AN INVESTIGATION OF FINITE STRAIN IN AN ISOTROPIC MATERİAL SUBJECTED TO HYDROSTATIC PRESSURE AND ITS SEISMOLOGICAL APPLICATIONS

By A. Keane*
[Manuscript received December 14, 1953]

Abstract

Summary An attempt is made to reduce the generality of the usual theories of finite strain and to concentrate on the case of hydrostatic pressure. The method used has been based on the works of Murnaghan (1951) and Birch (1952), and yields a general relation giving the elastic constants in terms of the strain and the derivatives of pressure with respect to strain.

It becomes evident that a law in lieu of Hooke's law is needed to proceed with a mathematical theory ; and so various elasticity equations in the literature are investigated to determine the special assumptions used to derive them from the present general equations. A linear relation between the second and third order elastic constants is then proposed and the resulting relation between pressure and density compared with Bridgman's experimental results for the alkali metals. It is found that the proposed law of finite hydrostatic strain agrees favourably with experiment and also with deductions from the atomic theory of solids.

The paper concludes with a few relevant remarks on the implications of the present theory to certain seismological problems.

I. Introduction

The aim of this paper is to investigate the elasticity equations governing large hydrostatic strains, so that the effect of the pressure existing in the deep interior of the Earth can be assessed. Considerable simplification results on treating this special problem instead of developing a general theory.

Following the terminology suggested by Murnaghan (1937), we say that if the displacements are referred to the initial state as standard we are using the Lagrangian approach, while if the final state is taken as standard we have the Eulerian approach. Throughout this paper the Lagrangian viewpoint will be adopted.

In the first part of the paper the assumption is made that the pressure can be expressed as a power series in the strain. This is seen to be equivalent to the usual assumption that the elastic strain energy can be so expanded.

All the equations herein can easily be derived on the Eulerian approach, which apparently has neither advantage nor disadvantage except that, in approximations like that made by Birch (1952), the two methods give widely different results.

* Wollongong Technical College, Wollongong, N.S.W.

II. The Compressibility Ratio

Since we are concerned with hydrostatic strain we may refer a particle to the same set of Cartesian axes before and after the application of strain. In the following we take the coordinates of a typical particle in the initial state as (a, b, c) and in the final state as (x, y, z) where $(x, y, z)=(a-k a, b-k b, c-k c)$. We denote the displacement of the particle by (u, v, w). Regarding the medium as isotropic the initial state may be previously subjected to hydrostatic strain, according to the work of Murnaghan (1951, p. 64).

Using the Lagrangian approach the components of the strain tensor for hydrostatic strain are
where

$$
\varepsilon_{a a}=\varepsilon_{b b}=\varepsilon_{c c}=\varepsilon_{L}, \quad \varepsilon_{b c}=\varepsilon_{c a}=\varepsilon_{a b}=0,
$$

$$
\varepsilon_{a a}=\frac{\partial u}{\partial a}+\frac{1}{2}\left(\frac{\partial u}{\partial a}\right)^{2}
$$

so that

$$
\varepsilon_{L}=-k+\frac{1}{2} k^{2} \quad \text { or } \quad 1-k=\left(1+2 \varepsilon_{L}\right)^{\frac{1}{2}} .
$$

If we take V_{0} as the volume contained in a rectangular parallelepiped of sides a, b, c, in the initial state and V as the volume in a rectangular parallelepiped of sides x, y, z in the final state, then

$$
V=x y z=a b c(1-k)^{3}=V_{0}(1-k)^{3},
$$

or

$$
\frac{V}{V_{0}}=\left(1+2 \varepsilon_{L}\right)^{3 / 2}
$$

where the strain ε_{L} is intrinsically negative. It is usual to write $\varepsilon_{L}=-e_{L}$ so that the equation reduces to

$$
\begin{equation*}
\frac{\rho}{\rho_{0}}=\left(1-2 e_{L}\right)^{-3 / 2} \tag{1}
\end{equation*}
$$

where ρ, ρ_{0} are the densities in the final and initial states respectively.

III. The General Stress-Strain Relation

We assume that, for an isotropic medium subjected to an initial hydrostatic pressure p_{0}, the total pressure p is given by

$$
p=p_{0}+A_{1} \varepsilon+A_{2} \varepsilon^{2}+\ldots .+A_{n} \varepsilon^{n}+\ldots ., \ldots(2)^{*}
$$

where the parameters $A_{n}=A_{n}\left(p_{0}\right)$ are functions of the initial pressure and the strain ε is measured from the configuration in which $p=p_{0}$. Hence if the initial pressure is zero

$$
\begin{equation*}
p=A_{01} e+A_{02} e^{2}+\ldots+A_{0} e^{n}+\ldots, \tag{3}
\end{equation*}
$$

where the coefficients $A_{0 n}$ are constants and the strain e is measured from the configuration in which $p=0$. Note that in this section the strains ε and e are taken as intrinsically positive, corresponding to equation (1), and the symbols are not to be confused with those of Section II.

[^0]Let the density when $p=0, p_{0}, p$ be $\rho=\rho_{0}, \rho_{p_{0}}, \rho$ respectively. If the strain at pressure $p=p_{0}$ be measured from the configuration in which the pressure is zero, we have
so that

$$
\frac{\rho_{p_{0}}}{\rho_{0}}=\left(1-2 e_{0}\right)^{-3 / 2}, \frac{\rho}{\rho_{0}}=(1-2 e)^{-3 / 2}, \frac{\rho}{\rho_{p_{0}}}=(1-2 \varepsilon)^{-3 / 2},
$$

$$
1-2 e=\left(1-2 e_{0}\right)(1-2 \varepsilon)
$$

or

$$
\begin{equation*}
\mathrm{d} e=\left(1-2 e_{0}\right) \mathrm{d} \varepsilon . \tag{4}
\end{equation*}
$$

On differentiating equation (2) n times we obtain

$$
\frac{\mathrm{d}^{n} p}{\mathrm{~d} \varepsilon^{n}}=n!A_{n}+(n+1)!A_{n+1} \varepsilon+\ldots
$$

which, on using (4), reduces to

$$
\left(1-2 e_{0}\right)^{n} \frac{\mathrm{~d}^{n} p}{\mathrm{~d} e^{n}}=n!A_{n}+(n+1)!A_{n+1} \varepsilon+\ldots
$$

On taking $\varepsilon=0$ so that $e=e_{0}$ we have

$$
A_{n}=\frac{\left(1-2 e_{0}\right)^{n}}{n!}\left(\frac{\mathrm{d}^{n} p}{\mathrm{~d} e^{n}}\right)_{e=e_{0}}
$$

or, regarding A_{n} as a function of p instead of p_{0} (since the initial pressure may be considered as variable), we obtain the relation

$$
\begin{equation*}
A_{n}=\frac{(1-2 e)^{n}}{n!} \frac{\mathrm{d}^{n} p}{\mathrm{~d} e^{n}} \tag{5}
\end{equation*}
$$

On differentiating (5) with respect to p, it is easily shown that

$$
\begin{equation*}
\frac{\mathrm{d} A_{n}}{\mathrm{~d} p}=\frac{(n+1) A_{n+1}-2 n A_{n}}{A_{1}} \tag{6}
\end{equation*}
$$

* Murnaghan (1951, p. 69) has derived the equation

$$
p=p_{0}+\left(3 \lambda+2 \mu+p_{0}\right) e+\left(3 \lambda+2 \mu-9 l-n+\frac{3}{2} p_{0}\right) e^{2}+\ldots
$$

from which, on using equation (6) we derive that

$$
\frac{\mathrm{d}}{\mathrm{~d} p}\left(\lambda+\frac{2}{3} \mu\right)=\frac{-\frac{1}{3}\left(\lambda+\frac{2}{3} \mu\right)-2\left(l+\frac{1}{9} n\right)}{\lambda+\frac{2}{3} \mu+\frac{1}{3} p}
$$

which is in conflict with the result obtained by Murnaghan. The slip in Murnaghan's argument is in the change of variable given by the equation

$$
\xi=\ln \frac{1}{V}
$$

which implies the infinitesimal relation

$$
\frac{\delta V}{V}=-\delta \xi+\frac{(\delta \xi)^{2}}{2!}-\frac{(\delta \xi)^{3}}{3!}+\ldots
$$

Defining the incompressibility x by the relation

$$
\begin{equation*}
x=\rho \frac{\mathrm{d} p}{\mathrm{~d} \rho}, \tag{7}
\end{equation*}
$$

it follows from equations (1) and (5) that $A_{1}=3 x$.
It becomes evident at this stage that for further advance in the mathematical theory we require $A_{1}(p)$ as a function of p or $A_{2}(p)$ as a function of $A_{1}(p)$ since we can then determine all the other parameters by the use of equation (6). The law of finite hydrostatic strain proposed in the present paper is that $\boldsymbol{A}_{2}(p)$ should be taken as a linear function of $A_{1}(p)$. However, we will first investigate the various pressure-density equations found in the literature, in order to determine the relations imposed on $A_{1}(p)$ and $A_{2}(p)$ by them.

IV. Incompressibility a Constant

On taking A_{1} constant we find from equation (6) that $A_{n}=\left(\frac{2^{n-1}}{n}\right) A_{1}$, so that, on substituting in equation (2) and summing the series, we obtain

$$
\begin{equation*}
p-p_{0}=x \ln \frac{\rho}{\rho_{0}} . \tag{8}
\end{equation*}
$$

The same relation can be obtained from equation (7), the definition of incompressibility. This equation is equivalent to the finite form of the infinitesimal strain relation and is known to be valid only in the case of small pressure increments.

V. Incompressibility a Linear Function of Pressure

If we assume $x=x_{0}+s p$ we have on integrating the equation defining incompressibility

$$
\begin{equation*}
p=\frac{x_{0}}{s}\left\{\left(\frac{\rho}{\rho_{0}}\right)^{s}-1\right\} \tag{9}
\end{equation*}
$$

where we have taken the initial state as being subjected to zero pressure. We can also obtain this relation by using equation (6) to find $A_{0 n}$ in terms of A_{01} and substituting in (3). From (9) we have immediately

$$
\begin{equation*}
x=x_{0}\left(\frac{\rho}{\rho_{0}}\right)^{s} . \tag{10}
\end{equation*}
$$

These equations are those obtained from Murnaghan's (1951) integrated linear theory of elasticity, a method which gives fairly good results for small ranges of pressure, or, as will be shown later, for extremely high pressure ranges. The special case $s=2 / 3$ gives the same result as Seth's (1950) method.

VI. A Generalization of Birch's Equation

From equation (2) we easily derive that

$$
p=\frac{1}{(1-2 \varepsilon)^{\beta}}\left\{p_{0}+\left(A_{1}-2 \beta p_{0}\right) \varepsilon+\left(A_{2}-2 \beta A_{1}+\frac{\beta(\beta-1)}{1.2} .2^{2} p_{0}\right) \varepsilon^{2}+\ldots\right\} .
$$

Assuming now that the coefficient of ε^{2} vanishes, so that

$$
\begin{equation*}
A_{2}=2 \beta A_{1}-\frac{\beta(\beta-1)}{1.2} .2^{2} p_{0} \tag{11}
\end{equation*}
$$

it can be demonstrated by the use of equation (6) that all the coefficients of higher powers of ε vanish. Hence

$$
p=\frac{1}{(1-2 \varepsilon)^{\beta}}\left\{p_{0}+\left(A_{1}-2 \beta p_{0}\right) \varepsilon\right\},
$$

or, if the initial pressure is zero,

$$
p=\frac{A_{01} e}{(1-2 e)^{\beta}},
$$

where β is given by $A_{02} / 2 A_{01}$.
In this case the pressure-density relation is

$$
\begin{equation*}
p=\frac{3}{2} x_{0}\left(\frac{\rho}{\rho_{0}}\right)^{z(\beta-1)}\left\{\left(\frac{\rho}{\rho_{0}}\right)^{2 / 3}-1\right\}, \tag{12}
\end{equation*}
$$

and it can be shown that

$$
\frac{d x}{d p}=\frac{2 \beta^{2}\left(\frac{\rho}{\rho_{0}}\right)^{2 / 3}-2(\beta-1)^{2}}{3 \beta\left(\frac{\rho}{\rho_{0}}\right)^{2 / 3}-3(\beta-1)}
$$

so that

$$
\left.\begin{array}{l}
\left(\frac{d x}{d p}\right)_{p=0}=\frac{4 \beta-2}{3} \tag{13}\\
\left(\frac{d \chi}{d p}\right)_{p \rightarrow \infty}=\frac{2 \beta}{3}
\end{array}\right\}
$$

The equation (12) reduces to that of Seth when $\beta=1$. Birch (1952), working from a different approach, obtained equation (12) with $\beta=7 / 2$. This value of β gives reasonable agreement with the results of Bridgman's experiments on the alkali metals but Birch's formula needs modification as will become apparent in Sections VIII and IX. It should be remarked that the equation

$$
\begin{equation*}
p=\frac{3}{2}-x_{0}\left\{\left(\frac{\rho}{\rho_{0}}\right)^{7 / 3}-\left(\frac{\rho}{\rho_{0}}\right)^{5 / 3}\right\} \tag{14}
\end{equation*}
$$

which has been referred to as Birch's equation, is not considered by Birch as an exact relation but merely as the best single-constant formula describing the behaviour of all substances subjected to large hydrostatic strain.

In support of Birch's contention it should be noted that, even if the special relation (11) is not valid, equation (12) is still correct to the second order in e if β is given by $A_{02} / 2 A_{01}$.

VII. A_{2} a Linear Function of A_{1}

The present method of approach to the problem of finite hydrostatic strain immediately suggests the assumption $A_{2}=\lambda A_{1}+\mu$. From equation (6) we obtain

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} p}=\frac{(\alpha-N) x_{0}+N x}{x}, \tag{15}
\end{equation*}
$$

where the constants α, N have been introduced as being more convenient than λ, μ. It follows from (15) that

$$
\left.\begin{array}{l}
\left(\frac{d x}{\mathrm{~d} p}\right)_{p=0}=\alpha, \tag{16}\\
\left(\frac{\mathrm{d} x}{\mathrm{~d} p}\right)_{p \rightarrow \infty}=N .
\end{array}\right\}
$$

Integrating equation (15) we obtain

$$
\begin{equation*}
p=\frac{x-x_{0}}{N}-\frac{(\alpha-N) x_{0}}{N^{2}} \ln \left\{1+\frac{N\left(x-x_{0}\right)}{\alpha x_{0}}\right\} . \tag{17}
\end{equation*}
$$

The definition of incompressibility combined with (15) gives

$$
\begin{equation*}
\frac{\rho}{\rho_{0}}=\left\{1+\frac{N\left(x-x_{0}\right)}{\alpha x_{0}}\right\} \frac{1}{N}, \tag{18}
\end{equation*}
$$

so that (17) reduces to

$$
\begin{equation*}
p=\frac{\alpha x_{0}}{N^{2}}\left\{\left(\frac{\rho}{\rho_{0}}\right)^{N}-1\right\}-\frac{(\alpha-N) x_{0}}{N} \ln \frac{\rho}{\rho_{0}} . \tag{19}
\end{equation*}
$$

This equation is a generalization of Murnaghan's equation (9) and reduces to it when $\alpha=N$. The assumption of a linear law is very appealing since it is in the spirit of Hooke's law, and further, the success of Murnaghan's integrated linear theory suggests possibilities in its generalization.*

VIII. Comparison of Theory with Experiment

Birch (1952) has compared equation (14) with Bridgman's experimentally determined values of $p \mathrm{v} . v / v_{0}$ for the alkali metals by determining the value of x_{0} for each value of pressure. The results of the calculation are shown in Table 1.

The most noticeable feature of these results is that the calculated value of ν_{0} increases with the pressure and over the range under consideration varies by more than 20 per cent. This suggests that Birch's formula will not be useful for extrapolation since x_{0} in this formula varies with pressure. However, as the pressure increases the calculated value of x_{0} becomes nearly constant so that the suggestion is that the formula may be valid at high pressures but is invalid at low pressures. This invalidates its use for extrapolating from densities obtained over a range of high pressures to the density at zero pressure. It further suggests that the value $(\mathrm{d} x / \mathrm{d} p)_{p=0}=4$ obtained from the formula needs modification.

The fitting of the experimental data to equation (19) is laborious and difficult since the curve of best fit can only be obtained by a method of trial and error. In the accompanying Tables 2, 3, and 4 are shown examples of

[^1]curves of best fit to Bridgman's data for lithium, sodium, and potassium. It is significant that the variation of the calculated values of pressure using equation (19) have only half the variation found in the calculated values of Birch. Since Bridgman's two values for the density at $40 \times 10^{9} \mathrm{dyn} / \mathrm{cm}^{2}$ for sodium corresponds to an error in the calculated pressure of 6 per cent., the greatest error of 7 per cent. in the calculated pressures is almost within the accuracy of the experimental data.

Table 1
the ratio $2 / 3 \chi_{0}$ for the alkali metals calculated from equation (14) and USING BRIDGMAN'S EXPERIMENTAL VALUES (BIRCH 1952)

$\begin{gathered} p \\ \left(10^{3} \mathrm{~kg} / \mathrm{cm}^{2}\right) \end{gathered}$	Lithium		Sodium		Potassium	
	v / v_{0}	$2 / 3 \chi_{0}$	v / v_{0}	$2 / 3 \chi_{0}$	v / v_{0}	$2 / 3 \chi_{0}$
5	0.957	6.41	$0 \cdot 929$	$11 \cdot 3$	$0 \cdot 884$	$21 \cdot 0$
10	0.926	$5 \cdot 99$	$0 \cdot 883$	$10 \cdot 7$	$0 \cdot 817$	$20 \cdot 2$
15	0.899	$5 \cdot 84$	$0 \cdot 852$	$9 \cdot 8$	$0 \cdot 770$	$19 \cdot 6$
20	$0 \cdot 875$	$5 \cdot 81$	$0 \cdot 818$	$10 \cdot 0$	$0 \cdot 732$	$19 \cdot 4$
25	0.855	$5 \cdot 73$	0.791	$10 \cdot 0$	$0 \cdot 699$	$19 \cdot 6$
30	0.835	$5 \cdot 77$	0.767	$10 \cdot 0$	$0 \cdot 671$	$19 \cdot 7$
35	$0 \cdot 816$	5.81	$0 \cdot 746$	$10 \cdot 0$	$0 \cdot 647$	$19 \cdot 9$
40	$0 \cdot 798$	$5 \cdot 91$	$0 \cdot 727$	$10 \cdot 1$	$0 \cdot 627$	$19 \cdot 9$
45	$0 \cdot 782$	$5 \cdot 97$	$0 \cdot 710$	$10 \cdot 1$	0.604	$20 \cdot 6$
30	$0 \cdot 833$	$5 \cdot 84$	$0 \cdot 770$	9•81	$0 \cdot 668$	$20 \cdot 2$
40	$0 \cdot 801$	$5 \cdot 76$	$0 \cdot 737$	$9 \cdot 38$	$0 \cdot 628$	$19 \cdot 7$
50	0.773	$5 \cdot 76$	$0 \cdot 708$	$9 \cdot 21$	$0 \cdot 595$	$19 \cdot 7$
60	$0 \cdot 748$	5.78	$0 \cdot 683$	$9 \cdot 11$	$0 \cdot 568$	$19 \cdot 6$
70	$0 \cdot 727$	$5 \cdot 76$	$0 \cdot 661$	$9 \cdot 05$	$0 \cdot 546$	$19 \cdot 5$
80	$0 \cdot 707$	5.79	0.641	9.05	$0 \cdot 528$	$19 \cdot 2$
90	$0 \cdot 689$	$5 \cdot 83$	$0 \cdot 623$	$9 \cdot 07$	$0 \cdot 513$	$19 \cdot 0$
100	$0 \cdot 672$	$5 \cdot 88$	$0 \cdot 606$	$9 \cdot 13$	$0 \cdot 500$	$18 \cdot 7$

The values obtained for the density at $45 \times 10^{9} \mathrm{dyn} / \mathrm{cm}^{2}$ in 1938 for lithium, sodium, and potassium are seen to be unreasonably high, and it is perhaps safe to say that the high values in the 1948 table are not very accurate. This is pertinent since the error in the present calculated values is 4 per cent. for $100 \times 10^{9} \mathrm{dyn} / \mathrm{cm}^{2}$.

Apart from the variation at $100 \times 10^{9} \mathrm{dyn} / \mathrm{cm}^{2}$, the greatest error in the tables is for sodium at $15 \times 10^{9} \mathrm{dyn} / \mathrm{cm}^{2}$. It can be seen from differencing the values of v / v_{0} that the experimental value at $15 \times 10^{9} \mathrm{dyn} / \mathrm{cm}^{2}$ is too low ; this conclusion also follows from Birch's calculations of x_{0}.

In view of the above discussion it would appear that formula (19) fits the experimental data to within 4 per cent., which corresponds to a range of less than 8 per cent., while Birch's formula gives a range of from 10 to 20 per cent. in the calculated values of x_{0}.

Murnaghan (1951, p. 78) has compared his second-order theory with experiment and shown that the calculated values of v / v_{0} agree with Bridgman's experimentally determined values within 1 per cent. It can be seen from Table 3 for the two values of v / v_{0} at $40 \times 10^{9} \mathrm{dyn} / \mathrm{cm}^{2}$ that an error of 1 per cent. in v / v_{0} is equivalent to an error of $5 \cdot 5$ per cent. in p. Similarly from Table 1 it can

Table 2
COMPARISON OF EQUATION (19) WITH BRIDGMAN'S EXPERIMENTAL

v / v_{0}	$\begin{aligned} & p \text { (Bridgman) } \\ & \left(10^{9} \mathrm{dyn} / \mathrm{cm}^{2}\right) \end{aligned}$	$\begin{gathered} p \text { (calc. })^{*} \\ \left(10^{9} \mathrm{dyn} / \mathrm{cm}^{2}\right) \end{gathered}$
Bridgman's 1938 values		
0.957	5	5-2
$0 \cdot 926$	10	$9 \cdot 9$
$0 \cdot 899$	15	$14 \cdot 6$
$0 \cdot 875$	20	$19 \cdot 6$
$0 \cdot 855$	25	$24 \cdot 2$
$0 \cdot 835$	30	$29 \cdot 4$
$0 \cdot 816$	35	$34 \cdot 9$
$0 \cdot 798$	40	$40 \cdot 7$
$0 \cdot 782$	45	$46 \cdot 5$
Bridgman's 1948 values		
0.833	30	$30 \cdot 0$
$0 \cdot 801$	40	$39 \cdot 7$
$0 \cdot 773$	50	$49 \cdot 9$
0.748	60	$60 \cdot 4$
$0 \cdot 727$	70	$70 \cdot 6$
$0 \cdot 707$	80	$81 \cdot 5$
$0 \cdot 689$	90	$92 \cdot 5$
$0 \cdot 672$	100	$104 \cdot 0$

* Pressure calculated from the formula

$$
p=79 \cdot 8\left\{\left(\frac{\rho}{\rho_{0}}\right)^{2.6}-1\right\}-101 \cdot 6 \ln \frac{\rho}{\rho_{0}}
$$

so that $x_{0}=10.6 \times 10^{10} \mathrm{dyn} / \mathrm{cm}^{2}$, and $\alpha=5 \cdot 1$.
be seen that an error of 1 per cent. in v / v_{0} corresponds to an error of $5 \cdot 5$ per cent. in x_{0}. It thus appears that Murnaghan's variation of 2 per cent. in the calculated values of v / v_{0} corresponds to a variation of 11 per cent. in either the pressure or the initial incompressibility.

IX. Deductions from Atomic Theory

The atomic theory of solids (Seitz 1940 ; Fürth 1944) gives some important evidence on the compression of materials at high pressures. In its simplest form the theory will give only indicative results and cannot be considered as rigorous.

Assuming inverse laws of attraction and repulsion we have

$$
w(x)=-\frac{a}{x^{m}}+\frac{b}{x^{n}}
$$

Table 3
comparison of equation (19) with bridgman's experimental
results for sodium

v / v_{0}	p (Bridgman) ($10^{9} \mathrm{dyn} / \mathrm{cm}^{2}$)	$\begin{gathered} p(\text { calc. })^{*} \\ \left(10^{9} \mathrm{dyn} / \mathrm{cm}^{2}\right) \end{gathered}$
Bridgman's 1938 values ${ }^{\text {a }}$		
0.929	5	$5 \cdot 0$
0.883	10	$9 \cdot 8$
0.852	15	$14 \cdot 0$
0.818	20	$19 \cdot 6$
0.791	25	$25 \cdot 0$
0.767	30	$30 \cdot 6$
0.746	35	$36 \cdot 4$
$0 \cdot 727$	40	$42 \cdot 3$
$0 \cdot 710$	45	$48 \cdot 1$
Bridgman's 1948 values		
0.770	30	29.9
$0 \cdot 737$	40	$39 \cdot 1$
$0 \cdot 708$	50	$48 \cdot 9$
0.683	60	$59 \cdot 1$
0.661	70	$69 \cdot 5$
$0 \cdot 641$	80	80.5
$0 \cdot 623$	90	$91 \cdot 8$
$0 \cdot 606$	100	$103 \cdot 9$

* Pressure calculated from the formula

$$
p=38 \cdot 5\left\{\left(\frac{\rho}{\rho_{0}}\right)^{3}-1\right\}-61 \ln \frac{\rho}{\rho_{0}}
$$

so that $x_{0}=5 \cdot 45 \times 10^{10} \mathrm{dyn} / \mathrm{cm}^{2}$ and $\alpha=6.3$.
as the potential between two atoms from which it can be derived that at the absolute zero of temperature

$$
\frac{\mathrm{d} x}{\mathrm{~d} p}=\frac{\theta^{2}\left(\frac{\rho}{\rho_{0}}\right)^{\theta}-\varphi^{2}\left(\frac{\rho}{\rho_{0}}\right)^{\varphi}}{\theta\left(\frac{\rho}{\rho_{0}}\right)^{\theta}-\varphi\left(\frac{\rho}{\rho_{0}}\right)^{\varphi}}
$$

where $\theta=n / 3+1, \varphi=m / 3+1$.
Thus as

$$
\begin{array}{ll}
\rho \rightarrow \rho_{0}, & \frac{\mathrm{~d} x}{\mathrm{~d} p} \rightarrow \theta+\varphi, \\
\rho \rightarrow \infty, & \frac{\mathrm{d} x}{\mathrm{~d} p} \rightarrow \theta
\end{array}
$$

The significant deductions to be made from these results are that

$$
\left(\frac{\mathrm{d} x}{\mathrm{~d} p}\right)_{p=0}<2\left(\frac{\mathrm{~d} x}{\mathrm{~d} p}\right)_{p \rightarrow \infty},
$$

and

$$
\left(\frac{\mathrm{d} x}{\mathrm{~d} p}\right)_{p=0}>\left(\frac{\mathrm{d} x}{\mathrm{~d} p}\right)_{p \rightarrow \infty}+1 .
$$

Table 4
COMPARISON OF EQUATION (19) WITH BRIDGMAN'S EXPERIMENTAL RESULTS FOR POTASSIUM

v / v_{0}	$p($ Bridgman $)$ $\left(10^{9} \mathrm{dyn} / \mathrm{cm}^{2}\right)$	p (calc.)* $\left(10^{9} \mathrm{dyn} / \mathrm{cm}^{2}\right)$
Bridgman's 1938 values		
0.884	5	$5 \cdot 0$
0.817	10	$10 \cdot 0$
0.770	15	$14 \cdot 6$
$0 \cdot 732$	20	$19 \cdot 5$
0.699	25	$24 \cdot 7$
0.671	30	$30 \cdot 2$
0.647	35	$35 \cdot 6$
0.627	40	$41 \cdot 0$
0.604	45	$48 \cdot 0$
Bridgman's 1948 values		
0.668	30	30.8
0.628	40	$40 \cdot 7$
0.595	50	$51 \cdot 1$
0.568	60	$61 \cdot 7$
0.546	70	$72 \cdot 0$
0.528	80	$81 \cdot 9$
0.513	90	$91 \cdot 3$
0.500	100	$100 \cdot 2$

* Pressure calculated from the formula

$$
p=16\left\{\left(\frac{\rho}{\rho_{0}}\right)^{3}-1\right\}-17 \ln \frac{\rho}{\rho_{0}}
$$

so that $\chi_{0}=3 \cdot 1 \times 10^{10} \mathrm{dyn} / \mathrm{cm}^{2}$ and $\alpha=4 \cdot 65$.
The first result follows from the fact that $n>m$ since otherwise the crystal would collapse, and the second follows since $\varphi=m / 3+1$.

It has been shown (Seitz 1940) that for lithium fluoride $n=6$ so that $\theta=3$, and further it has been determined that θ increases with increasing atomic weight. It appears that the values obtained for the alkali metals in Tables 2, 3 , and 4 are not inconsistent with these results.

Equation (14) is seen to correspond to a law of force between the atoms in the alkali crystal lattice given by

$$
w(x)=-\frac{a}{x^{2}}+\frac{b}{x^{4}} .
$$

Apart from the fact that such a law is only a first approximation, the value $n=4$ is somewhat too low and its assumed constancy for the alkali metals is inconsistent with other evidence. It follows that Birch's formula for high pressures should best fit lithium and become increasingly less accurate for sodium and potassium. This is supported by the results of Table 1. Birch (1952, p. 252) has considered other aspects of the problem.

The constancy of x_{0} as calculated from Birch's formula for rubidium at high pressures is in conflict with the present arguments. However, due to an internal variation of more than 12 per cent. in the experimental data, it appears that no definite deductions can be made. Another indication of incompatibility is the large value of χ_{0}, which is nearly equal to the value found for potassium.

Within the accuracy of the experimental data the results for the alkali metals obtained on using equation (17) satisfy the following three conditions imposed by the atomic theory of solids.
(i) $\left(\frac{\mathrm{d} x}{\mathrm{~d} p}\right)_{p=0}<2\left(\frac{\mathrm{~d} x}{\mathrm{~d} p}\right)_{p \rightarrow \infty}$,
(ii) $\left(\frac{\mathrm{d} x}{\mathrm{~d} p}\right)_{p=0}>\left(\frac{\mathrm{d} x}{\mathrm{~d} p}\right)_{p \rightarrow \infty}+1$,
(iii) $\left(\frac{\mathrm{d} x}{\mathrm{~d} p}\right)_{p \rightarrow \infty}$ increases with atomic weight.

X. Seismological Deductions

(1) For pressures above $0.5 x_{0}$ the value of $\mathrm{d} x / \mathrm{d} p$ is somewhat constant. This is in agreement with deductions made by Ramsey (1950) from atomic theory. Graphs of incompressibility against depth and of pressure against depth obtained by Bullen (1947, p. 220) for the interior of the Earth lead to the inference that χ is not a linear function of p in the Earth's inner core and further that $\mathrm{d} x / \mathrm{d} p$ increases with pressure. Both these facts suggest that Bullen's values need modification in this region. Perhaps the assumed constancy of $\mathrm{d} x / \mathrm{d} p$ would give the calculations for the inner core a greater degree of determinateness.
(2) On extrapolating the ratio $\varphi=x / \rho$ for layer D of the Earth to zero pressure, Birch (1952) has found that the value of φ_{0} is too high to agree with the experimentally determined values for any of the most likely components of this layer. On the basis of the discussion given earlier it would appear that on extrapolating with Birch's formula the value of x_{0} would be too high while at the same time ρ_{0} would be too low. Thus on using Birch's formula the extrapolated value of φ_{0} would be increased markedly from its true value.
(3) Figure 1 shows the variation of x / ρ with pressure for potassium. The large initial increase may help to explain part of the large increase in seismic velocities in layer C of the Earth.
(4) Both equations (12) and (19) when fitted to Bridgman's results give values of $(\mathrm{d} \chi / \mathrm{d} p)_{p \rightarrow \infty}$ greater than $5 / 3$. This is in conflict with Elsasser's (1951)
smooth interpolation of Bridgman's experimental results to those of quantum mechanics and Bullen's (1952) caution, that considerable care should be shown in any such interpolation, must be supported.

Fig. 1.-Variation of x / ρ with pressure for potassium.

XI. Acknowledgments

Professor G. Bosson of the New South Wales University of Technology has read through the manuscript at various stages of its development and made many helpful suggestions. For this assistance the author wishes to express his appreciation. He is also indebted to Professor F. D. Murnaghan, previously of the Instituto Tecnologico de Aeronautica, Brazil, and Professor Francis Birch of Harvard University, U.S.A., for helpful replies to some of his queries.

XII. References

Birch, F. (1952).-Elasticity and constitution of the Earth's interior. J. Geophys. Res. 57 : 227-86.
Bullen, K. E. (1947).-"An Introduction to the Theory of Seismology." (Cambridge Univ. Press.)
Bullen, K. E. (1952).-On density and compressibility up to thirty million atmospheres. Mon. Not. R. Astr. Soc. Geophys. Suppl. 6: 383-401.
ElSasser, W. M. (1951).-Quantum-theoretical densities of solids at extreme compression. Science 113: 105-7.
Fürth, R. (1944).—On the equation of state for solids. Proc. Roy. Soc. A 183 : 87-110.
KEANE, A. (1953).-Variation of the incompressibility of an elastic material subjected to large hydrostatic pressure. Nature 172: 117.
Murnaghan, F. D. (1937).-Finite deformations of an elastic solid. Amer. J. Math. 59 : 235-60. Murnaghan, F. D. (1951).-" Finite Deformation of an Elastic Solid." (Wiley : New York.) Ramsey, W. H. (1950).-On the compressibility of the Earth. Mon. Not. R. Astr. Soc. Geophys.. Suppl. 6: 42-9.
Seitz, F. (1940).-" The Modern Theory of Solids." (McGraw-Hill : New York.)
Seth, B. R. (1950).-Finite elastic deformations. Proc. Symp. Appl. Math. 3 : 67-84.

[^0]: * It has been noted by the referee that (2) with coefficients given by (5) follows from (3) and $e=e_{0}+\left(1-2 e_{0}\right) \varepsilon$ by Taylor's theorem.

[^1]: * It is to be noted that the present solution is also a generalization of the results obtained by the writer (1953) as an approximate solution of the equation derived by Murnaghan (1951, p. 70) for $\mathrm{d} x / \mathrm{d} p$. In view of the footnote to Section III, it follows that the previous results are in error ; but it is evident that the modification to Murnaghan's equation in no way alters the method of approximation used nor does it greatly alter the deductions made therefrom.

