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Summary 

The specific heat of graphite is discussed in terms of a modified Debye treatment. 
It is shown that the contribution from the longitudinal waves varies as T3 below 45 oK, 
and as T2 at higher temperatures, whereas the usual two· dimensional treatment leads 
to a T2 variation at all low temperatures. Similarly the transverse contribution varies 
as T3 at lowest temperatures, But above 10 OK it varies as T2. 

The temperature variation of the thermal conductivity differs from the variation 
of the specific heat, even though the thermal resistance arises from boundary scattering. 
This is explained in terms of a mean free path for waves in the hexagonal plane, which 
is considerably larger for longitudinal than for transverse waves, resulting in an increased 
contribution of the former to the thermal conductivity. 

I. INTRODUCTION 

The specific heat of graphite at low temperatures is observed to vary as T"', 
where according to Gurney (1952) n~2 above 25 OK, and according to Berman 
(1952), quoting unpublished results of Bergenlid and Hill, n~2·2 from 8 to 
20 OK. The thermal conductivity, measured by Berman (1952) for a number 
of different polycrystalline samples from 3 OK upwards, is observed to vary 
as Tn, where n ranges from 2· 5 to 2·7 in the temperature range 3- 40 OK. At 
these low temperatures the thermal resistance is due to scattering of lattice 
waves by the boundaries of the crystallites. 

That the specific heat should vary as T2 instead of Ta, as is the case for most 
solids and follows from the usual Debye theory, has been explained by Komatsu 
and Nagamiya (1951) and by Gurney (1952) in terms of the weak binding between 
the hexagonal layers. They assume that each layer can be treated separately 
as a two-dimensional crystal, leading to a T2 variation. The validity of this 
treatment will be confirmed, and it will be shown that it breaks down at 
sufficiently low temperatures. 

The thermal conductivity has been interpreted by Berman (1952) in terms 
of the general theory (Klemens 1951; Berman 1953). Heat transport is mainly 
by lattice waves, and the thermal conductivity of each crystallite, with the 
resistance arising from boundary scattering, should be of the form 

x=tSvL, ........................ (1) 

where S is the specific heat per unit volume, v the wave velocity, and L a mean 
free path determined by the crystal dimensions. The thermal conductivity 
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should thus have the same temperature dependence as the specific heat. If 
there are other scattering processes, x should vary with T more slowly than 8, 
a phenomenon frequently observed with dielectric sollds(Berman 1953). Graphite 
appears to be anomalous, because x increases with T more rapidly than does 8. 
This can be explained by considering the parts played by the waves of different 
polarization. 

II. SPECIFIC HEAT OF GRAPHITE 

Graphite is a layer structure, the atoms in each layer being arranged in a 
hexagonal array with interatomic distance of aD =1· 4 A, the separation between 
these sheets being aa=3·4 A. This anisotropy of lattice spacing results from 
an anisotropy of binding. The bouds between atoms in each hexagonal layer 
are covalent, reinforeed by the bonding of the fourth valency electron, which is 
partly homopolar and partly metaHic. There is thus strong binding .in the 
hexagonal plane, while neighbouring layers are weakly bound by van der Waals 
forces. 

Thus the frequency w of the lattice waves, a function of the wave-vector k, 
will depend strongly on ko, the projection of k on the hexagonal plane, and only 
weakly on ka, the component along the hexagonal axis. In addition, the 
maximum value of ks, being 1C/2aa, is smaller than the maximum value of ko 
by a factor of about 2 ·8. 

It will be assumed that w is given by 

w=coko+cal k31, .................. (2) 

where Co is considerably larger than cs. While (2) is not likely to be the correct 
expression for w, it does represent the general characteristics of the dependence 
of w on k sufficiently well for the present discussions. 

The specific heat per unit volume is given by the following integral over 
the first zone. 

f hw ~/2rrKT hw 
8 =78j =7 (21C)4 (~/2rrKT _1)2 21CKT2 dk, (3) 

the summation being over all polarizations. Consider separately a single mode 
of polarization. Writing m=hw/21CKT, Y=Maka/21CKT, 60 =hco/V3a.;K, 
6s=hca/4aaK; and noting that 

where 

K3T3 
dk=21Ckodkodks=161C4h32(m-y)dmdy, ........ (4) 

coca 

if m<6s/T, 
if m>6s/T. } 

. . . . .. (5) 

. . . . . . . . . . .. (6) 

In other words, ifJ(m)dm is the number of normal modes in the (reduced) frequency 
interval m,dm, then J(m) ocm for 6a/T<m<6o/T, as correctly deduced by Komatsu 
and Nagamiya(1951). But if m<6s/T,J(m) ocm2, whereas these authors, incurring 
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a.n algebraic error, stated that f(x) ocx even at lowest frequencies. We have 
assumed in (2) that the surfaces of constant frequency are cones or truncated 
cones, while Komatsu and N agamiya assume ellipsoids of revolution or truncated 
ellipsoids. But this should not alter the conclusion derived here that f(x) ocx? 
at lowest frequencies-the only alteration being in the region of transition from 
x to x 2 dependence. 

It follows that for T>6 3 the important values of x are<always larger than 
the permissible values of y; in that case x -y '"'-'x, and 

so that SjOCT2 for ·6 3 <T<60' On the other hand, if T<:.6 3, the limit of the 
y-integration in (6) is H =x, and Sj OCT3. Since the maximum value of the 
integrand is in the vicinity of x=4, deviations from the T3 law will appear above 
63/4. 

The validity of the two-dimensional model, as used by Komatsu and 
Nagamiya (1951) and by Gurney (1952) is thus confirmed, except for the lowest 
temperatures, where the T2 dependence of the low temperature specific heat, 
derived by these authors, il'l replliced by a T3 variation. 

The effect of different polarizations must now be considered. For propaga
tion in the hexagonal plane we must separately consider the following three 
modes: one longitudinal mode, denoted by I, and two transverse modes. Of 
the latter, one mode, denoted by II, is polarized in the plane, and one, denoted 
by III,is polarized perpendicular to the plane. It is expected that O~>O~I>O~II. 
For propagation along the hexagonal axis, modes II and III are equivalent and 
will be denoted by II; again one expects o§ >C§I, but the ratio of these velocities 
is different from the corresponding ratio for the O-direction. For intermediate 
directions, we assume (2) to hold for each polarization separately. Defining a 
mean velocity in the O-direction 

<c!>a=p(ct r .................. (8) 

the specific heat above the highest value of 63 becomes 

. . . . . . . . .. (9)' 

and it follows from the observed values of S between 25 and 40 OK that <60 >, 

derived from <co>, is about 1070·°K. Gurney (1952), attributing the specific 
heat to mode III only, obtabeil 614 OK for 6~I1. 

Komatsu and Nagamiya (1951) have estimated c~, the velocity of longitudinal 
waves along the hexagonal axis, from the compressibility and, taking account 
of dispersion, they obtained 6§ =180 OK. Thus SI should vary as T3 below 
45 oK. 
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In fact the specific heat of graphite seems to follow a T2 law down to 20 oK, 
which can be explained only by assuming that c~ is appreciably larger than c~n, 
so that even around 45 oK SI is only a small fraction of S. Furthermore, it 
must be assumed that C~I is considerably less than c~, so that e~I< e~ and devia
tions from the T2 law appear only at much lower temperatures for the transverse 
component than for the longitudinal component. It appears from the specific 
heat evidence that e~I cannot exceed 35 oK and may well be even appreciably 
lower, and that above 45 oK (S -SI) : SI = 3 : 1, so that c~ : C~II is of the order 
of 3: 2. 

III. THERMAL CONDUCTIVITY OF. GRAPIDTE 

The fact that below 50 oK the thermal conductivity of graphite varies 
more rapidly with temperature than the specific heat is now explicable in terms 
of a relatively larger contribution from the longitudinal waves towards the 
conductivity. We generalize equation (1) to 

x=~Xj=~tSjcjLj, .................. (10) 
j j 

where L is the mean free path due to boundary scattering. In general L is 
of the order of the shortest linear dimensions of the crystal. This holds even 
for waves travelling in a direction such that the distance between boundaries is 
considerably larger, for the lattice waves are coupled together, with respect to 
their deviation from equilibrium, by three-phonon interactions conserving the 
total wave-vector. The role of these processes has been discussed elsewhere 
in detail (Klemens 1951); they tend to equalize mean free paths. Thus the 
transverse waves in the O-direction are strongly coupled to waves in the 
3-direction. The graphite crystals are in the shape of thin plates parallel to 
the hexagonal plane. If L3 is the thickness of these plates and Lo their diameter, 
it follows that for transverse waves in the O-direction Ln =L3 .. 

Now it is well known that the lattice waves of the highest velocity cannot 
interact with any other lattice waves of higher frequency, but only with those 
of lower frequency. It was shown by the author that such interactions have a 
negligible effect on the effective mean free path. In graphite the longitudinal 
wavesin the O-direction have the highest velocity of all, and they are therefore 
not effectively coupled to any waves in the 3-direction. Consequently for 
longitudinal waves in the O-direction LI =Lo. 

Since for crystal plates Lo > L 3, it follows that for conduction in the 
O-direction the ratio xI : XII is larger than C~SI : C~ISU' hence larger than SI : Su. 
Therefore the temperature variation of the thermal conductivity is higher 
than that of the specific heat. 

To account for Berman's data, and provisionally identifying the overall 
conductivity with the conductivity in the O-direction, Lo: L3 must be of the 
order of 10 : 1, which does not seem unreasonable. It is significant that Berman, 
by using (1) and taking v,.......,c~, obtained values for L which were of the order of 
magnitude of the diameter Lo of the crystal plates. 

For conduction in the 3-direction where L 1 ,.......,Lu ,.......,L3, XI is again enhanced 
relative to SI! because cI >C~I, the ratio of these velocities from the specific heat 
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evidence being not less than 5 : 1. This difference in velocity occurs to a lesser 
degree in the O-direction and is unimportant there. It follows that the temper
ature variation for conduction in the 3-direction is intermediate between that of 
specific heat and conduction in the O-direction. 

For crystal plates the directional anisotropy of the conductivity will be of 
order Lo : L 3• In a polycrystalline specimen the overall conductivity will be 
largely governed by the conductivity in the O-direction. We have thus a natural 
explanation for the high temperature dependence of the thermal conductivity 
of polycrystaUine graphite, for the magnitude of the effective mean free path 
derived from (1), and for the slightly lesser temperature dependence for conduc
tion along the preferred orientation of the 0 axis. To explain the temperature 
dependence of Berman's specimen of smallest crystal size and lowest con
ductivity, it must be assumed that for these small crystals Lo,....,La, so that XI 

is no longer enhanced relative to SI' 

IV. CONCLUSION 

This treatment has been confined to a rough estimate of the relevant 
parameters occurring in the simplified lattice theory of specific heat and thermal 
conductivity. In view of the lack of detailed knowledge of the interatomic 
forces and the uncertain experimental material, there is no point- in refining 
these calculations. It does appear, however, that the thermal conductivity 
can be related to the specific heat according to the usual lattice theory, if account 
is taken of the special features arising from the high anisotropy of graphite. 
In order to verify this theory, it would be of value to have measurements of the 
specific heat from 2 to 8 OK, and of the thermal conductivity of a single crystal 
of graphite. 

V. ACKNOWLEDGMENTS 

The author wishes to acknowledge helpful suggestions and criticism from 
Dr. R. Berman, Mr. A. F. A. Harper, and Dr. G. K. White. 

VI. REFERENCES 

BERMAN, R. (1952).-Proc. Phys. Soc. Lond. A 65: 1029. 
BERMAN, R. (1953).-Advanc. Phys. 2: 103. 
GURNEY, R. W. (1952).-Phys. Rev. 88: 465. 
KLEMENS, P. G. (1951).-Proc. Roy. Soc. A208: 108. 
KOMATSU, K., and NAGAMIYA, T. (1951).--J. Phya. Soc. Japan 6: 438. 

D 




