
ON THE COULOMB AND HULTHEN POTENTIALS 

By S. T. MA* 

[Manuscript received February 26, 1954] 

SWTfIII1W!r'U 

This paper contains the results of two investigations. (i) The Hulthen potential 
is considered as a modification of the Coulomb potential. The transition from the 
former to the latter is investigated. (ii) The zeros of the Fredholm determinant for 
the Hulthen potential are calculated from the first two terms of its power-series expan
sion. These approximate results are compared with the exact values. 

1. INTRODUCTION 

It is well known that the general theory of scattering is not immediately 
applicable to the case of the Coulomb potential because it decreases too slowly 
as the distance increases (Mott and Massey 1949). In order to apply the general 
theory to the scattering by the Coulomb field, modifications of the Coulomb 
potential have been considered in the literature. A procedure introduced by 
Gordon (1928) consists in cutting off the field at a large distance R and making R 
go to infinity in the final result. .Another procedure consists in replacing the 
Coulomb potential by the Yukawa potential, and subsequently making the 
exponential factor approach unity. Gordon's treatment leads to closed 
asymptotic expressions for large values of R. Treatment along the other line 
has been carried out by the method of Born approximations . 

.An object of the present paper is to investigate the use of the HultMn 
potential (HultMn 1942, Rosenfeld 1948) as a modified form of the Coulomb 
potential. Since the wave equation for the S-states can be solved exactly in 
the case of the Hulthen potential, we are able to trace the transition from the 
modified to the true Coulomb potential without making approximations. 

A second issue that concerns us in this paper is the determination of discrete 
bound states from the zeros of the Fredholm determinant for a scattering problem. 
This has recently been done in work on field theories (Fubini 1953; Green 1954). 
In field theories it is often the case that the Fredholm determinant can be 
evaluated only in the form of a power series, and the first few terms of the series 
alone can be computed, without excessive calculations. It is therefore of interest 
to see whether reasonably good results can be obtained for bound states by 
considering just the first few terms of the Fredholm determinant. 

As a test, we consider the case of the Hulthen potential. We shall calculate 
the zeros of the Fredholm determinant from the first two terms of its expansion, 
and compare them with the zeros of its exact form. It will be seen that the 
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approximate calculation, rough as it is, gives reasonably well the general trend 
of the zeros for coupling not too strong, although the numerical agreement is not 
good for the bindirig energies of the bound states. 

II. TRANSITION FROM THE HUL'rHEN TO THE OOULOMB POTENTIAL 

We write the wave equation for the S-states in the form 

[(:rY +k2]U(r)=U(r)u(r), .....•....•• (1) 

where k2 is the total energy E divided by h2/81t2m and U(r) is the potential 
energy V(r) divided by the same factor. In the case of the HultMn potential, 
U(r) may be written in the form 

U(r)=- AfLe-[Lr 
1-e-[Lr (fL>O). . . . . • . . • . • .• (2) 

For positive-energy continuum states, k is a positive real number. The 
solution of (1) that has the asymptotic form e-ikr is (Jost 1947) 

f(k, r)=e-ikrF(a, b, c, z), ............ (3) 

where F is the hypergeometric function (Magnus and Oberhettinger 1949) with 

and 

( ik) [ ( AfL) i] a=!L 1- 1- k2 , (4) 

b=e~)[1+(1-~rr], .............. (5) 

ik 
c=1+2-, 

fL 
( 6) 

z=e-[LT. . ..••..••...•••..•.........• (7) 

The value of f(k, r) at r=O is 

f(k,O)=F(a, b, c, 1), .................. (8) 

or 
r(c) 

f(k,O)= TV, I _'T1/; I J..)' •••••••••••••• (9) 

or 
00 k+iYn 

f(k,O)= II k . In' • • • • • • • • • • • • • • •• (10) 
n=l -lnfL 

with 

Yn=!(~-nfL)' (n=1,2, ... ) .... (11) 

The matrix element S(k) of the S-matrix for an S-state, which is connected with 
the phase a(k) by the relation 

S(k)=e2i3(k), •••••••••••••••••• (12) 
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is given by 
f(k) 

B(k)==. f( -k)' . . . . . . • . . . . . . . . . .. (13) 

or, on account of (9), 

B(k)= r(l+a*)r(l+b*)r(c) 
r(l+a)r(l+b)r(c*) . 

.......... (14) 

For each positive real Y n there is a bound state with the eigenvalue 

h2y; 
En=-S-r· 7tm 

The corresponding wave function is given by (3) with k=-iYn, 

a=-n, 

A 
b=-. 

nfl 

The first two normalized wave functions are 

(1) [fA2 2)J! u1(r) = fL A( ;fl (l-z)e-YIT, 

u 2(r) = (l~J [A(A2 -16fl2)] t(l-z) [4 -( 2+~) (l-Z)J e-Y·T. 

( 15) 

( 16) 

( 17) 

( 18) 

(19) 
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We pass from the Hulthen potential energy to the Coulomb potential energy 

by putting 

V(r)=- Ze2 

r 

A= S7t2mZe2 

and making fl approach zero. For small fl we have 

r(l +a*) B'(k) +O( ) 
r(l+a) fl, 

where 

(20) 

(21) 

............ (22) 

r(l iA) 
B'(k)= 2k r(l+~~) .................. (23) 

is a familiar expression in the theory of Coulomb scattering, and O(fl) means a.. 
term that vani'shes as fl tends to zero. Also, 

r(1 +b*) r(c) =eic.u(k), 

r(l+b)r(c*) 
.............. (24) 
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with (Jahnke and Emde 1945) 

cu(k) =(1) In (2fLk) +O(fL). (25) 

Thus 
S(k) =S'(k)eiCJ)(k), (26) 

with cu(k) given by (25). This result is similar to the previous result of Gordon 
(Gordon 1928; Meller 1946), which is given by (23), (25), and (26), with 1jR 
instead of fL. 

Equations (25) and (26), which are valid for small fL, may also be useful 
if one uses the Hulthen potential to represent a screened Coulomb potential. 

In the limit fL =0 we see from (11) that Y n becomes simply Aj2n. There 
are then· an infinite number of bound states having the energy spectrum 
En = -h2A2j32rc2mn2 of an electron in the Coulomb field. It is easy to verify 
that the normalized wave functions (16) and (17) pass over to the normalized 
Coulomb wave functions of the ls and 2s states respectively. 

III. ApPLICATION OF THE FREDHOLM THEORY TO THE HULTHEN POTENTIAL 

According to the Fredholm theory of integral equations (Whittaker and 
Watson 1946), the integral equation 

X(s) =Y(s) +Af: K(s,t)X(t)dt, (27) 

under certain general conditions on the kernel K, has the solution 

X(s) =Y(s) +D-l f: D(s,t)Y(t)dt, . . . . . . . . .. (28) 

if the Fredholm determinant D does not vanish. If the kernel K is such that D 
vanishes, there exists a solution of the homogeneous equation 

X(s) =Af: K(s,t)X(t)dt. . . . . . . . . . . . . . . . . .. (29) 

The solution of (1) that describes a state of positive energy h2k2j8rc2m in 
the scattering problem satisfies an integral equation of the form (27). The 
Jrernel K(r, r') satisfies the differential equation 

1.[ (:r) 2 +k2] K(r, r') = U(r);)(r-r'), .......... (30) 

and the integral term A f: K(r, r')u(r')dr' varies as exp (ikr) for large r. The 

Fredholm determinant D is a function of A and k. Since we are concerned with 
the dependence of D on k rather than on A, we shall denote it ·by D(k) from 
now on. Corresponding to any k such that 

D(k)=O, . . . . . . . . . . . . . . . . .. (31) 
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there is a wave function u(r) satisfying the homogeneous integral equation 

u(r)=A f: K(r, r')u(r')dr'. . . . . . . . .. . . .. . .. (32) 

There is no real k that satisfies (31). If k is an imaginary number, iy, the 
wave function u(r) varies as e-yr for large r and thus describes a bound state of 
energy -h2y 2/8n2m when y>O. There may also be complex zeros of D(k) 
which correspond to complex energies of radioactive states. 

According to the idea of analytic continuation adopted by Heisenberg in 
the theory of S-matrix (Heisenberg 1946; Maller 1946; Jost 1947), bound and 
radioactive states are connected with imaginary and complex values of k satis
fying the equation 

f(k) =0. .. .................. (33) 

That equations (31) and (33) give the same results for the problems under 
consideration here can be seen from the identity 

D(k)=f( -k) .................. (34) 

proved by Jost and Pais (1951). 

In the case of the HultMn potential, the Fredholm determinant is known 
in closed form on account of (34). The zeros of f(k) or D(k) are all purely 
imaginary. There are no complex zeros that correspond to complex energies.* 
The power-series expansion of D(k) may be obtained by expanding f(k) in powers 
of A or from the general formula of the Fredholm theory. As already explained 
in Section I, it is our intention to compare the zeros of the first two terms of 
D(k) with the exact zeros. 

Expanding in powers of A and retaining only the first two terms, we obtain 
from (4) and (5) 

iAO r(l+a)=l--
2k' 

r(l +b)=r( 1+ 2ik) [1- iA'F(2ik)] 
\ fl. 2k fl. ' 

(35) 

(36) 

where 0 is Euler's constant and 'F is the logarithmic derivative of the factorial 
function (Jahnke and Emde 1945). Substituting in (9) and using (6), we 
obtain, up to the term linear in A, 

, iA [(2ik) ] f(k)=1+ 2k 'F (L' +0. . ............. (37) 

* In this respect the Rulthen potential is different from the square-well potential or the 
following potential: 

V(r) = Vo (rl <r<rz) (Vo> 0), 
=0 (r<rl or >rs)' 

The complex energies for the last potential are known from the Gamow-Condon-Gurney theory 
(Meller 1946). According to Blatt and Weisskopf (1952), there exist complex energies for the
square-well potential. 
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Let -iy~ (n=l, 2, ... ) denote the zeros of the right hand side of (37). 

(l}n= 2y n 

!L' 
(38) 

with Yn given by (11), and let (l}~ be similarly defined in terms of y~. We have 
then 

A 
(l}=--n 

n n!L ' 
(39) 

l-~ 'P'((l}~)+O =0. . ............. (40) 
!L (l}~ 

Each positive (l}n corresponds to a· bound state. 

We give below some numerical results for the first three zeros of the Fredholm 
determinant calculated from (39) and (40). 

(i) A=-!L: 
(l}1=-2, (l}2= -5/2, (l}3=-lO/3 ; 

(l}1=-1·4, (l}2=-2·4, (l}s=-3·3. 

(ii) A=t!L: 
(l}1=-1/2, (l}2=-7/4, (l}3=-17/6 ; 

(l}1=-0·24, (l}2=-1·S, (l}s=-2·S. 

(iii) A=!L: 
(l}1=0, (l}2=-3/2, (l}3= -S/3 ; 

(l}1=1, (l}2=-1·7, (l}s=-2·S. 

(iv) A=2!L: 
(l}1=1, (l}2=-1, (l}3=-7/3 ; 

(l}1=4·3, (l}2=-1·7 (l}s=-2·7. 

We have confined our attention to real solutions of (40). Since the exact form 
of f(k) has no complex zeros, it is probable that its approximate form has no 
<complex zeros either. 

The general trend of the above approximate results seems to be as good as 
<can be expected, although the numerical values for the binding energies of 
bound states are not accurate. The agreement becomes very bad, of course, 
in the case of strong coupling. For a very large value of A/!L, (39) gives many 
bound states, but (40) only one. 
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NOTE .ADDED IN PROOF 

A. The above results cruculated from (40) are encouraging, and suggest 
that one might attain quite good accuracy by using the expansion of f( -iy) 
up to the quadratic term, namely 

f( -iY)=I+~l( -iY)+(~)f2( -iy). . ............. (41) 

As may be easily verified, 

fl( -iy) = _ ['J!'(X~ +0], (42) 

1: ( -i )= ['Y(X) +0] + ['Y(X) +0] 2_ ['Y'(X) +1t2/6] 
2 y x3 2X2 2x2' .. (43) 

where x=2Y/!L and the function 'Y'is that of Jahnke and Emde (1945). There 
is, however, a simpler method which has been used in Adelaide for improving 
the accuracy, as Professor H. S. Green kindly informed the writer. Applied to 
the problem considered here, the simplified method amounts to dealing with a 
modified form of f(k), namely, 

f.f(k) f(k)ecnJ{L, .. • .. .. .. .. .. .. ... (44) 

where a is chosen such that the quadratic term in the expansion of f.f( -iy~ 
vanishes, so that, to this degree of accuracy, 

1-1.. 
f.f( -iy)= -(n-2f2)1. 

!L 
(45) 
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Let -iy~ denote the zeros of fA and x~=2y~/[l. One then gets, using (42) 
and (43), the equation 

1-~H,¥/(X~~t7t2/6J _2['¥(X;~tC] r =0. . ....... (46) 

Dr. I. E. McCarthy of the University of Adelaide has obtained numerical values 
for the first zero x; of (46). For our cases (iii) and (iv), his results are x; = -0·1 
and x; =1·15 respectively, which are much better than the results xl obtained 
from (40). 

B. Application of the Fredholm theory to scattering problems has recently 
been investigated in se'Veral papers. In particular, Dr. P. Swan of the University 
of Melbourne has called the writer's attention to his recent work on the reduction 
of the Schrodinger and the second order linear integro-differential equation to 
Fredholm's equation. Our present paper differs from these papers in that we 
are mainly concerned with a bound-state problem. 




