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Summary 

An approximate method is given for finding the equilibrium distribution of arrays 

of dislocations. The analysis is based on the assumption that an array of discrete 

dislocations may be replaced by a continuous distribution of smeared dislocation. 

The solutions of a number of problems of physical interest are investigated, including 

some in which dislocations of opposite sign are involved. 

I. INTRODUCTION 

Eshelby, Frank, and NabaITo (1951) have considered the problem of the 
position taken up by a set of identical straight dislocations, which are constrained 
to lie in some part of the same slip plane, under the combined action of their 
repulsions and the force exerted on them by a given applied shear stress. 

Their method of solution, although exact, is subject to a number of dis
abilities in practice. In any particular problem it is apparently necessary to 
guess a function q(n, x) which will give a polynomial solution to the differential 
equation representing the problem. If an appropriate q(n, x) can be chosen 
then the dislocations will lie at the zeros of the polynomial solution. However, 
this polynomial may be one whose zeros are not tabulated and, if the number of 
dislocations, n, is large, much computation is then necessary. Furthermore, 
one does not usually obtain a general picture of dislocation distribution from 
such a computation. 

We shall consider here an approximate method for the solution of the 
problem of Eshelby, Frank, and NabaITo. The approximation made is to 
replace the discrete distribution of fi.nite dislocations by a continuous distribution 
of infinitesimal dislocations with the same total Burgers vector. The problem 
is then to find the density of dislocations at any point such that the distribution 
is in equilibrium under its mutual forces and that applied externally. This 
leads to the problem of inverting a singular integral equation, which is a routine 
proced,ure. 

This approximation can be expected to involve little eITor when the distance 
between dislooations is of the same order as their width. Since these conditions 
are likely to occur near the head of any aITay of practical ,significance, it is also 
likely that the dislocation stresses near this region carn be evaluated with reason
able accuracy if the equilibrium distribution of smeared-out dislocation can first 
be determined. One advantage of this method is that it will deal as easily with 
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distributions of dislocation of opposite sign as with those of the same sign. 
The method of Eshelby, Frank, and Nabarro will not treat the case of the 
interaction of dislocations of opposite sign. 

II. FORMULATION OF PROBLEM 

Suppose that the plane y =0 is the slip plane, that the dislocation lines are 
parallel to the z-axis, and that they can move along the x-axis. Let f(x) be 
the dislocation density at any point on the x-axis, with the convention that f(x) 
be positive in regions of positive dislocations and vice versa. Let P(x) be the 
appropriate component of the applied stress tending to move the dislocations 
along the x-axis, and take P(x) to be positive if it tends to move a positive 
dislocation in the positive direction of the x-axis . 

.A small element of dislocation of strength ejA at x produces a stress at Xo 
given by 

A e cr=-� , ...................... (1) xo-x 
where A = '0A(2n for screw dislocations and A = '0Aj2n(1-v) for edge dislocations, 
where '0 is the shear modulus of the material assumed isotropic, v is Poisson's 
ratio, and A is the Burgers vector of a unit dislocation. Hence the stress at Xo 
due to the applied stress and the distributed dislocation is given by 

S(xo) =P(xo) +A -. -dx+T(xo), . .. .... .. . (2) f f(x) 
D xo-x 

where the integral is taken over all regions D of the x-axis where there is 
dislocation pres

'
ent. T(x) represents very short range stresses, with say the 

form of a Dirac a function, which may be necessary for equilibrium at the ends 
of an array. 

Since a dislocation will move if there is any net stress at its centre (excluding 
that produced by itself), the dislocation distribution can only be in equilibrium 

if S(xo) =0 in the regions D of dislocation. Therefore we must have 

f f�) dx-T
A
(Xo) =P

A
(Xo) 

............... . (3) 
D x Xo 

for all points Xo in D and in particular for those at which T(x) =0. Since we 
exclude the self stress of a dislocation from the condition of equilibrium, the 
Cauchy principal value of the singular integral in (3) is to be taken. The 
inversion of this singular)ntegral equation to find f(x) for a given P(x), with 
T(x) =0, is given by the following theorem. 

III. INVERSION THEOREM 

Singular integral equations such as (3) have been investigated by 

Muskhelishvili (1953a, 1953b) and the inversion theorem for (3) is the following 

(Muskhelishvili 1953a, p. 251). 
Suppose P(x) is a known and f(x) an unknown function and that D consists 

of p finite segments of the x-axis (al, bl), (a2, b2), • • •  , (ap, bp). Suppose that 
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at q of the end-points of the segments, denoted. by C1) C2, • • •  , Cg, f(x) is to remain 
bounded, and that at the remaining 2p -q end-points, denoted by c'1+H 
c'1+2' • • •  , c2P' f(x) may be unbounded. Let 

g • R1(x)= IT (x-ck), R2(x)= IT (x-ck). 
k�l k�'1+l 

Then, if p-q > O, solutions of (3), bounded at C1) • • •  , cq' always exist and are 
given by 

f(xo) = �1 jIR1(XO)}J jf R2(X)}P(X)dX +j I R
R1(XO)}Qp l(XO)' • •  (4) 

7t A "( R2(xO) D "( R1(x) x-xo "( 2(XO) -q-

where Qp-'1-l(XO) is an arbitrary polynomial of degree not greater than p-q-1 
(it is identically zero for p =q). 

If P -q <0, a unique solution, bounded at c1) • • ., c'1' exists if and only if 
P(x) satisfies the conditions 

J 
D
j{�:i:nxnp(X)dX=O, for n =O, 1, . . .  , (q-p-1), .... (5) 

and if this is so the solution is given by (4) with Qp_Q_l(X)-O. Moreover at a 
bounded end-point, f(x) vanishes. 

IV. END CONDITIONS 

Most of the problems considered by Eshelby, Frank, and Nabarro are of the 
type where a group of dislocations would move off to infinity owing either to 
their mutual repulsion or to an applied stress. They are prevented from doing 
so by a barrier in the form of a dislocation which is locked in position by a 
loealized stress. 

When setting up the same problem in our approximation we can proceed 
in one of two ways. Either we can leave the locked dislooation intaet and 
only smear the free dislocations, or we ean smear the locked dislocation too, in 
whieh ease the barrier to the dislocation distribution beeomes the loealized stress 
field which loeked the dislocation. This latter type of barrier, whieh we shall 
term a bloek, we take as a repulsive stress field which rises suddenly from zero 
to infinity. The effect of such a barrier has been taken into account in (2) 
and (3) by the term T(x). For a loeked disloeation it is found that the 
appropriate boundary condition onf(x) is that it beeomes zero at a small distanee 
from the loeked disloeation, this distance being a function of the stress forcing 
the distribution against the barrier. 

V. EXAMPLES 

The general method will be illustrated by some problems of physical 
interest. Some of these have already been eonsidered by Eshelby; Frank, and 
Nabarro, and a comparison of the results obtained by the two methods indioates 
that the approximate method is little in error. 

(i) n positive dislocations in the potential trough given by P(x) = -Cx. f(x) 
will be symmetrical about x=O, and we assume it becomes zero at x=±a, 
where a will depend on n. 
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With the notation of Section III we have 

p=1, q=2, 
R1(x) =(x2_a2), R2(x) =1, 

and since p -q <0 a solution will exist only if P(x) satisfies ( 5). As this is so 
it follows that f(x) is given by (4) to be 

o . 
f(x) = A n y(a2-x2). . . .............. (6) 

The constant a is determined by 

which gives 

a=y(2nA jO). . . . . . . . . . . . . . . (7) 

It is not possible to compare (6) with the corresponding result of Eshelby, 
Frank, and Nabarro, but they find that all dislocations lie in a region 

I x I <y{(2n+1)A jO}, 
which is nearly equal to the value given by (7). 

(ii) n positive dislocations between blocks at x = ±a with no applied shear 
stress. Since P(x) =0 we get a non

'
-zero solution for f(x) only if we allow it to be 

unbounded at X= ±a. 
Then 

p=1, q = O, p-q>O, 
R1(x) =1, R2(x) =x2 -a2, 
f(x) =Qoj y(a2 _X2), 

where Qo is the arbitrary constant which the arbitrary polynomial Q p-q-l in (4) 
becomes. Qo is determined by 

n= J�PX)dX' 
which gives 

Qo= njn. 
(iii) n positive dislocations between unit positive dislocations locked at x = ±a. 

Let f(x) become zero at X= ±b (b <a). Then 

p=1, q=2, p-q<O, 
R1(x) =x2_b2, R2(x) =1, 

and a solution will exist if 

P(x)=A � �+_1_1 (x+a x-a) 
satisfies (5). This it does and (4) gives 

2a y(b2-X2) f(x)= ny(a2_b2) a2-x2 ' 
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and b is determined by 

to be 

n =Jb 
f(x)dx 

-b 

b =ay{l-( tn+1)-2}. 

5 

(iv) n positive dislocations on the positive half of the x-axis, forced against a 
block at x =0 by a uniform stress P(x) = -cr. Let f(x) be bounded at x =a and 
unbounded at x=O. Then 

and (4) gives 

a is determined by 

as 

p =l, q =l, p-q =O, 
Rl(x)=x�a, R2(x) =x, 

f(x) = TI� J e -;;X). 
n =  J: f(x)dx 

a =2nA/cr. 

(8) 

( 9) 

Eshelby, Frank, and Nabarro have considered this case and (8) and (9) are in 
agreement with the expressions they have found by the exact treatment. 

The total stress at any point on the x-axis due to the dislocation distribution 
and the applied stress is given by (2) as 

S(x) = -cr J (x -;;a) , x>a, x<O, 

=0, a>x>O. 

(v) Blocks at x = ±a and a dislocation source at x =0. A uniform stress 
P(x) =cr causes the source to generate equal numbers of positive and negative 
dislocations which move off in opposite directions until held up by the blocks. 
The source continues to generate dislocations until the net stress at the source 
is reduced to zero. f(x) will be unbounded at x = ±a, so 

p =l, q =O, p-q>O, 
R1(x) =1, R2(x) �x2-a2, 

f cr 
x Qo (x) = TIA y(a2-x2) + y(a2-x2)' 

where the arbitrary constant Qo is determined by the position of the source. 
Since f(x) changes sign on either side of the source it will be zero at the position 
of the source. Hence Qo is zero for the simple symmetrical case. 

The number of positive dislocations generated is given by 

n =  f: f(x)dx=cra/TIA, ... ........... (10) 

and is equal to the number of negative dislocations. 

The stress on the x-axis beyond the blocks is given by (2) as 

S(x)=cr I x l/y(x2-a2). 
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This is identical with the expression given by Starr (1928) for the stress in front 
of an infinitely narrow two dimensional crack extending from X = -a to x =a 
under a uniform applied stress. This is not surprising since it may be seen that 
the two problems are physically the same. 

(vi) Blocks at x= ±a with n positive dislocations between x=b and x=a, 
and n negative dislocations, between x = -band x = -a, held apart by applied 
stress P(x) =0". Let f(x) be unbounded at X= ±a and bounded at X= ±b. 
Then 

where the sign is to be taken as positive for b <x <a and as negative for 
-a <x < -b. b is related to the number of dislocation pairs by the relation 

n =  7t:I: J (::=::)dX 

= 7t:f aE[ y(1-b2/a2)] -�K[ y(1-b2/a2)] } 
where K and E are complete elliptic integrals of the first and second kinds 
respectively. Ifn is small, or to be more exact if b is nearly equal to a, this 
becomes 

For b equal to zero this gives 

n�O"a/2A) 

which is approximately the value given by (10). 
(vii) n positive dislocations beyond x =a and n negative dislocations beyond 

x = -a, driven together by a uniform stress P(x) = -0", but prevented from coalescing 
by blocks at x = ±a. Let the distribution be bounded at x = ±b and unbounded 
at x = ±a. Then 

and b is given by 

b � (4b' } 
�:

A
l ln a) -1, for b>a. 
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