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Summary 

An analysis of the programmes for a number ·of computations performed by the 
C.S.I.R.O. Mark I computer shows that a great proportion of store space and operating 
time is occupied by the control of the course of the calculation, and that the proportion 
of the store space required as working space by a programme decreases as the size of 
the progr~e increases. The increasing use and great flexibility of interpretive 
techniques suggests that a very flexible, reliable computer, easy to use, could be con·· 
structed. Such a computer would possess only a relatively small amount of rapid
access erasable store, and a larger amount of rapid-access non-erasable store, in which 
would be held all interpretation routines, function blocks, and so on. The operator 
would require no knowledge of the actual machine code, but would place his hyper
programmes and dat,a into a slow-speed backing store. 

1. INTRODUCTION 
In a previous paper (Pearcey and Hill 1954) a very powerful technique was: 

described for the simplification of programme design in cases of complicated 
arithmetical computations. This is known as the interpretive technique and 
was described in detail as applied to the C.S.1.R.O. Mark I computer. The 
method is also applicable to a wide range of programmes and not necessarily 
restricted to essentially arithmetical computations. 

The effect of the interpretive technique, so far as the user is concerned, is 
to provide the computer with a number of additional and convenient functions· 
which are, to his view, built into the machine. Further, this set of functions. 
can be changed by use of different function blocks. 

The number of machine commands in the function blocks is frequently 
large, from 300 to 700 words or more depending upon the particular hyper
functions desired. Hyper-programmes are more frequently of the order of 100 
hyper-words only . 

.An analysis of the interpretive function blocks used in the C.S.1.R.O. Mark I 
computer shows that less than 5 per cent. of the space occupied by an interpretive' 
programme and its auxiliary routines is subject to change as the calculation 
proceeds. This estimate includes working space, variable commands and control 
parameters, link storage, and so on. 

This indicates that a new form of storage of very simple design, little of 
which need be erasable, could be used. Such a computer would operate entirely 
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interpretively and possess a simple machine code, amounting at mo st to only 
15 single operations. The user would require no knowledge of the machine code, 
but only of the hyper-code suitable for his computation. The programmer may 
(lhoose a function block with a standard hyper-code or design one to suit the 
})roblem. This would greatly assist users to programme for" difficult com
})utations ". 

Such a computer, effectively capable of doing very elaborate operations, 
(lould be constructed with less equipment than exists in most currently operating 
machines. This would considerably improve reliability, assist maintenance, 
and achieve a more even balance of the responsibility for designing and con
structing such a computer between the engineer and the mathematician. Simpli
fication and reduction of equipment relieves the engineer of much effort and 
Jllaces more responsibility on the shoulders of the mathematician, who designs 
-the routines for what the user could consider as " built-in" functions. 

II. ANALYSIS OF PROGRAMMES 

The commands of a programme can be grouped according to type (transfer, 
sequence shifts, addition, etc.), or according to their purpose (computation, 
sequence control, etc.). The manner in which the store is used is indicated 
by the proportion of store space occupied by such groups. The relative frequency 
()f performance of commands of such groups is a useful basis for estimating 
-(lfficiency of use of time. 

A number of widely different programmes and interpretive function blocks 
-have been analysed in these ways. The problem programmes include pro
grammes for X-ray crystallographic synthesis, experimental data analysis, 
integration of singular functions, evaluation of determinants, matrix operations, 
:and solution of various types of partial differential equations. The interpretive 
iSystems included those for floating decimal arithmetic, double precision 
arithmetic, and an arithmetic for which the index point occurs between the PH 
.and PIO digits, for both the real and complex variable. 

III. ANALYSIS OF STORE USAGE 

This analysis corresponds to a simple count of the commands of different 
:groups as they occur in written programmes. The results of grouping commands 
:according to type are shown in Table 1 for the case of problem programmes and 
interpretive function blocks. All values are percentages of the total store space 
<{)ccupied by the programme, excluding command space required only during 
insertion of the programme into the computer. The standard deviation listed 
'With each percentage is believed to be reliable to 1 per cent. 

It will be noticed that a rather large proportion, 32 per cent., of the total 
'consists of plain transfers. The small standard deviation of this group, 
~2-4 per cent., indicates that such transfers form an essential part of the pro
grammes and could not be reduced below about 30 per cent., even with the 
address system of Mark I. The overall length of programmes in a one-address 
system, like that of EDSAO, shows an average increase of 25 per cent. over 
-the store space occupied by equivalent programmes in the Mark I system. 
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Most of the increase is due to additional transfers required, which bring the 
proportion of store space occupied by transfers in a one-address system to about 
40 per cent. 

The frequency of " add" or "subtract" commands is seen to be greater 
in problem programmes than in interpretive function blocks. Greater inter
connection in function blocks increases the proportion of commands devoted to 
sequence shifts, which organize repetitions of the relatively smaller proportion 

TABLE 1 
STORE USAGE ANALYSIS: PERCENTAGE OF TOTAL PROGRAMME SPACE OCCUPIED BY COMMANDS OF 

VARIOUS TYPES 

Type 

Programme Add- Control 
Transfer Subtract Shift 

Problem programmes 32±2 24±4 17±2 
Interpretive function 

blocks .. . . 32±4 14±4 29±6 

Length of problem programmes, 100--300 commands 
Length of interpretive function blocks, 250--500 commands 

Discrim-
ination 

8±1 

5±I 

Variable Other 

4±2 17±5 

5±1 15±5 

of commands devoted to arithmetic operations. This emphasis, indicated by 
the proportion of sequence shifts, is found to increase with the degree of com
plexity of the arithmetical system. 

In both types of programme, discriminations are relatively few in number, 
5-8 per cent. Use of " E " and" G " type commands in the one-address EDSAO 
system for sequence shifts as well as for discriminations would bring the propor
tion of such operations to 20-30 per cent; It is very important to note that the 

TABLE 2 
STORE USAGE ANALYSIS: PERCENTAGE OF TOTAL COMMAND 

SPACE OF PROBLEM PROGRAMMES DEVOTED TO VARIOUS 

PURPOSES 

Computation 
Sequence control 
Linkage 
Command variation 
Other 

43±16 
23± 7 
15± 5 
13±10 
7± 1 

proportion of variable commands is quite small, 4-5 per cent. Although this 
type of command occupies relatively little space, it is vitally necessary in flexible 
programme design. 

The results of grouping commands in problem programmes according to 
purpose is shown in Table 2. This shows that less than half the programme 
space is devoted to calculation, and this includes all transfers etc. involved in 
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the actual calculation of results. Without transfers and similar organizational 
commands, the proportion devoted to calculation drops from 43 per cent. to 
about 30 per cent. Apart from the 7 per cent. devoted to connection with the 
user (input, output, hoots,* etc.) the remainder is devoted to controlling the 
course of the calculation. 

IV. MACHINE SPEED EFFICIENCY 

Since commands in some loops are repeated more often than others, a simple 
count of commands in written programmes is not a reliable indication of relative 
frequencies of performance of command groups. An analysis of performance 
frequencies shows considerably greater variation than the store space analysis. 
Depending on the programme, the proportion of time devoted to calculation 
of results varies from 30 to 70 per cent. The proportion devoted to organization 
varies from 70 to 30 per cent. Communication with the user by hoots, input, 
prints, etc. may occupy up to 50 per cent. of the operating time and is very 
variable. Of significance is the fact that multiplication occupies up to 25 per 
cent. of the time. In such cases, replacement of the machine operation by an 
equivalent routine for multiplication would decrease multiplication speed by a 
factor of about 240 and overall computing speed would be reduced by, at most, 
a factor of about 60. 

V. VARIABLES AND WORKING SPACE 

Only a small proportion of a programme changes during operation, and the 
working space it requires is only a small proportion of its size in the store. 

Programmes require working space for the data operated on (e.g. accumu
lators, temporary storage space, etc.), store space to hold constants, parameters, 
variable commands, count parameters, and other cycling controls. All locations 
occupied by data of these types must be erasable, since the contents change 
both during calculation and from programme to programme. In general the 
proportion of programme space occupied by such variables tends to decrease as 
the size of the programme increases, due to use of the same stores for variables 
of many routines. 

While single routines from the Mark I library, with lengths 30-90 commands, 
required 13-17 per cent. of their lengths for constants and working and variable 
spaces, problem programmes consisting of groups of library and special routines 
required only 4-10 per cent. of their overall length of 180-350 commands. This 
drop is largely due to use of the same working space for all routines, e.g. the 
working registers A, B, 0, D, and H. 

Problem programmes rarely exceed 350-400 commands in length. Problems 
requiring large groups of commands have been those suited to interpretive 
techniques, involving function blocks of lengths 300 commands upwards. The 
hyper-routines and hyper-programmes range in length from 100 commands 
upwards, but the amount of variable store required by the function block is 
independent of this further length. In estimating the variable space required, 
all hyper-registers (.A, X, S, il, etc.), temporary storage spaces, and link and 

* A "hoot" is a signal made audible by the loudspeaker. 
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loop control spaces must be included. About 20 locations are required for 
" control" registers, and a further 5n locations for "arithmetical" registers 
for n-word numbers. In cases of complex variables, this latter contribution is 
double that for real variables. Any increase in the effective value of n increases 
the total size of the function block (" n =4 " block is 40-60 per cent. longer 
than" n=2 " block), thereby tending to keep constant the ratio of variable 
space to programme space. For interpretive function blocks of lengths ranging 
from 250 to 600 commands used with the Mark I ·computer, this ratio was 
4 ,5-5·5 per cent. 

As the value of n increases, a stage is reached where it is more efficient 
to change from a one-address system to a three-address system. This avoids 
waste of store space for n-word arithmetical registers and waste of time for 
n-word transfers. Eliminating hyper-arithmetical registers causes the pro
portion of variable stores to decrease below 5 per cent. with increase in size of the 
function block. This suggests that there is an upper limit of about 100 store 
spaces to the amount of variable store needed by all types of programmes. 

Experience so far shows a greatly increasing use of interpretive systems in 
Mark I, with frequent use of the same function blocks. The general utility, 
simplicity, and flexibility of interpretive methods tends to make them popular 
with users. 

Computers, suitably designed for use of interpretive methods, could store 
the standard function block in a fixed or semi-fixed storage system of rapid 
access; only a relatively small additional amount of rapid-access erasable store 
being required for working space, etc. Large amounts of problem data would 
normally be held in a slower-access backing store since such stores of large 
capacity are inexpensive. Small amounts of problem data may be held also 
in more expensive rapid-access stores. 

VI. OPERATION RATES IN HYPER-CONTROL 

The advantages of interpretive methods are obtained at the expense of 
reduced speed of hyper-operations. Hyper-speed, the rate at which hyper
commands are performed, is considerably slower than machine-command speed 
and varies with the design of the function block used. A measure of the hyper
speed is the number of machine commands performed by each hyper-operation. 
This is listed in Table 3 for each hyper-function of a number of interpretive 
systems used in the Mark I computer. These values may be reduced to time in 
seconds for the Mark I computer by division by 500. The command symbolism 
for hyper-functions is that given in a previous paper (Pearcey and Hill 1954). 

It will be noted that machine commands, those hyper-commands not 
terminated by Z, are performed most rapidly (14-18 command times). Transfers 
to and from the accumulator, real addition and subtraction, hyper-sequence and 
hyper-count operations are relatively rapid (40-60 commands). Multiplication 
hyper rate varies from 50 to 100 commands for the real variable. Hyper rate 
for division and square rooting decreases from 100-300 commands for single 
word precision to about 1500 commands for extended precision, due to organiza
tional complexities introduced by extension to high precision. To the input 
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and output rates of 100-1000 commands must be added the time required for 
the mechanical operations of reading, printing, or punching. 

For complex variables the hyper rate of transfers is only slightly decreased, 
that of addition and subtraction is roughly halved and of multiplication, division, 
and square rooting is decreased by four to five times. 

The average rate of performance of any hyper-programme depends on the 
particular hyper-commands of which it consists. .An analysis of the frequency 
of use of hyper-commands has been made for hyper-programmes for solution 

Real Hyper-
operations* 

(np) ~A 
(np) .:i:;.A 
(np) .::;.A 
(np) ~A 
(np) ~A 
(np)l~A 

(np) ~Ot 
(1) ~np 

(A) ~'Y!.p 
n ~S 

n ~L 
(L) ~S 
np ~Dr 
np .::;.Dr 

(Dr ).:i:;.1( 

f(A)~A 
Machine com-

mand .. 

TABLE 3 
HYPER-SPEEDS 

No_ of Machine Commandst 
Complex 

per Hyper-operation 
Hyper-

A B C D 
operations 

40 40 43 50 (nq) ~A 
43 72 50 160 (nq) .:i:;.A 

55 72 51 ISO (nq) .::;.A 
104 57 51 150 (nq) ~A 

1500t 120t 123t 1400t (nq) ~A 
1500t 260t 250t 1700t (nq)l~A 

930§ lS0§ 100§ 9S0§ (nq) ~Ot 

240§ 190§ 130§ 320§ (1) ""-?'fl.q 

40 40 46 50 (A) ~nq 

34 35 40 42 I nq 12~Ap 
40 41 46 4S (np) ~Aq 
37 3S 43 45 (np) ~Ap 
45 46 51 53 nq ~Dr 
44 45 50 52 nq .::;.Dr 
43 44 49 51 

60t 60t 65t 65t 

14 14 16 IS 

No. of Machine Commands 
per Hyper-operation 

A B C D 

50 50 44 59 
90 ISO 57 400 

140 ISO 61 420 
430 350 77 1100 

4700t 750t 2S0t 4600t 
5000t 1400t 670t 6500t 
lS50§ 300§ 170§ 1900§ 
470§ 320§ 220§ 600§ 

52 52 52 66 
220 170 61 540 
250 130 79 390 

3500t 2S0t 220t 3000t 
45 46 51 53 
44 45 50 52 

-_ .. - -------_._---------

* The command symbols are those described by Pearcey and Hill (1954). 

t The arithmetical systems involved in the columns of hyper-rates are: A, double precision 
arithmetic; B, floating decimal arithmetic; C, arithmetic with index point between Pw PIO 

digits; D, floating decimal index, double precision arithmetic. 

t Average values only. 

§ Not including mechanical printing or reading time_ 

of polynomial equations using complex arithmetic, integration of singular func
tions using floating index arithmetic, and matrix operations in floating index, 
double precision arithmetic. 

Of all the hyper-commands performed, hyper-transfers form 10-40 per cent., 
hyper-control operations 10-40 per cent., addition and subtraction 5-20 per cent., 
multiplication 5-20 per cent., and machine commands less than 30 per cent., 
while the relatively slower operations, division and square rooting, require less 
than 5 per cent., with input and output less than 5 per cent. 
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By suitably combining the hyper rates with the frequencies of performance 
of hyper-commands, an average hyper rate of 50-90 is obtained for the cases 
cited. For an estimate of efficiency these figures must be compared with the 
average speed with which such operations could be performed by the direct 
technique of cueing and linking outlined in a previous paper (Pearcey and Hill, 
1953). By direct techniques the duration of each hyper-operation could be 
decreased by omission of the 30 "redundant" machine commands in the 
interpretation loop reducing the equivalent operation speed to 20-60 machine 
commands per hyper-operation. .At the same time most hyper-commands 
would be replaced by 2-3 machine commands for planting address, link datum, 
and operation code, thus doubling or trebling the length of the hyper-programme. 
Thus interpretive techniques are seen to be roughly twice as expensive in time 
and half as expensive in command space as direct programme techniques. 

VII. REFERENCE TO SLOW-ACCESS STORE 

If problem data and hyper-programme are stored in a slow-access store 
such as a magnetic drum, operating speed would be seriously reduced if transfers 
to and from the slow-access store were very frequent. While all the hyper
operations would require a transfer of the hyper-command from the slow-access 
store, a proportion p involve a further transfer of an n-word number. In an 
interpretive system for n-word numbers, with an average hyper rate of r machine 
commands performed for every hyper-command, some r!(l+pn) machine 
commands would be performed on the average for very slow-access store transfer. 

In the cases cited, r!(1+pn)=15, 20, 50, so that, unless the access time of 
the low-speed store were more than 50 times that of the rapid-access command 
store, there would be no serious reduction in operating speed. The store access 
ratio (ratio of low-speed to high-speed access times) should not be greate! than 
50 and preferably less than 15. 

VIII. BEARING UPON FUNCTIONAL DESIGN 

The results of these discussions have direct bearing upon the functional 
design of computers. The factors which are seen to be importanp are as follows: 

(1) The interpretive method simplifies programme design and has the effect 
of providing the user with many additional "built-in" functions. 

(2) The interpretive method is flexible, the code and address style being 
chosen at will. 

(3) Function blocks can be designed for interpretive programmes which 
will be of very common use. .A small number of standard blocks would satisfy 
the great majority of users. 

(4) The proportion of the store required by a programme as working space 
decreases as the size of the programme increases. For interpretive arithmetical 
programmes this is about 5 per cent. of the programme space only. This only 
need be erasable during operation, apart from the problem data store. 

(5) Considerable time is spent by transfers and control operations and in 
the control of the programme itself. 
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(6) Reference to data for computation is relatively infrequent. Such data 
could be held in a slow-access store with only a small degree of loss of time. 

(7) About 50-90 machine commands are performed to each hyper-command. 

Accepting these points, a computer could be designed having adequate 
speed, relatively simple engineering requirements, and great flexibility and 
ease in programming. Thus we may adopt the following principles for its 
design : 

(1) Use the interpretive method of programming entirely. 
(2) The machine code should be short and possess only a small number of 

simple functions, e.g. a one-address system. 
(3) The user would use only a hyper-code and would not require knowledge 

of the machine code. 
(4) Commands should be adopted from a rapid-access store, data and hyper

programmes being held in a slower access or backing store. 
(5) The rapid-access store need have only a small fraction of its total 

capacity erasable, the rest fixed, since function blocks would be stored per
manently. The erasable store would be used as working space for the function 
block and its associated interpretation routine and directory. Provision should 
be made for adopting variable commands from the erasable part of the store. 

From this it will be seen that the hyper-programme and problem data, 
the parts supplied by the user, would normally be held in a backing store only. 
The machine adopts ~ts commands from the rapid-access store. The fact that 
only a small part of the high -speed store need be erasable should considerably 
simplify the engineering problems associated with rapid-access storage. 

IX. THE STORE 

As in the case of most computers, the logical design depends largely upon 
the physical nature of the storage system adopted. Much effort is expended 
in the design of large-capacity storage systems possessing write-erase features 
and rapid accessibility. This expenditure could be avoided with probable 
reduction of equipment and additional reliability if a small amount of rapid -access 
erasable store were used together with a larger amount of fixed or, rather, semi
permanent store. The erasable store would provide working space and all 
hyper-registers, and the function blocks providing the hyper-functions would be 
inserted into the non-erasable store. These stores will be called the variable 
and fixed high-speed stores. The serial mode of operation will be presumed on 
the grounds that less equipment is required in the control and operation of such 
a computer than in an equivalent parallel operating machine. Digit recurrence 
rates of at least one megacycle should be attainable. 

It is also clear that a large backing store must be provided for storing large 
amounts of erasable problem data and the hyper-programme and hyper-routines. 

X. FIXED HIGH -SPEED STORE 

For the fixed store a "flying spot" system similar to that used in the 
transmission of films by television seems a possible technique, not requiring 
excessive effort for development. In this system the image on the screen of 



.INTERPRETIVE TECHNIQUES AND COMPUTER DESIGN 513 

a high definition cathode-ray tube is focused upon a film frame which is scanned 
by a light spot tracing a raster on the face of the screen. The light transmitted 
by the film is detected for transmission by a photomultiplier tube. 

By replacing the film by a matrix representing the routines of the function 
block and other standard routines, and controlling the passage and position of 
the light spot on the screen, the output of the photomultiplier tube may be made 
to provide commands to the computer. 

The advantages of such a system would be those of relatively small amounts 
of standard equipment, high digit capacity per frame of the matrix, and small 
access time equal to the time required to shift the spot from one place to another. 

Commands and standard constants could be stored on the matrix in rows 
of spots in binary code. It seems possible to store up to one thousand 16-digit 
commands on one matrix. The application of suitable deflexion voltages 
corresponding to a given serial number would position the spot ready to read 
out a selected command. The spot may then be brightened and moved across 
the screen at a fixed rate so as to scan the required word on the matrix. Such a 
scheme would provide serial transmission of digits, with a possible digit rate of 
one megacycle. 

In practice it may be possible to avoid the use of an optical system by 
placing the matrix directly against the cathode-ray oscilloscope face. The 
store could be extended by addition of similar units. 

The disadvantage of the fixed store is that special matrices must be con
structed either photographically or mechanically. Against this argument, 
however, such matrices would be standard, few in number (about 20 different 
matrices), made once only, and frequently used. 

Other methods of constructing stores involve the use of one element for 
each digit as in the case of magnetic cores or dielectric elements. With the 
former of these a considerable reduction of the number of cores can be attained 
by suitably weaving a number of reading circuits through one row of cores. 
However, for convenience of rapid changing the optical system is preferable. 

The use of fixed store matrices would relieve the programmer of much 
tiresome work in the use of multiple accuracy and other elaborate arithmetical 
methods. 

XI. ERASABLE HIGH -SPEED STORE 

This store could take one of a number of possible forms, such as magnetic 
core or electrostatic matrices, delay lines, etc. Delay lines, although" volatile", 
may be made to operate at higher than one megacycle recurrence rates and 
would be highly suitable for serial operation. The access time would be reduced 
by having as few words as possible placed in each delay line, consistent with 
there being a reasonably small amount of equipment. One possible means of 
achieving this is to adopt a " multiplex" scheme in which more than one word 
is held in a delay line of one word " length" by interspacing the digits of the 
words stored. The access time to any word is thus reduced to a maximum of 
one word-time. 
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The digit period of both types of store must be the same since the transfers 
are presumed to be serial. The storage locations may be numbered serially 
(0 to N -1), the erasable store occupying the earliest positions (0 to M --I), 
with the fixed store following without a break (M to N -1). 

XII. LOW-SPEED STORE 

This will be referred to by the programme held in the high -speed store and 
will thus not be required to possess an access time as small as that needed in the 
high -speed store. Nevertheless, the access time for the backing store, or low
speed store, should be as small as possible within reasonable engineering safety 
margins. This store would probably take the form of a magnetic drum, a system 
which is known to be highly reliable and economical in space and equipment. 

XIII. THE CODE SYSTEM 

Commands of the fixed store matrices are recorded in "machine code", 
each code number corresponding to a single machine function. This code is 
fixed by the design of the machine. The interpretation codes are variable and 
are chosen by the user or the mathematician to suit the type of calculation. To 
each of the different interpretation codes there will correspond a set of machine 
code matrices. It will be assumed that the machine operates in the binary code, 
with complementary representation of negative numbers, the sign digit being the 
last digit transferred in each word. 

XIV. THE MACHINE CODE 

From the point of view of simplicity of use, of logical design, and of minimum 
equipment the best design would involve serial operation in a one-address _ code 
system with only essential machine functions. The consequent disadvantages 
of increase in programme size and reduction of machine speed is amply compen
sated by the size of the cheap store available and its reduced access time. 

Each high-speed store location will be referred to by its address n, and its 
content denoted by (n). The total number of low-speed store locations will be 
N' and any particular such location will be referred to by its address n' with 
content (n'). 

We shall assume that one word occupies 16 binary digits, although this 
may be chosen at will, and that all transfers called by the machine code will be 
16-digit transfers. There would be no basic change to make such a machine to 
possess a 16-digit command code and to transfer 32 digits under such a code . 

.A central accumulator A of double length capacity, i.e. 32 digits for 16-digit 
transfers, whose content is denoted by (A), must be provided. The accumulator 
could be of the delay line type with suitable input and output gates and special 
devices for multiplication and left shifts. Though multiplication could be 
performed by a programme stored in the machine by repeated addition and 
shifting, it is so frequently used in practice that it is best to provide built-in 
multiplication. In this case additional arithmetical registers must be provided 
but need not be referred to explicitly by the machine code. 

Operation proceeds serially, that is, commands are adopted from sequential 
high-speed store locations except when transfers of control are called. The 
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sequence register containing the current command address will be referred to as 8 
and its content as (8). The sequence register must be provided with a i-adder 
so that it may generate sequential addresses by addition of a unit digit from the 
sequence unit after extraction of each command. These facilities would also 
be used whenever sign test functions are called. The interpreter, which receives 
each command for decoding, will be denoted by K. The input register I and 
output register 0 connect the machine with the operator . 

.All commands will contain a store address and a function number. Some 
of these functions will refer to variable store O<n<M, to the fixed store 
M <n<N, and to the backing store O<n' <N', and we want to allow N' to be 
as great as possible. 

It is found that there are only three commands which refer to fixed store 
locations and to low-speed store locations. These are: 

(1) Shift control to n denoted by n-,-8 
(2) Transfer (A) to n' in 

the low-speed store 
" " 

(A)-,-n' 
(3) Transfer (n') in the 

low-speed store to A " " 
(n')-,.-A 

A special group of two digits in the function part of the code may be used 
to distinguish these from all other functions. These may be the two most 
significant digits, i.e. P16 and P15 of a 16-digit command consisting of digits 
P16' P15' .•. , PI in descending order of significance. 

Other commands refer only to the erasable high-speed store O<n<M, 
for which fewer address digits are required, e.g. PH ... , Ps provides for 

·O<n<256. 
Hence the following address scheme may be adopted: 

P16 Pl5 PlrP9 PS-PI Function 
1 l~<n'<N' - (n')-,.-A 
1 ,O~<n'<N' - (A)-,-n' 
0 l~<n<N - n -,.-8 
0 O+--Function code_+-O<n<M_ Other functions 

As illustrated, Nand N' would be limited to 16,384 locations. This is 
probably excessive for N. 

The remaining functions may be chosen as follows and refer only 
to O<n<M: 

(1) TransfeJ,' (n) to A (accumulator) denoted by (n)-,.-A 
(2) Transfer (A) to n 

" " 
(A)-,.-n 

(3) Add (n) to (A) and hold the sum in A 
" " (n)-tA 

(4) Subtract (n) from (A) and hold the 
difference in A 

" " (n)..:;.A 
(5) Form digit by digit product of (n) with 

regard to (A) and place in A 
" " (n)...;..A 
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(6) Form product of (n) and (A) and place 
inA " " (n)~A 

(7) Rotate (A) by n places to the left 
" " 

n--,.L 
(8) If (A) is -ve add unit to 8 (sequence 

register) " " 
8(A)~8 

(9) Transfer content of input register 
(I) to location n 

" " 
(1)--,.n 

(10) Transfer (n) to output register 0 
and record " " 

(n)--,.O 
(11) Transfer (8) to location n 

" " 
(8)--,.n 

(12) Transfer (n) to 8 
" " 

(n)--,.8 
(13) If (n) non-zero stop sequence 

" " 
(n)--,.T 

(14) Transfer (n) to the interpreter K 
and add the next command to it " " (n)-tK 

Of these commands, (5) is useful in any interpretation routine and will 
therefore be used in all programmes, and (7) a.llows of both the greater and lesser 
half of products to be transferred from A and also facilitates the use of strobe 
methods in routines. 

Command (8) allows all discriminations to be made, with the aid of the shift 
command (7) on any digit not necessarily the sign digit. Commands (11) and 
(12) allow links to be stored in the erasable store and hence allow transfers to 
and from routines in the fixed store to be made. Command (14) is special and 
allows for variable commands. The address may be stored as a parameter in 
the erasable store at n. If (n)-tK is pla.ced in m and (A)--,.4 is pla.ced in m+l, 
then the la.tter command is adopted as (A)--,.4+(n). It will be noticed that 
machine commands may be adopted from either the fixed or erasable stores and' 
that the serial ordering of the locations of the erasable part continues into the 
fixed store, some locations of which may exist for which n <M. Standard 
data used by the function blocks will lie either in the erasable store or in that 
part of the fixed store for which n <M. 

XV. STORE SELECTORS 
Considerable convenience is achieved by adopting commands from the 

erasable store as well as from the fixed store. This would assist in insertion of 
hyper-programmes and data by enabling the insertion routine to be held in the 
erasable store. Further, short programmes of standard type or short hyper
programmes could be stored in the erasable part. 

There would be three store selector units, ea.ch of a different type; one 
for the erasable store, one for the cathode-ray oscilloscope fixed store, and one 
for the backing store. In selection of commands the contents of the sequence 
register would be transmitted to two selectors, that .for the erasable store and 
that for the fixed store. If 0«8)<M, the P14-Pg digits would be zero and 
Pg-Pl digits in the erasable store selector would operate a "tree-type" selector 
preparing the erasable store to transmit. For M «8) <N,the P14-Pn digits 
(P14-P9 digits not all zero) in the fixed-store selector would apply the required 
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deflection potential for placing the spot on the cathode-ray oscilloscope at the 
beginning of the required trace. The digit group P14-P9 thus selects which 
part of the high-speed store is used; if this group is clear of units the erasable 
store will be operated; otherwise the fixed store would be used. 

The backing-store selector could be of the counting-coincidence-selector 
type operated by digits PI-P14 (O<;n<N') and would be used in selection of 
locations for transmission of data or hyper-commands during performance of 
machine commands. 

XVI. THE HYPER-CODES 

Hyper-functions will vary and be chosen at will, and for each set suitable 
matrices will be designed. 

In particular, three hyper-functions may refer to addresses n' in the low
speed store where O<;n' <N'. These will be: 

(1) Transfer hyper-control to n' 

(2) Transfer the p-fold hyper-word in 
locations n' to n +p -I' to the 
hyper-accumulator 

(3) Transfer the content of the p-fold 
hyper-accumulator to the p-fold 
hyper-word in location n' to n+p-l' 

denoted by (n')__._S 

" " (np')__._A 

" " (A)--,..np' 

In these functions p will be implicit and specified in the routines of the fixed 
store (see Pearcey and Hill 1954). All other hyper-functions will refer at most 
to the M locations of the erasable store. In such cases, n( <M) must be specified 
in the hyper-command, for instance, in digit positions PI to Ps, leaving digits 
P9 to P14 for the remaining hyper-function code providing for 64 possible hyper
functions. 

By suitably choosing the hyper-code it may be possible to extend the code 
to additional hyper-functions and to change from one to a:p.other mode of inter
pretation, packing more than one hyper-command into a single word, or extending 
to a two- or three-address hyper-code as desired. 

XVII. ORGANIZATION OF THE COMPUTER 

The computer would contain only the essential registers. The cycle of 
operations would be as follows: 

(1) The content of the sequence register is transmitted to the high-speed 
store selectors. 

(2) The selected command is transmitted from the high-speed store to the 
interpreter register where it is decoded, and a unit is added to the sequence 
register. 

(3) The numerical address held by the interpreter is transmitted to the 
high-speed store selector and to the low-speed store selector and the function 
addresses decoded by suitable selectors and suitable gating operations. 

(4) The required transfer between registers takes place. 
K 
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In the first of these operations the sequence register content is transferred 
to both fixed store and erasable store selectors. If the PO-PH digit group is zero, 
the command is selected from the erasable store; otherwise from the fixed store. 
In the second operation of the computer sequence, the interpreter receives the 
command. The transfer occurs over a minor cycle period coincident with digit 
periods PCPI6. 

Decoding would occur in three parts. The interpreter may be thought of 
as a distributed constant delay line and similar to the sequence register. Digits 
P15-P16 are connected to a separate decoder providing four outputs. Digits 
PU-PI4 are connected to a "function decoder" of the tree type. Digits PI-P14 
are transmitted in parallel to the variable store selectors and to the backing store 
selectors by activation of gates by the sequence unit waveforms. 

Transfers from the sequence and interpreter registers could be made in 
parallel by initially tapping along the lines for the output digits. 

For two of the configurations of Pl51 Pl6 digits (1,1 and 0,1) the backing store 
output or input gate is activated, the store location being selected by the PCPH 
digits in the backing store selector. If the Pl5' Pl6 digits are 1,0 respectively, 
the PI-P14 digits of the interpreter are gated in parallel to the sequence register. 
the configuration 0,0 of Pl5' P16 digits permits the PU-PH decoder to be activated, 
selecting the required function by opening gates for transferring the PI-PS 
digits in the erasable store selector to select the datum location. 

Thus, in the first operation of the computer-sequence, either erasable or 
fixed stores may be called to transmit, and in the third operation either the 
backing store or erasable store is involved. In the case of low-speed backing 
store transfers, the sequence unit must not stimulate action until coincidence is 
found by the selector. 

XVIII. SPEED OF OPERATION 

The speed of operation obtained depends upon the access time of both rapid 
and slow stores. It· seems reasonable to choose these speeds such that the 
access time of the low-speed store is about 20~40 times the access time to com
mands, so that operating time is fairly e"V'enly divided between high -speed 
commands and backing store transfers. 

The one-address system suggested turns out to be similar to that adopted 
for EDSAC (Wilkes, Wheeler, and Gill 1951) and differs considerably from that 
of the C.S.I.R.O. Mark I computer. It may be expected, therefore, that the 
function blocks designed for the proposed machine would occupy 25 per cent. 
more words than those listed in Table 3. The estimate of high-speed commands 
to each backing store transfer, suitably weighted, would amount to about 
30 high-speed commands. 

If we put the access time of the backing store at about 4 msec (in practice 
the smaller this is the better) and assume that a further 4 msec be occupied by 
the 30 high-speed operations, we arrive at a period of about 133 {lsec per high
speed function. At a 1 megacycle recurrence rate, the two serial transfers 
would occupy 32 {lsec, leaving over 50 {lsec each for operations 2 and 4 in the 
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computer cycle which involves switching or transferring digits to selectors and 
raising the selectors to suitable marginal levels. These speeds appear readily 
attainable and might even be exceeded. 

At such a speed of operation the proposed computer would be able to do 
floating index and double precision operations at about one-eighth of the speed 
now required by the Mark I to perform normal operations, and corresponds to 
an increase in real speed over the Mark I for similar operations by a factor of 
five. 
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