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Summary 

In analysing the data from experiments designed to distinguish between particle 
size and distortion broadening from polycrystalline materials, it is custOIll&ry either to 
employ correction fOI'Il}.ulae to obtain the true broadening (3, or to derive the pure 
diffraction contour in terms of a Fourier series whose coefficients may be evaluated 
from the experimental line profiles. The first method leads to values of (3 that are 
critically dependent upon the particular functions chosen to represent the diffraction 
line profiles and the second method, whilst removing this ambiguity, only yields the 
pure diffraction contour numerically and not analytically. 

By applying Fourier methods, it is shown that the pure diffraction contours 
associated with particular causes of broadening can in fact be identified with certain 
types of analytic functions. In particular, the Cauchy and Gaussian distributions, 
which have often been arbitrarily employed in the past to. represent the pure diffraction 
contour and experimental line profiles, are only strictly applicable to particular types of 
particle size and lattice distortion effects respectively. The case of combined size and 
distortion broadening is also considered, and for pure particle size broadening correction 
curves are derived corresponding to different types of particle size distributions. 

I. INTRODUCTION 
It is well known that radial broadening of X-ray diffraction lines from 

polycrystalline materials is associated with small particle size or variations in 
lattice spacing (e.g. due to faults in the crystal or heterogeneous lattice strains) 
over the volume of the material irradiated by the X-ray beam. In some cases 
it is clear which of these factors is predominant, but in others either effect, or a 
combination of them, may equally well be the cause of the broadening, and 
several methods have been suggested for differentiating between the various 
possibilities. 

The problem is complicated by the necessity for correcting the. broadening 
actually observed for instrumental effects before the true broadening due to the 
inherent condition of the material can be obtained. To carry out this correction· 
it is customary either to employ correction formulae relating the true (required) 
integral line breadth ~ to the total observed breadth B and the instrumental 
breadth b (Scherrer 1920; Jones 1938; Warren and Biscoe 1938; Taylor)941; 
Schoening, van Niekerk, and Haul 1952), or to analyse the experimentally 
determined line profiles by somewhat laborious mathematical procedures (Stokes 
1948; Paterson 1950). 

'" Defence Research Laboratories, Melbourne. 
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In the first class, the values obtained for ~, for given values of biB, depend 
markedly, for the range covered by most experimental data, upon the particular 
correction formula adopted. Shull (1946) has shown that the true line profile 
after correcting for instrumental broadening (hereafter termed the "pure 
diffraction contour "), and hence the most appropriate correction formula, 
may be derived if the experimental line shapes are assumed or known to conform 
to particular types of analytic functions. Unfortunately, however, unless 
extremely accurate experimental techniques are employed, this criterion is of 
limited use, because the various types of functions which may be chosen to fit 
the observed profiles only differ appreciably in shape in regions close to their 
" tails" where possible percentage errors in measurement of line intensity are 
greatest. This uncertainty as to the proper relationship between ~, B, and b 
is of particular consequence in attempting to distinguish between particle size 
and distortion broadening from deformed metals by investigating the variation 
of ~ with diffraction angle and X-ray wavelength, and has contributed to the 
conflicting nature of the results obtained in this field in the past (Brindley 1940 ; 
Smith and Stickley 1943; Stokes, Pascoe, and Lipson 1943; Megaw and Stokes 
1945; Wood and Rachinger 1949). 

Uncertainties of this type may be avoided by the use of the second class of 
method mentioned above and the more recent work on cold-worked metals has 
tended to adopt this type of procedure (Patterson 1950; Warren and Averbach 
1950, 1952a, 1952b; Auld and Garrod 1952; McKeehan and Warren 1953 ; 
Smith 1953; Williamson and Hall 1953). In this case the pure diffraction 
contour is obtained numerically but not analytically. 

Line breadth, however, is only one of the parameters associated with the 
broadened X-ray diffraction lines. Recently, it has been shown that much 
additional information may be obtained from a study of the shape of the pure 
diffraction contour. The latter is represented by a Fourier series obtained 
numerically from the experimental X-ray data by Stokes's method (1948), 
and the dependence of the Fourier coefficients on frequency can be used to 
investigate particle size broadening (Bertaut 1950,1952; Warren and Averbach 
1950), distortion broadening (Warren and Averbach 1950, 1952a) or a combination 
of the two effects (Eastabrook and Wilson 1952; Paterson 1952; Warren and 
Averbach 1952b). 

It is important to note that in all of this work mentioned above, either 
analytic functions have been employed as direct or tacit assumptions for repre
senting the X-ray line profiles or, alternatively, the pure diffraction contours 
have been obtained numerically from experimental data by computation. The 
question therefore arises whether in fact pure diffraction contours, due to 
particular causes of broadening, can be identified with particular types of 
analytic functions and, if so, the range of validity associated with the use of 
such functions. 

In the present paper an attempt is made to investigate some aspects of this 
problem by the use of the Fourier methods referred to previously. 
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II. VALIDITY OF ANALYTIC FUNCTIONS FOR THE PURE DIFFRACTION CONTOUR 

The following analysis for a randomly oriented polycrystalline material 
applies to any reflection which can be of the form OOl with respect to an 
appropriate system of orthogonal axes. As shown previously (Eastabrook and 
Wilson 1952; Paterson 1952), the pure diffraction contour for a material 
exhibiting line broadening may be represented quite generally by 

I(X)=Rf::(m,l) exp (2rdmX)dm, ............ (1) 

where X =(26-260)1,-1 aa cos 60, 

aa-Iength of unit cell axis in [OOlJ direction, 

60 -Bragg angle for peak intensity, 

m=(variable) difference in coordinates in [OOlJ direction between any 
pair of cells in the crystal, 

R==constant for a particular experimental arrangement. 

A(m,l) is a Fourier transform of I(X) and may be expressed as the product 
of two other quantities (Eastabrook and Wilson 1952), 

A(m,l) =N(m)J(m,l), .................. (2) 

where N(m) depends only upon the size and shape of the crystallites in the sample 
and J(m,l) depends upon the lattice distortion. 

If the analysis is restricted to diffraction contours that are symmetrical 
about the peak value, it follows that for any given OOl reflection, A(m,l) may be 
written as 

A(m)=P f:}(m) cos (21tmm/T)dm, .......... (3) 

where m-2(6-60 ), 

T=)...j(aa cos 60), 

P=constant. 

Eastabrook and Wilson (1952) have shown that, if A(m) is plotted against m, 

the initial slope is a measure of the reciprocal of the mean particle size Jt (in 
units of aa) in the COOl] direction and the initial curvature gives a lower limit 
to the mean square strain C2; that is, 

( dA ) _ 
- dim I = (M)-I, 

/m/=O 
( 4) 

(ddl~·12) ~-41t2l2e2, .............. (5) 
/m/=O 

where A(m)_A(m)jA(O}. 
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(a) The Functions (1 +a2x 2)-l, exp (_k2X2), and (1 +C2X2)-2 

The pure diffraction contour I(x) is related to the intensity distribution 

g(x) due to instrumental factors and the total distribution h(x) from a material 

exhibiting line broadening by the equation (Jones 1938) 

f:oo g(u)I(x-u)du 

h(x)= foo , .............. (6) 

-00 I(x)dx 

where u is the parameter of integration. 

h(x) and g(x) are the experimentally observed line profiles, and various 

authors have from time to time suggested different analytic functions to represent 

the experimental data. Among these are the functions (1 +a2x2)-1, exp ( -k2x2), 

and (1 +C2X2)-2. 

It can easily be shown (Shull 1946) that, if h(x) and g(x) are of the form 

(1 +a2x2)-l, then I(x) also conforms to this type of function, and similarly for the 

function exp (_k2x2 ). It is therefore of interest to inquire whether these 

analytic forms for I(x) can be identified with particle size or distortion broadening 

or a combination of the two effects. If h(x) and g(x) are, however, of the form 

(1 +C2X2)-2, I(x) is not of this form and cannot be readily evaluated analytically 

from (6). Nevertheless, for reasons to be discussed later, this form for I(x) 

is also investigated below. 

Oase 1 

Let I(x)=(1+a2x2)-I, then from (3) 

A(m) =P(Tt!a) exp (-2Tt 1 m l!aT). 

Hence 

. . . . . . . . . . . . . . .. (7) 

( d2A ) 4Tt2 

dim 12 =:= a2T2' 
Iml=O 

. . . . . . . . . . . . . . .. (8) 

A(m) has a finite initial slope and therefore the function (1 +a2x2)-1 can 

represent particle size broadening. If distortion broadening were also present, 

from (5) and (8), C2 would have to be negative. Since this is physically 

impossible, this particular intensity distribution for I(x) can only correspond 

with pure particle size broadening, and A(m) may be replaced by const. xN(m). 

In such cases, Bertaut (1950) has shown that it is possible to derive useful 

information about the particle size and size distribution in the sample. The 

following results follow directly from the relationships he has established. 

(i) The mean particle size M in the [OOlJ direction is given by 

- aT 
M=-. 

2Tt 
(9) 
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This follows from Bertaut's analysis, which shows that 

M =t(O), 
where 

t(m)=-N(m)/(d dl! I) =f <Xl (M-I m I)p(M)dM, •. (10) 
Iml=O Iml 

and p(1 m I) is the size distribution function. 

81 

(il) The" apparent particle size" L as defined by Jones (1938) is given by 

L= f:<XlN(m)dm/N(O)=aT/1t, ............ (11) 

where M and L are in units of /la. 

It may be noted here that, since the integral line breadth 

~= f:<Xl1 (IlJ)dllJ/I(O)=1t/a, 

it follows from (11) that 
(~ cos 6o)/"A=(aaL)-1, . 

which is the familiar relationship for particle size broadening. 

(iii) ~he mean square particle size 

M2= f: <Xlt(m)dm=a2T2/21t2=2(M)2. . .....•. (12) 

(iv) The mean square deviation in particle size 

e;2=(aT/21t)2. 

(v) The size distribution function 

(13) 

pO m l)=d2t/d 1 m 12 = (21t/aT) exp (-21t 1 m 1 faT). . ... (14) 

(vi) The fraction of particles having dimensions M in the range 1 m 1 < M < ex> 

out of the total number of particles contributing to the diffraction is given by 

f<Xl p(M)dM=-dt/dlml=exp (-21t 1 mllaT) • .... (15) 
Iml 

Ca8e 2 

Let I(IlJ)=exp (_k21lJ2), then 

A(m)=P(1tl/k) exp (-1t2m2/k2T2). ( 16) 

It follows from (4) and (16) that M = ex> if k is finite. 

Hence this type of function cannot represent particle size broadening. 
To investigate the possibility of distortion broadening we can replace 
(Am) by const. xJ(m). 

F 
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From (5) the root mean square strain in the [OOl] direction is given approxi
mately by 

(~)i=(2k2l2T2)-!. . ............... (17) 

Since A =2d sin 60, d =a3 jl, ~ =7t! jk, it follows by substitution in (17) that 
the "apparent tensile strain" "YJ is given by 

"YJ=~ cot 60 =2(2m32)!. • ..•. ' .•...... (18) 

This is the result found by Stokes and Wilson (1944) by other methods, 
for distortion broadening due to a Gaussian distribution of lattice strains. 

Oase 3 

Let I(x) =(1 +e2x2)-2, then 

A(m) =P(7tj2e)(1 +27t I m I jeT) exp (-27t I m I jeT), .. (19) 
and 

Thus this function cannot represent particle size broadening. However 
(19) is of the correct form to represent distortion broadening. It follows that 

(e2)i = (elT)-I, .................... (20) 
and 

"YJ=7t(ez)! •...••................. (21) 

(b) Other Types of Particle Size Broadening 
It is of interest to consider the pure diffraction contours associated with 

types of particle size distributions other than the somewhat unlikely case in 
practice given by the Cauchy contour (1 +a2x 2 )-1. This may be investigated 
by reversing the previous procedure; that is, the particle size distribution is 
assumed and the corresponding diffraction contour is then obtained. 

By replacing N(m) in (1) by the expression for N(m) in terms of the size 
distribution function p(i m D given by (10), it follows that for a contour 
symmetrical about the peak value 

I(x)=K f:P(M)(7tX jT)-2 sin2 (7tMxjT)dM, ...... (22) 

where, by definition, 

f:P (M)dM=1 

and K is a constant. 

This is a general expression which enables the intensity distribution for 
the OOl reflection to be determined if the size distribution function is known. 
In general, as Jones (1938) has pointed out, p(M) is not known and is likely to 
vary for each material, but three possible examples are given below. 

(i) Consider first the simple case in which the crystals are all of the same 
size and the same external shape, which is here taken to be cubic. 
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In this case M =M L. Hence 

I(x)=KL2(7tLx/T)-2 sin2 (7tLx/T), .......... (23) 

that is, the intensity distribution is of the familiar form D(nx)-2 sin2 nx wher~ 
D and n are constants. The same result has been obtained by other methods 
by Stokes and Wilson (1942) as part of a more generalized treatment of the, 
diffraction from polycrystalline aggregates of uniform particle size. 

--------- GAUSS 

-)(- DISTRIBUTION GIVEN BY EON. (27) 

--- SCHOENING. VAN NIEKERK, & HAUL. 

---CAUCHY 

Fig. I.-Types of distribution functions representing 1(11:). 

(ii) Let 
p(M) = (2/7t) la-1 exp (_M2/2a2), ...•.....•.. (24) 

where a is the root mean square value of M. 
By integration of (22) it follows that 

I(x) =2K(27tx/T)-2[1-exp {-la2(27tx/T)2}]. . ..... (25) 

(iii) One objection to (24) is that p(M) is a maximum for M =0. To obtain, 
a skew distribution about a non-zero value of M let 

p(M) = (2/7t) lS-sM2 exp (_M2/2S2), .....•.• (26) 

where S is a constant. Then 

I(x) =2K(27tx/T)-2[1-(1-47t2S2x2/T2) exp { -IS2(27tx/T)2}]. 
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The results of the preceding analysis are summarized in Table 1 and in 
Figures 1 and 2. In these figures, the constants for each function have been 
adjusted for convenience so as to make the areas under the curves all equal. 

(c) Oombined Particle Size and Distortion Broadening 
In the examples considered so far, either particle size or distortion broadening 

has alone been operative. Both effects may however be present in the same 
sample and Warren and Averbach (1952b) have shown how the experimental 

o·s 

0'4 

----
o 0·2 0'4 o·s 0'0 "0 

m (IN UN I!.£; QF Till' 

Fig. 2.-Transforms of functions in Figure 1. 

data may, in favourable cases, be analysed numerically to determine the relative 
influence of the two factors. It is, however, of interest to reverse this procedure 
and examine analytically how particular models of size and distortion combina
tions may be expected to modify the shape of the function A(m,l) for any given 
reflection. 

The problem is of particular importance in connexion with the effect of 
cold-work on polycrystalline metals. On the assumption that both particle 
size and distortion broadening are contributory factors, a number of models 
may be assumed. Two extreme cases are as follows : 

(1) First, as a result of plastic deformation, each grain in the aggregate 
may become dissociated into a number of units. Some of these units are strain 
free but of such dimensions that particle size broadening occurs; in other units; 
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the size is still sufficiently large for no appreciable size broadening, but distortion 
broadening occurs due to heterogeneous lattice strains. Under these circum
stances the intensity distribution in a reflection is the sum of the contributions 
due to the particle size and distortion factors treated independently. This 
would correspond with the assumption made by Hall (1949) in taking the total 
line breadth ~ as the simple sum of the breadths due to each factor separately. 

§ 
(<( 

1·0 .......... 
. ~ .... ~" 

'. " ". '\ 
.~.~ 

.'.\ 
0'8 ~ . .\ . " 

0·6 

0'4 

0'2 

~: .. \ 
~~ 

.~~ 
~~ 

~ 
~ 

- - - 100% STRAIN, EXP(-k2 x 2) 

- - - - -. ·70% STRAIN, EXP(-k2 X 2 ) 

-'-'- 30% STRAIN, Exp(-k2x2) 

- __ 100% PART. SIZE SIN" nx 
, (DX}2 

\' 
~~, 
\.~ ,', ' 

\: .. ~ ,'. \.'\ 
\". " ,'. , ,".:\ ", , , .. ~ 

" . < .. ~ ", . ..... :.~ ........ 
"" . ..... 

0~------0~';2------~0~'4~----~0~'6~----~0~'8~----~~~~ 

m (IN UNITS OF TIP) 

Fig. 3.-Transforms for combined particle size and distortion broadening given 
by equation (29). 

(2) Secondly and more probably, after plastic deformation each grain 
may become dissociated into a number of small, heterogeneously distorted 
units. The intensity distribution for any reflection is then the resultant coherent 
scattering in a given direction of the incident beam produced by these domains, 
and is given by equation (1) for crystals of the cubic class . 

.AS an illustration of the method of treatment, a particular example corres
ponding to each of these cases is considered below. 

Case 1 
On the first hypothesis, suppose for simplicity that the crystallites conform 

to one or the other of only two possible types: 
(i) A given proportion of the total number contains crystallites sufficiently 

large for no size broadening to occur and in which the strain distribution function 
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is assumed to be Gaussian.· The intensity distribution in the reflected bean;l. due 
to these crystallites is thus of the form exp ( _k2x2). 

(ii) The remainder are strain free and of a small uniform size. For these, 
the diffraction contour is represented by the function (nx)-2 sin2 nx. 

The resultant pure diffraction contour is then given by 

(28) 

Hence 

where KI and K 2 are parameters whose relative magnitudes determine the 
contributions due to distortion and particle size effects respectively. For 
100 per cent. strain broadening KI =1, K s =0 and for 100 per cent. size broadening 
KI=O, K 2 =1. 

Figure 3 shows the form of .A(m) for values of (Ku Ks)=(l, 0), (0'7,0'3), 
(0,3,0'7), and (0,1). 

Oase2 
In this example, it is assumed that the sample consists of small distorted 

crystals of uniform size and with a Gaussian distribution of lattice strains. 
Hence 

A(m) =N(m)J(m) =P(l-7t I m IjnT) exp (-7t2m2jk2T2),* .... (30) 

where P is a constant and nand k have the same significance as in the previous 
example. By assigning various values to nand k varying relative contributions 
of particle size and distortion broadening respectively can be represented. 
For pure size broadening, k=oo and for pure strain broadening n=oo. The 
true diffraction line breadth is given· by 

In Figure 4 .A(m) is plotted for values of njk of 0, 2, 5, 00. The curves all 
represent the same value for ~. 

(d) Oorrection Ourves frir Partiole Size Broadening 
To obtain the true integral breadth ~ from the measured values Band b 

it is convenient and customary to obtain, if possible, correction curves in which 
~jB may be plotted as functions of bjB. The principal correction formulae 
which have been suggested are summarized in Table 2. As pointed out in 
Section I, these formulae are based upon the subjective choice of various types 
of analytic functions to represent the experimental) X-ray line profiles, and in 
general are without reference to the particular cause of broadening involved. 
The preceding analysis, however, indicates how given types of analytic functions 

* The particle size factor in (29) and (30) is zero outside the range 0< I m I <nT/n:o 
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may be assigned to particular forms of particle size distributions. It is therefore 
of interest to investigate the dependence of the appropriate correction curve 
upon the particular type of particle size broadening considered. 

The appropriate relationship between B, b, and ~ can, however, only be 
obtained if two of the three functions in equation (6) above are known. Assuming 

0'8 

0'6 

] 
<c 

0'4 

0'2 

- - -100% STRAIN, EXPI-k' X'I 

----- ••• n,lk=!5 

_._.- o/k=2 

____ 100% PART. SIZE, SIN 2 nx 
(OX)2 

0~----~0~'2~.------~0~'4~----~0~'6~----~0'~8------~1~'0----~ 

m (IN UNITS OF T/fJ) 

Fig. 4.-Transforms for combined particle size and distortion broadening given 
by e9uation (30). 

that I(m) and g(m) are known, the integral breadth B may be obtained by either 
of the following two methods. 

(i) From (6) it follows that if transforms of k(m) and g(m) are given by 

respectively, then 

H(m) = I: ""k(m) exp (2romm)dm, 

H(m)=.A.(Tm)G(m), 

H(O)=G(O). 
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The observed intensity distribution h(aJ) in the presence of size broadening 
is then found from 

h(aJ) = J: a:> H(m) exp (-2mmaJ)dm. 

Finally 

B= J: a:> h(aJ)daJ/h(O) =H(O)/h(O), 

or 

B=G(O)/ f:a:> H(m)dm. . .......••...... (32) 

(ti) The above method is appropriate if the pure diffraction contour I(aJ) 
is known directly. If, however, the size distribution function p(1 m D is adopted 
as a starting-point, it is more cQnvenient to derive an expression for the breadth B 
in terms of this distribution function. The analysis is too lengthy to set out 
here, but it can be shown that 

B=MG(O)/ f:a:>t(Tm)G(m)dm, •....••...•. (33) 

where the parameters have the significance defined previously. 

As pointed out already, B will depend upon the functions chosen to represent 
I(aJ) and g(aJ). In practice, it is generally found that the instrumental contour 
g(aJ) may be represented quite closely, either by exp (-k2aJ2) (Taylor and Sinclair 
1945; Shull 1946; Alexander 1950), or by a function of the type (1 +C2aJ2)-2 
(Jones 1938; Schoening, van Niekerk, and Haul 1952). 

For both of these forms for g(aJ), the four types of particle size broadening 
considered previously have been analysed by the methods outlined above and 
the results are summarized in Table 3. In Figure 5, the correction curves 
corresponding to the size distribution function p(M) given by (26) have been 
plotted in the usual way for the two different forms for g(aJ). For comparison, 
the curves corresponding to formulae (I), (II), and (VI) in Table 2 are also 
included in Figure 5. 

III. DISCUSSION 

A number of interesting points emerge from the analysis in Section II. 
(1) First, the functions (1 +a2aJ2)-1 and exp ( _k2aJ2), which have previously 

been used somewhat indiscriminately to represent the pure diffraction contour, 
can in fact only be identified with line broadening due to particular types of 
particle size and lattice distortion effects respectively. Hence, in any attempt 
to distinguish between particle size or strain broadening from a particular 
material, the use of the one or the other of these functions (together with the 
appropriate relationship between B, h, and ~) involves an intrinsic initial assump
tion about the cause of the broadening, when the object of the investigation is 
to discover the cause. Such an assumption must inevitably weight the experi
mental results, partially at least, in favour of one or the other of the two effects. 
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In this connexion it is therefore perhaps significant that in most previous work 
on the cause of line broadening from cold-worked metals, those investigators 
who have used the Warren relationship between B, b, and ~ have concluded that 
lattice distortion was the predominant factor, whilst those who have employed 
the Scherrer correction found that particle size was the main cause. The best 
procedure in such work therefore is to make no assumptions at all about the 
shape of the experimental line profiles. 

"0 
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~ 
o 0-2 0-6 0-8 

biB 

Fig. 5.--Correction curves associated with particle size broadening for 
various types of size distribution functions and different instrumental 
contours. a, Warren curve; b, p(M) given by equation (26), 
g(x)=exp (-:-k2x 2); c, p(M) given by equation (26), g(x)=(1+c2x 2)-2; 

d, Schoening, van Niekerk, and Haul curve; e, Scherrer curve. 

(2) Secondly, as would be expected, the pure diffraction contour depends 
not only upon the cause of the broadening but also upon the nature of the size 
and strain distribution functions. In cases where the size effect is negligible, 
Eastabrook and Wilson (1952) have suggested that the Cauchy line profile is 
possibly a better approximation to the pure diffraction contour encountered 
in practice than the Gaussian form. At first sight this is in direct contradiction 
to the results obtained here. It should be noted, however, that different distortion 
models are considered in the two cases. In the present paper it has been shown 
that a Gaussian strain distribution corresponds to a Gaussian intensity distribu
tion for the pure diffraction contour. On the other hand, Eastabrook and 
Wilson have considered the case of crystals large enough for negligible particle 
size broadening and in which each crystal is assumed to contain several regions of 
compression and extension. In this case, they have shown that for small m 
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(corresponding to the behaviour of I(x) for large x), J(m) is approximately 
proportional to exp (-27t2l2C2m2), whereas for large m, J(m) tends more nearly 
to be proportional to exp ( -const.1 m I). This implies that, for this particular 
type of distortion broadening, the pure diffraction contour would approximate 
to a Oauchy form at and near to its peak value, with a gradual transition with 
progressive increase in x to some other profile (e.g. Gaussian) that is consistent 
with distortion broadening for small m. 

The question as to whether the contour is a closer resemblance to a Oauchy 
or to a Gaussian profile will depend upon the type of distortion that is operative. 
For cases of distortion broadening encountered in practice, it seems unlikely 
that any simple analytic function will truly represent the pure diffraction contour, 
and for the reasons discussed in (1) above and (4) below, it is dangerous to attempt 
to assign given functions as " close fits " to the experimental observations when 
dealing with distortion broadening. For pure particle size broadening on the 
other hand, such a procedure is often permissible, since determination of the 
" apparent particle size" from line breadth measurements can only be regarded 
as approximate in view of a number of other uncertainties. 

(3) Thirdly, for pure particle size broadening, Alexander (1950), in discussing 
the factors affecting determination of crystallite size with a Geiger~counter 

X-ray spectrometer, concluded that a typical crystal size distribution leads to 
a pure diffraction contour which bears a closer resemblance to a Oauchy profile 
than a Gaussian form. The preceding analysis would tend to support this 
conclusion. At the same time the exact form of the contour depends upon the 
particular type of size distribution law appropriate to each material. 

A point of interest here is that Schoening, van Niekerk, and Haul (1952) 
have reported recently that the line profiles obtained from small crystals with a 
Geiger-counter X-ray spectrometer could be represented very closely by functions 
of the type (1 +C2X2)-2. In this case, although I(x) cannot be conveniently 
evaluated analytically, by employing the methods described previously it 
can readily be shown that these functions for h(x) and g(x) cannot truly represent 
particle size broadening. Assuming that in the samples examined by these 
authors no distortion broadening occurred, the inconsistency between their 
experimental observations and the present theoretical treatment presents a 
problem. It may perhaps be that some other function or functions compatible 
with particle size broadening could also represent closely their experimental 
observations. For example, if 

and 
g(x)jg(O) =(1 +Qlcix2)(1 +ciX2)-2 

h(x)jh(O) =(1 +Q2C~X2)(1 +C~X2)-2 

(which approximate to the previous functions if ql and Q2 are small), it can be 
shown that these profiles are compatible with size broadening, giving a non
negative value for the size distribution function p(1 m D provided that 
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Examination of Figure 5, however, shows that except in cases where a 
high accuracy is warranted in the determination of particle size, the differences 
introduced by using one or other of the correction curves (b), (0), or (d) will not be 
serious. It is also interesting to note the close agreement between curves 
(0) and (d) which are both based upon the same function (1 +02X2)-2 for g(x). 

Curve (d), given by Schoening, van Niekerk, and Haul, cannot strictly be 
applicable to particle size broadening, yet is nevertheless a close fit to their 
experimental conditions and observations. On the other hand curve (0) corres
ponds to a particular size distribution which may approximate to typical 
distributions encountered in practice. It appears therefore that for general 
application to particle size broadening, curve (0) is likely to be a reasonable 
compromise. 

(4) Finally, as pointed out by Eastabrook and Wilson (1952), the original 
methods developed by Warren and Averbach (1950) for distinguishing between 
particle size and distortion effects, based upon the shape of the pure diffraction 
contour rather than its breadth, have certain limitations in practice, particularly 
if the analysis is restricted to single orders of reflection from given sets of planes 
in the crystal. It is true, for example, that there is a considerable difference 
in shape between the Fourier transforms (Fig. 2) corresponding to the contour 
functions (1 +a2x2)-1 and exp (_k2X2). Comparison of Figures 1 and 2, however, 
shows that the pure diffraction contours in Figure 1, which produce appreciable 
changes in Figure 2, only differ appreciably in shape in regions close to their 
" tails" where percentage errors in measurement are greatest. In consequence, 
if Fourier methods are used to determine the pure diffraction contour I(x) or its 
Fourier coefficients, from observations on the shapes of the experimental h(x) 

and g(x) contours, the shape of the A(m) curve will be critically dependent upon 
the accuracy of the experimental observations of line intensities at values 
approaching the general background value due to incoherent scattering. Further
more, Figures 3 and 4 illustrate how the shape of the curve changes when particle 
size and distortion effects are both operative. Consequently, although the 
more recent methods of Warren and Averbach (1952b), based on analysis of 
several orders of reflection from any given set of planes, reduce the chance of 
ambiguity of interpretation (due to experimental error) of the experimental 
results, the use of such criteria alone, for differentiating between particle size 
and distortion broadening, would appear to be rather dangerous unless very 
accurate experimental techniques are employed. 
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