
\underset{\sim}{\alpha} \beta=-\mathbf{I},
$$

and so

$$
\underset{\sim}{\beta}=-\alpha_{\sim}^{-1} .
$$

Finally equation (11) may be written

$$
\omega_{k k} \lambda_{k r}=\beta_{k r}-\sum_{m} \omega_{k m} \lambda_{m r}
$$

and so

$$
\underset{\sim}{\beta}=\underset{\sim}{\omega} \lambda,
$$

and

$$
\begin{aligned}
\underset{\sim}{\lambda} & =\underset{\sim}{\underset{\sim}{-1}} \underset{\sim}{\beta}=-{\underset{\sim}{\omega}}^{-1}{\underset{\sim}{\alpha}}^{-1} . \\
& =\underset{\mathbf{W}^{-1}}{ } .
\end{aligned}
$$

III. Efficiencies in Terms of the Parameters x_{2}, x_{3}

The symbol ε will be used to denote the variable which takes the integral or half-integral values from $+\frac{1}{2}(n-1)$ to $-\frac{1}{2}(n-1)$ at the points of observation, where n is the number of observations. In the method of grouping (Guest 1952, Section III)

$$
\left.\begin{array}{rlr}
\Sigma_{\varepsilon} W_{j} \varepsilon^{m} & =\frac{n^{m+1}}{(m+1) 2^{m}}\left[1-\alpha_{j}^{m+1}-\beta_{j}^{m+1}+\ldots .\right], & m+j \text { even }, \tag{14}\\
& =0, & m+j \text { odd },
\end{array}\right\} \ldots
$$

where α_{j}, β_{j}, etc., are the parameters which determine the location of the groups. Equation (14) can be written in the form

$$
\sum_{\varepsilon} W_{j} \varepsilon^{m}=\frac{n^{m+1}}{(m+1) 2^{m}} \psi_{j m} .
$$

The quantities $\psi_{j_{m}}$ may be readily calculated from the values of the parameters α_{j}, β_{j}, etc., given in the previous paper (Guest 1952). The numerical values of $\psi_{j m}$ are listed in Table 1. If the variable $e=2 \varepsilon / n$ is introduced, then

$$
\begin{equation*}
n^{-1} \Sigma W_{i} e^{m}=\psi_{j m} /(m+1) \tag{15}
\end{equation*}
$$

In accordance with the treatment given in an earlier paper (Guest 1953, p. 132), the independent variable x is replaced by the variable ξ, where

$$
\begin{equation*}
\xi=\varepsilon+\varkappa_{2} n^{-1}\left(\varepsilon^{2}-\frac{1}{12} n^{2}\right)+2 \varkappa_{3} n^{-2}\left(\varepsilon^{3}-\frac{1}{4} n^{2} \varepsilon\right) \tag{16}
\end{equation*}
$$

and x_{2}, x_{3} are the parameters which specify the departure from uniform spacing. Now

$$
12 n^{-1 \xi}=6 e+\chi_{2}\left(3 e^{2}-1\right)+3 \varkappa_{3}\left(e^{3}-e\right)
$$

and so

$$
\begin{aligned}
n^{-1} \Sigma W_{j}\left(12 n^{-1 \xi}\right)= & 3 \psi_{j 1}+x_{3}\left(\frac{3}{4} \psi_{j 3}-\frac{3}{2} \psi_{j 1}\right)+x_{2}\left(\psi_{j 2}-\psi_{j 0}\right) \\
n^{-1} \Sigma W_{j}\left(12 n^{-1 \xi}\right)^{2}= & 12 \psi_{j 2}+x_{3}\left(\frac{36}{5} \psi_{j 4}-12 \psi_{j 2}\right)+x_{3}{ }^{2}\left(\frac{9}{7} \psi_{j 6}-\frac{18}{5} \psi_{j 4}+3 \psi_{j 2}\right) \\
& +x_{2}{ }^{2}\left(\frac{9}{5} \psi_{j 4}-2 \psi_{j 2}+\psi_{j 0}\right) \\
& +x_{2}\left[\left(9 \psi_{j 3}-6 \psi_{j 1}\right)+x_{3}\left(3 \psi_{j 5}-6 \psi_{j 3}+3 \psi_{j 1}\right)\right] \\
n^{-1} \Sigma W_{j}\left(12 n^{-1 \xi}\right)^{3}= & 54 \psi_{i 3}+x_{3}\left(54 \psi_{j 5}-81 \psi_{j 3}\right)+x_{3}^{2}\left(\frac{81}{4} \psi_{j 7}-54 \psi_{j 5}+\frac{81}{2} \psi_{j 3}\right) \\
& +x_{3}^{3}{ }^{3}\left(\frac{27}{10} \psi_{j 9}-\frac{81}{8} \psi_{j 7}+\frac{27}{2} \psi_{j 5}-\frac{27}{4} \psi_{j 3}\right) \\
+ & x_{2}{ }^{2}\left[\left(27 \psi_{j 5}-27 \psi_{i 3}+9 \psi_{j 1}\right)+x_{3}\left(\frac{81}{8} \psi_{j 7}-\frac{45}{2} \psi_{j 5}+\frac{63}{4} \psi_{j 3}-\frac{9}{2} \psi_{j 1}\right)\right] \\
& +x_{2}\left[\left(\frac{324}{5} \psi_{j 4}-36 \psi_{j 2}\right)+x_{3}\left(\frac{324}{7} \psi_{j 6}-\frac{432}{5} \psi_{j 4}+36 \psi_{j 2}\right)\right. \\
& +x_{3}^{2}\left(9 \psi_{j 8}-27 \psi_{j 6}+27 \psi_{j 4}-9 \psi_{j 2}\right) \\
& \left.+x_{2}^{2}\left(\frac{27}{7} \psi_{j 6}-\frac{27}{5} \psi_{j 4}+3 \psi_{j 2}-\psi_{j 0}\right)\right] .
\end{aligned}
$$

Using Table 1, it is a simple matter to calculate $\Sigma W_{j} \xi^{m}$ as a function of x_{2}, x_{3}. These expressions are tabulated in Table 2, together with the quantities $\Sigma W_{j}{ }^{2}, \Sigma W_{j} W_{k}$, which are needed for the evaluation of the standard errors.

Table 1
the quantities $\psi_{j m}$

			$p=1,2$	$p=3$		
ψ_{20}	-0.2943	ψ_{11}	+0.888889	+0.502270	ψ_{31}	-0.514459
ψ_{22}	+0.385331	ψ_{13}	+0.987654	+0.752265	ψ_{33}	-0.181496
ψ_{24}	+0.669354	ψ_{15}	+0.998628	+0.876695	ψ_{35}	+0.078761
ψ_{26}	+0.809080	ψ_{17}	+0.999848	+0.938627	ψ_{37}	+0.275442
ψ_{28}	+0.885873	ψ_{19}	+0.999983	+0.969453	ψ_{39}	+0.425384

Table 2
$\boldsymbol{\Sigma} W_{j} \xi^{m}$

$n^{-1} \Sigma W_{0}$	1
$n^{-1} \Sigma W_{1}$	0
$n^{-1} \Sigma W_{2}$	-0.2943
$n^{-1} \Sigma W_{3}$	0
$4 n^{-2} \Sigma W_{0} \xi$	0
$4 n^{-2} \Sigma W_{1} \xi$	$0 \cdot 888889-0 \cdot 197531 \chi_{3} \quad(p=1,2)$
	$0 \cdot 502270-0.063069 \chi_{3} \quad(p=3)$
$4 n^{-2} \Sigma W_{2} \xi$	$0 \cdot 226544 x_{2}$
$4 n^{-2} \Sigma W_{3} \xi$	$-0 \cdot 514459+0 \cdot 211856 \chi_{3}$
$12 n^{-3} \Sigma W_{0} \xi^{2}$	$1-0.400000 x_{3}+0.057143 x_{3}{ }^{2}+0.066667 x_{2}{ }^{2}$
$12 n^{-3} \Sigma W_{1} \xi^{2}$	$\chi_{2}\left[0 \cdot 296296-0.021948 \chi_{3}\right] \quad(p=1,2)$
	$\chi_{2}\left[0.313064-0.031391 \chi_{3}\right] \quad(p=3)$
$12 n^{-3} \Sigma W_{2} \xi^{2}$	$0.385331+0.016281 \chi_{3}-0.017786 x_{3}{ }^{2}+0.011656 x_{2}{ }^{2}$
$12 n^{-3} \Sigma W_{3} \xi^{2}$	$\chi_{2}\left[0 \cdot 121108-0.018177 \chi_{3}\right]$
$32 n^{-4} \Sigma W_{0} \xi^{3}$	$x_{2}\left[0.533333-0.076190 x_{3}+0.008466 x_{2}{ }^{2}\right]$
$32 n^{-4} \Sigma W_{1} \xi^{3}$	$\begin{aligned} 0.752265 & -0.251702 \varkappa_{3}+0.039489 \varkappa_{3}{ }^{2}-0.002379 x_{3}{ }^{3} \\ & +x_{2}{ }^{2}\left[0.145927-0.011742 \varkappa_{3}\right] \end{aligned}$
$32 n^{-4} \Sigma W_{2} \xi^{3}$	$\chi_{2}\left[0.546337-0.120582 x_{3}+0.013561 \chi_{3}^{2}+0.017713 \chi_{2}{ }^{2}\right]$
$32 n-4 \Sigma W_{3} \xi^{3}$	$\begin{gathered} -0.181496+0.351005 x_{3}-0.111592 x_{3}{ }^{2}+0.012001 x_{3}{ }^{3} \\ +x_{2}{ }^{2}\left[0.044385+0.008764 x_{3}\right] \end{gathered}$
$n^{-1} \Sigma W_{0}{ }^{2}$	1
$n^{-1} \Sigma W_{1}{ }^{2}$	$0 \cdot 666667 \quad(p=1,2)$
	$0 \cdot 2945 \quad(p=3)$
$n^{-1} \Sigma W_{2}{ }^{2}$	$0 \cdot 7265$
$n^{-1} \Sigma W_{3}{ }^{2}$	$0 \cdot 7894$
$n^{-1} \Sigma W_{0} W_{2}$	-0.2943
$n^{-1} \Sigma W_{1} W_{3}$	-0.0417

The standard errors of the coefficients $b_{p p}$ can be calculated for selected values of χ_{2}, \varkappa_{3} from the values $\Sigma W_{j} \xi^{k}$, using the scheme developed in Section II. The efficiencies can then be calculated by comparison with the corresponding errors obtained for the least squares curve in the earlier paper. The efficiencies obtained in this way for the coefficients b_{11}, b_{22}, b_{33}, are listed in Table 3.

In Table 4 the efficiencies of the fitted values have been tabulated for various values of x_{2}, x_{3}. For the second and third degree polynomials the variable used is

$$
k=e-x_{2} / 5
$$

which was introduced in the treatment of the least squares standard errors (Guest 1953, equation (41)). The range of interpolation, that is, the range of values of k within which the observations occur, is roughly from $k=+1$ to $k=-1$.

Table 3
EFFICIENCIES OF THE COEFFICIENTS $b_{p p}$

	0	$0 \cdot 5$	b_{11} 1.0	1.5	$2 \cdot 0$	0	$0 \cdot 25$	b_{22} 0.5	$0 \cdot 75$	$1 \cdot 0$	0	b_{38} 0.25	0.5
-1.0	$0 \cdot 911$	0.891	$0 \cdot 871$	0.853	0.835	0.853	0.801	0.751	$0 \cdot 705$	$0 \cdot 660$	0.813	$0 \cdot 641$	0.498
-0.8	$0 \cdot 909$	0.887	$0 \cdot 866$	0.847	0.828	$0 \cdot 872$	$0 \cdot 819$	$0 \cdot 768$	$0 \cdot 720$	0.675	$0 \cdot 861$	$0 \cdot 692$	0.548
-0.6	$0 \cdot 906$	0.882	$0 \cdot 860$	$0 \cdot 839$	0.819	$0 \cdot 887$	0.834	$0 \cdot 783$	$0 \cdot 734$	0.687	0.897	$0 \cdot 735$	0.593
-0.4	0.901	0.876	$0 \cdot 853$	0.830	0.809	0.897	0.844	0.793	$0 \cdot 744$	$0 \cdot 696$	0.921	$0 \cdot 769$	$0 \cdot 632$
-0.2	$0 \cdot 896$	0.869	$0 \cdot 844$	$0 \cdot 820$	$0 \cdot 798$	$0 \cdot 902$	0.851	0.801	$0 \cdot 751$	0.703	0.934	$0 \cdot 793$	$0 \cdot 663$
0	0.889	$0 \cdot 860$	0.833	$0 \cdot 808$	$0 \cdot 784$	0.902	$0 \cdot 853$	$0 \cdot 804$	0.755	$0 \cdot 707$	0.937	0.807	$0 \cdot 685$
$0 \cdot 2$	$0 \cdot 880$	0.849	0.821	0.794	$0 \cdot 769$	$0 \cdot 897$	$0 \cdot 851$	0.803	$0 \cdot 755$	$0 \cdot 708$	0.929	0.810	$0 \cdot 699$
$0 \cdot 4$	0.869	0.836	$0 \cdot 806$	0.777	0.751	0.888	$0 \cdot 844$	$0 \cdot 799$	$0 \cdot 752$	$0 \cdot 705$	0.913	$0 \cdot 804$	0.702
$0 \cdot 6$	0.855	0.820	$0 \cdot 788$	0.758	$0 \cdot 731$	0.874	0.833	0.790	$0 \cdot 745$	0.698	$0 \cdot 888$	$0 \cdot 789$	$0 \cdot 696$
$0 \cdot 8$	0.839	0.801	$0 \cdot 767$	$0 \cdot 736$	$0 \cdot 707$	$0 \cdot 855$	0.818	0.777	0.733	0.688	$0 \cdot 856$	$0 \cdot 765$	0.681
1.0	0.818	$0 \cdot 779$	0.743	0.710	$0 \cdot 680$	0.833	0.799	$0 \cdot 760$	$0 \cdot 718$	$0 \cdot 673$	$0 \cdot 817$	$0 \cdot 733$	$0 \cdot 657$
$1 \cdot 2$	0.794	0.752	0.715	0.681		0.808	$0 \cdot 776$	$0 \cdot 739$	$0 \cdot 698$	0.653	$0 \cdot 770$	0.693	$0 \cdot 626$
1.4	$0 \cdot 764$	0.721	$0 \cdot 682$			$0 \cdot 780$	0.749	$0 \cdot 713$	$0 \cdot 672$	0.628	0.715	$0 \cdot 645$	0.587
1.6	$0 \cdot 729$	$0 \cdot 684$	$0 \cdot 644$			0.751	0.719	$0 \cdot 683$	$0 \cdot 641$	0.596			
$1 \cdot 8$	0.688	$0 \cdot 642$	$0 \cdot 602$			$0 \cdot 719$	$0 \cdot 686$	$0 \cdot 647$	0.604	$0 \cdot 556$			
$2 \cdot 0$	$0 \cdot 640$	0.594	$0 \cdot 554$			$0 \cdot 687$	$0 \cdot 649$	$0 \cdot 606$	0.558	0.507			

In a practical example the efficiencies may be expected to differ somewhat from the values given in Tables 3 and 4, because of the neglect in the present discussion of higher parameters x_{4}, x_{5}, etc. In Table 5 are shown the efficiencies of the coefficients $b_{p p}$ for the three examples discussed in an earlier paper (Guest 1953), with the values calculated from the parameters x_{2}, x_{3} in brackets. It is seen that there is in each case a reasonable agreement between the two values for the efficiency.

IV. Conclusion

From Table 3 it will be seen that the efficiencies of the coefficients $b_{p b}$ are always less than the corresponding efficiencies in the equally spaced case ($\chi_{2}=0$, $x_{3}=0$), except for the coefficient b_{11} when x_{3} is negative, where the efficiency may. be slightly higher. As a consequence, the value of 90 per cent. suggested in the earlier paper for the efficiencies must be regarded as an upper limit to the efficiencies which would be found in any practical example.

Table 4
Efficiencies of the fitted values
First Degree Polynomial

$\left\|x_{2}\right\|$	0					0.5					1.0				
x_{3}	-1.0	-0.5	0	$+0.5$	+1.0	-1.0	-0.5	0	+0.5	+1.0	-1.0	-0.5	0	$+0.5$	+1.0
$\|k\|$	($k \chi_{2}$ negative)														
$1 \cdot 4$	$0 \cdot 868$	0.898	0.903	$0 \cdot 880$	$0 \cdot 833$	0.835	$0 \cdot 871$	0.887	$0 \cdot 877$	$0 \cdot 838$	0.726	$0 \cdot 757$	0.775	0.775	0.748
$1 \cdot 2$	0.879	0.902	0.904	$0 \cdot 881$	0.835	$0 \cdot 854$	$0 \cdot 883$	$0 \cdot 896$	0.885	0.846	0.766	$0 \cdot 786$	0.799	0.796	$0 \cdot 765$
1.0	0.901	0.911	0.908	$0 \cdot 884$	0.838	$0 \cdot 893$	0.905	0.911	0.898	$0 \cdot 858$	$0 \cdot 855$	0.847	$0 \cdot 844$	0.831	$0 \cdot 795$
$0 \cdot 8$	0.940	0.930	0.918	$0 \cdot 893$	0.848	$0 \cdot 950$	0.942	0.935	0.919	0.879	$0 \cdot 962$	0.948	0.927	0.899	0.852
0.6	0.952	0.952	0.939	0.915	0.874	0.938	0.951	0.950	0.940	0.911	$0 \cdot 872$	0.914	0.943	0.957	0.942
0.4	0.92	0.946	0.950	0.938	0.912	$0 \cdot 886$	0.914	0.926	0.927	0.921	$0 \cdot 779$	$0 \cdot 815$	$0 \cdot 840$	0.859	0.877
0.2	0.90	0.935	0.946	0.941	0.925	$0 \cdot 863$	$0 \cdot 896$	0.911	0.911	0.904	0.750	$0 \cdot 785$	0.807	0.816	0.810
	($k \chi_{2}$ positive)														
0	0.89	0.931	0.943	0.939	0.924	$0 \cdot 861$	0.898	0.916	0.918	$0 \cdot 906$	0.754	0.793	0.821	$0 \cdot 834$	0.826
0.2	0.90	0.935	0.946	0.941	0.925	$0 \cdot 876$	0.913	0.934	0.936	0.920	0.786	$0 \cdot 831$	0.865	0.883	0.876
$0 \cdot 4$	0.92	0.946	$0 \cdot 950$	0.938	0.912	0.911	0.941	0.951	0.942	0.910	0.858	$0 \cdot 902$	0.929	0.937	0.918
0.6	0.95	$0 \cdot 952$	0.939	0.915	0.874	0.950	0.948	0.928	$0 \cdot 895$	$0 \cdot 848$	0.942	0.946	0.927	0.894	$0 \cdot 848$
0.8	0.94	0.930	0.918	$0 \cdot 893$	$0 \cdot 848$	0.922	0.902	0.877	0.842	$0 \cdot 794$	$0 \cdot 894$	$0 \cdot 860$	0.819	0.775	0.725
1.0	0.90	0.911	$0 \cdot 908$	$0 \cdot 884$	0.838	$0 \cdot 865$	$0 \cdot 862$	$0 \cdot 848$	0.819	0.774	0.786	$0 \cdot 769$	0.743	0.708	0.683
1.2	0.87	0.902	0.904	$0 \cdot 881$	0.835	$0 \cdot 833$	$0 \cdot 845$	0.839	0.813	0.768	0.726	0.725	0.710	0.683	0.641
$1 \cdot 4$	0.86	$0 \cdot 898$	$0 \cdot 903$	$0 \cdot 880$	0.833	$0 \cdot 818$	$0 \cdot 838$	$0 \cdot 837$	0.813	0.768	0.697	$0 \cdot 705$	0.697	$0 \cdot 675$	0.635

Third Degree Polynomial

$\left\|x_{2}\right\|$	0					0.5				
x_{3}	$-1 \cdot 0$	-0.5	0	$+0.5$	+1.0	-1.0	-0.5	0	$+0.5$	$+1 \cdot 0$
$\|k\|$	($k x_{2}$ negative)									
$1 \cdot 4$	0.830	0.910	0.926	0.887	0.805	0.625	0.747	0.818	0.826	0.779
1.2	0.842	0.909	0.919	0.881	$0 \cdot 802$	0.643	0.756	0.823	0.832	0.787
1.0	0.870	0.902	0.905	$0 \cdot 871$	0.802	0.736	0.790	0.836	0.842	0.802
0.8	0.874	0.889	0.887	$0 \cdot 870$	$0 \cdot 834$	0.872	0.897	0.881	$0 \cdot 866$	0.834
$0 \cdot 6$	0.844	0.902	0.917	0.914	0.901	0.711	0.835	$0 \cdot 895$	0.903	0.884
0.4	0.852	0.914	0.936	0.932	0.908	0.695	0.816	0.891	0.918	0.911
0.2	0.879	0.925	0.942	0.936	0.913	$0 \cdot 759$	0.858	0.919	0.942	0.939
	($k \chi_{2}$ positive)									
0	0.898	0.931	0.943	0.939	0.924	0.889	0.927	0.938	0.923	0.886
0.2	0.879	0.925	0.942	0.936	0.913	0.907	0.915	0.903	0.873	0.824
$0 \cdot 4$	0.852	0.914	0.936	0.932	0.908	0.821	$0 \cdot 860$	$0 \cdot 871$	0.864	$0 \cdot 836$
$0 \cdot 6$	0.844	0.902	0.917	0.914	0.901	0.767	0.834	0.872	0.891	0.894
0.8	0.874	0.889	$0 \cdot 887$	0.870	0.834	0.820	$0 \cdot 874$	0.888	0.875	0.843
1.0	0.870	0.902	0.905	0.871	$0 \cdot 802$	0.887	0.879	0.850	0.795	0.714
1.2	0.842	0.909	0.919	0.881	0.802	0.800	$0 \cdot 836$	0.826	0.774	0.688
$1 \cdot 4$	0.830	0.910	0.926	0.887	$0 \cdot 805$	0.752	0.813	0.817	0.772	0.687

Table 5
EfFICIENCIES IN PRACTICAL EXAMPLES
Values calculated from x_{2}, x_{3} in brackets

Example	n	$\chi_{2}{ }^{2}$	χ_{3}	b_{11}	b_{22}	b_{33}
1	16	0.015	-0.642	$0.878(0.906)$	$0.878(0.881)$	$0.902(0.879)$
2	67	$0 \cdot 345$	+0.740	$0.825(0.818)$	$0 \cdot 824$ (0.806)	$0 \cdot 751$ (0.739)
3	16	$0 \cdot 221$	-0.392	$0 \cdot 884(0.890)$	$0 \cdot 839(0.850)$	$0 \cdot 823$ (0.788)

The effect of departures from uniform spacing may be roughly summarized in the following way:

Departure from

Uniformity	b_{11}	
Slight	$\left\|x_{2}\right\|,\left\|x_{3}\right\|<0.25$	>0.875
Moderate	$\left\|x_{2}\right\|,\left\|x_{3}\right\|<0.5$	>0.850
Pronounced	$\left\|x_{2}\right\|,\left\|x_{3}\right\|<0.75$	>0.800

Efficiency b_{22}	b_{33}
>0.875	>0.900
>0.840	>0.750
>0.750	>0.550

Since the efficiency of the fitted value $u_{b}(x)$ is at worst only slightly less than the efficiency of the coefficient $b_{p p}$, the limiting efficiencies of the fitted values will also be given roughly by the above table. However, from Table 4 it will be seen that the efficiency of the fitted value varies quite rapidly with the location of the point (i.e. the coordinate k) in the second and third degree polynomials when the departure from uniformity becomes pronounced.

The value that would be considered acceptable for the efficiency depends very much on the purpose for which the curve is required. If the curve is to summarize the results of 6 months' research, then clearly the least squares curve should be calculated. If a large number of curves are to be plotted, then the method of grouping may well be more appropriate because of the saving in time. Jeffreys' (1948) statement on this point is worth quoting in full.
"If [the estimate] a^{\prime} has an efficiency of 50 per cent., a^{\prime} will habitually differ from [the least squares estimate] a by more than the standard error of the latter. This is very liable to be serious. No general rule can be given; we have in particular cases to balance accuracy against the time that would be needed for an accurate calculation, but as a rough guide it may be said that efficiencies over 90 per cent. are practically always acceptable, those between 70 and 90 per cent. usually acceptable, but those under 50 per cent. should be avoided."

Cases in which $\left|x_{2}\right|$ or $\left|x_{3}\right|$ exceed unity will be very rare. It can be said then that the efficiencies for polynomials of the first and second degree fall into the " usually acceptable" category, while for the third degree polynomial the efficiencies will only fall into this category when the departure from uniformity is not very pronounced.

For the fourth degree polynomial the representation in terms of the two parameters x_{2}, x_{3} is not very satisfactory, but a calculation of the standard errors
for the case $x_{3}=0$ has shown that the drop in efficiency as $\left|x_{2}\right|$ increases is even more pronounced than is the case with the third degree polynomial. Consequently the method of grouping should not be used with a polynomial of the fourth degree unless the spacing is roughly uniform.

V. References

Dwyer, P. S. (1951).-" Linear Computations." (John Wiley \& Sons: New York.)
Fox, L., and Hayes, J. G. (1951).-J. R. Statist. Soc. B 13 : 83.
Guest, P. G. (1952).-Aust. J. Sci. Res. A 5 : 238.
Guest, P. G. (1953).-Aust. J. Phys. 6 : 131.
Jeffrreys, H. (1948).-" Theory of Probability." 2nd Ed. p. 179. (Oxford Univ. Press.)

[^0]: * Physics Department, University \dot{y} of Sydney.

