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Summary 

The ability of buoyant elements to carry heat upwards through a stably stratified 
fluid depends on their rate of mixing and hence on their size. The largest and smallest 
elements are both relatively ineffective and there exists an optimum intermediate 
size yielding a maximum value of the buoyant heat flux for a given intensity of 
temperature disturbance. 

For a layer of uniform unstable stratification the heat flux increases progressively 
with size of element and there is no theoretical upper limit apart from that set by the 
depth of the unstable layer. 

The distribution, with respect to element size, of the intensity of temperature 
fluctuations impressed by external influences is modified by the effects of buoyancy 
and mixing, and relations are derived between the modified and unmodified distributions. 

1. INTRODUCTION 

It is proposed to examine theoretically the vertical flow of heat which 
results when a layer of fluid is subject to the continual creation of hot elements 
within it. Whenever turbulence occurs in a thermally stratified liquid, the 
action of pressure forces which are dissociated from the temperature fluctuations 
will bring about a state of affairs with elements at rest differing in temperature 
from their surroundings, but these differences have not normally been allowed for 
in constructing the equations of heat transfer. The problem therefore has quite 
general significance, but it becomes of special importance in meteorology where 
at least two further mechanisms for the creation of " hot spots" may be identified. 
The natural surface of the Earth is uneven in its physical properties, and so when 
heated or cooled is subject to local variations in surface temperature which are 
communicated to the overlying air; the second mechanism occurs when con
vective clouds, generated in an unstable layer, penetrate a stable or less unstable 
layer above in which the heat flow requires to be studied. 

The buoyant motions resulting from the creation of hot spots will account 
for a component of heat flux, Fm whose sense will always be upwards but whose 
magnitude may depend on the thermal stratification of the fluid. The need is 
to express FH in terms of the stratification, of the size of the heated elements, 
and of the intensity T~ of the impressedt temperature fluctuations. This 
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t The word is used to denote fluctuations arising from causes other than the motion or mixing 
of the elements themselves. 
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problem will here be treated for a layer in which the temperature gradient and 
the intensity T~ and frequency of impressed fluctuations (Le. the numbeI' 
appearing per unit height per unit time) are constant with height and time. 

II. BASIS OF THE TREATMENT 

A formulation has been given earlier (Priestley and Swinbank 1947), but 
it is possible to treat in greater detail by invoking the model which may most 
suitably be described as the open parcel. This differs from the clo8ed parcel,. 
which has hitherto been used in studies of convection and turbulent transfer, 
in that as it moves it is subject to continuous mixing with its environment. 
The equations for the vertical motion wand excess temperature T' of an open 
parcel moving through an environment at rest at temperature Te are (Priestley 
1953) 

(1) 

T'=-w(°ffze+r)-k2T', .............. (2) 

where g and r have their usual significance and kl and k2 are the mixing rates_ 
The latter are constant for an individual element but vary, in constant proportion 
to each other, from one element to another, taking relatively large values foI' 
the small and small for the large elements, and so are used in effect to identify 
the size of parcel under consideration. 

T' may be eliminated from (1) and (2) and, assuming T'lTe is small, the 
equation of motion of the individual parcel is derived as 

. . . . .. (3) 

an equation with constant coefficients whose solutions are readily obtained," 
We shall consider first a population of elements all of a given size (given kl 
and k 2 ) but starting from rest at different levels with temperature excess T~, 
and derive expressions for the resulting heat flux FH and r.m.s. temperature 
fluctuations crT at a fixed level in terms of kl) k2' and T~. The properties of 
these expressions will then be discussed, with particular reference to their" 
dependence on kl and k 2 • This will amount in essence to a discussion of the 
manner in which the size-distribution functions for FH and crT are related to each 
other and to the corresponding function for the impressed temperature fluctua
tions T~. 

III. SOLUTION OF THE PROBLEM 

When 

~.(°ffze +r) +k1k2< 0, (4) 

that is, when the lapse rate is sufficiently unstable and the element sufficiently 
large, the motion is absolutely buoyant (Priestley 1953) and both the wand T'" 



204 C. H. B. PRIESTLEY 

of the individual element ultimately increase exponentially with time. This 
case will not be considered in this section, but it will be referred to in 
Section IV (b). 

When 

the motion of the individual elements is always bounded, and there are two 
principal types of motion to consider. Writing 

112=1 !L(2Te+r) - L~l-k~EI 6 r Te 2z 4' ............ ( ) 

then, when the expression inside the modulus is positive, the solution of (3) 
which satisfies the initial conditions w=O, T' =T~ is of the oscillatory form 

(7) 
whence 

...... (8) 

where A=(glfL)(T~/Te)' When the expression inside the modulus of (6) is 
negative, the solution satisfying the same initial conditions is 

(9) 

.... (10) 

with A as before. This is of the asymptotic form. 

In deriving the statistical quantities FH and cr:j, at a fixed reference level zl1 
it is recognized that elements of a given size will all be subject to the same motion 
but will reach Zl at different stages thereof through having started from different 
levels ZOo The contribution to the heat flux is 

pCp X average value of wT', 

the average being taken over all values of zo,weighted according to their 
probability. The a priori probability of Zo is uniform since conditions, including 
the frequency of impressed temperature fluctuations, are supposed constant 
with height, but the recognition that the element has reached the level Zl affects 
the a posteriori probability of zo; some values are excluded because of the 
bounded nature of the motion; others, when solutions (7) and (8) apply, must 
be counted n times where wT' is an n-valued function of Zl -ZOo Since, given 
the lapse and mixing rates, wand T' depend solely on the difference Zl -zo, 
it is mathematically equivalent to keep Zo fixed and vary Zl' so that the average 
wT' may be written 
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where the integrals are taken over the complete path of an individual element. 
In this way, and in a similar way for cr~, is finally derived 

~=fCXl w I wi T/dt/fCXl I w I dt, 
pCp 0 0 

.......... (11) 

and 

cr~= f~ I wi TI2dt/ f: I w Idt, ............ (12) 

where wand T' are as in (7)-(10) and the integral is over the lifetime of the 
element. 

The evaluation of the expressions (11) and (12) is straightforward though 
laborious, and the following results are obtained. In the case of asymptotic 
motion (solutions (9) and (10», 

whence also 

. .. . . . . . .. (15) 

In the case of oscillatory motion (solutions (7) and (8», the expressions on the 
right of (13) and (14) must be multiplied by the factor 

th 3(kl +k2 )1t/ th (kl +k2 )1t 
co 4fl. co 4fl. 

and the relation (15) continues to hold. 

In discussing the results it will be convenient to define a function!1 in the 
relation between heat flux li'H and impressed temperature fluctuations by 

li'H =JLT'2! 
pCp T. 0 11 

where!1 contains the dependence on lapse rate and, through kl and k2' on element 
size; similarly the relation between heat flux and r.m.s. temperature fluctuations 
at the same level may be described by the function!2 defined by 

li'H =Tg crN2' 
pCp • 
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Of these two functions, the greater practical interest attaches to f2' since it is 
possible to measure both (J~ and the total heat flux, of which FH is a component, 
whereas T~ is not easily measurable. There is, however, some interest in the 
quantity Vf11f2 which is equal to (JT/T~ and so represents the factor by which 
the impressed temperature fluctuations are reduced when records of temperature 
are taken at a fixed level. 

The discussion will deal separately with stable and unstable stratifications, 
~o that in writing 

there need be no confusion through use of the modulus. It will then be seen 
that both the criteria for the solutions and the values of Af1 and Af2 appertaining 
thereto depend only on the ratios k1/k2' k1/A, and k 2/A. The results may therefore 
be presented in completeness by diagrams in which the dimensionless quantities 

Af2 and Vf1/f2 are displayed as functions of k1/k2 (=~) and k2/A (=~). 

IV. SIGNIFICANCE OF THE RESULTS 

(a) Stably Stratified Medium 
Although either asymptotic or oscillatory motion can occur at stable 

1apse rates, the form of (15) and hence of f 2 is independent of the mode of motion 
()ccurring. With the notation adopted, (15) becomes 

( 17) 

Isopleths of Af 2' as a function of ~ and ~, are shown in Figure 1. 
The most significant feature is marked by the broken line, whose equation is 

1 
~2=2~2+~' .................... (18) 

along which Af 2 attains its maximum values. As stated in Section II, the 
mtio ~ between the mixing rates for momentum and sensible heat is to be 
regarded as independent of the size of element, and as determined by factors not 
here under consideration. Special interest attaches to the case in which these 
mixing rates are equal, ~ =1, when from the above 

k~=k~=~2 =ifC)!e+r) ............ (19) 

is derived as the condition for maximum heat flux. 
The interpretation of this result is that, at a given stable lapse rate, there 

.exists an optimum size of element which is most efficient for the buoyant transport 
()f heat, both very large and very small elements being relatively inefficient in 
this respect. The smallest elements are inefficient on account of their rapid rate 
()f mixing and consequent short life; k1 and k2 are large and the term in 
exp { -t(k1 +k2)t} dominates the solutions (7)-( 1 0), whichever pair is applicable. 
The reason for the inefficiency of very large elements, to which the oscillatory 
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solution applies, is that the damping becomes zero so that the motion approaches 
the simple harmonic with large amplitudes for both wand T ', but the phase 
difference approaches 1t/2 and little heat flux results. 

It is of interest to remark that, for solutions of the type under discussion, 
the vanishing of the mean product wT' while the motion remains finite requires 
both that the phase difference of the periodic part shall be 1t/2 and that the 
damping be negligible. For kl =k2 the first condition is satisfied for elements 
of all sizes, the second only for the largest ones. 

Fig. l.-Isopleths of "12 in stable lapse rates. 

For the optimum size of element, or mixing rate, given by (19), (15) takes 
the value 

.............. (20) 

which represents therefore an upper limit to the heat flux due to buoyancy, 
given crT and the temperature gradient. It may in practice prove a generous 
upper limit, since only a small fraction of elements may be close to the optimum 
size. 
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Reference to some actual magnitudes observed in the atmosphere is 
instructive. Fairly strong stable stratification at a height of 1 m above ground 
may be represented by oTe/oz+r=25 x10-4 °O/cm, for which the optimum k 
from (19) is given as 1/20 sec-I. Representative values of crT observed under 
these conditions over a uniform site at Edithvale, Victoria, are 0·2 °0, whence 
the upper limit to the heat flux due to buoyancy is about 1 mW/cm2. This is 
of the order of magnitude of the total downwards heat flux under such conditions, 
with winds of 1-2 m/sec, as measured by Swinbank (1952). 

For a layer above convection cloud, into which that cloud might penetrate, 
we might take oTe/oz+r=10- 5 °O/cm, whence the optimum kwould be 1/5 min-I. 
With crT of about 0·5 °0 (Byers and Braham 1949), the upper limit of FH would 
be about 100 times the above. There is therefore the possibility of a considerable 
upward flow of heat through statically stable layers in the free atmosphere. 

Fig. 2.-Isopleths of the reduction factor for temperature fluctuations 
crT/To'. (a) Stable lapse rates, (b) unstable lapse rates. 

The values of the reduction factor v'fI/f2 are shown in Figure 2 (a) as a 
function of ~ and~. When the mixing rates are equal (~=1) the factor is 
approximately t for elements of all sizes. For the larger elements the factor 
remains t except when the mixing rate for momentum greatly exceeds that for 
temperature, while for smaller elements the variation of v'fl/f2 with kl/k2 is 
more regular, the two ratios increasing or decreasing in sympathy. 

(b) Unstably Stratified Medium 

When (oTe/oz+r) is negative, the reduction factor v'Jl/f2' takes the same 
value as before for the smaller elements, and there is little significant change 
in this value until the limit is reached at which (14) ceases to apply. This is 
given by kIk2= -(g/Te)((}TeI(}z+r). The function is shown in Figure 2 (b), 
the limit being indicated by the broken line. * 

* This and the preceding result indicate that, under ('onditions of practical importance, 
the simple relation crT=tTo' will be widely valid. 
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The function 12' which represents the variation of FH/(j~, is now 

1 2~~ 
12=")..' -1+~2(2~2+~r (21) 

As with stable lapse rates the smallest elements (~ large) can transport little 
heat, but 12 increases progressively with size of element until k2=A/V~ at which 
the element becomes absolutely buoyant, when the relation ceases to apply. 
12 is still finite at this point. The elements will not, however, necessarily be 
confined to sizes below this critical value. Beyond it, the solutions for wand T' 
ultimately increase exponentially with time, and the present considerations 
provide no upper limit to the heat flux which might develop. 

The heat flux will not in practice be unlimited since superadiabatic conditions 
occur only in layers of limited depth, with consequent restriction of a different 
type on the development of wand T'. In the layer close to a heated surface 
further restrictions reside in the motion-inhibiting presence of the boundary and 
consequent curva~ure of the temperature profile; the problem of heat transfer 
in this layer is discussed in a paper published concurrently with this (Priestley 
1954). 
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