
A METHOD OF CORRECTING THE BROADENING OF X-RAY 
LINE PROFILES 

By R. N. BRACEWELL* 

[Manuscript received September 8, 1954] 

Summary 

A numerical method is presented which allows X-ray line profiles Ito be corrected 
for instrumental broadening. It provides an alternative to the use of Fourier analysis 
as described by Stokes. A special development of the method (as hitherto used) is 
necessary to permit its application to X-ray analysis where the Koc doublet constitutes 
a complication. 

1. INTRODUCTION 

X-ray powder photographs taken with characteristic X-radiation reveal 
facts about the powdered material, such as size of particle and condition of the 
crystal lattice structure, which have given rise. to the developing subject of 
X-ray metallography (see Taylor 1945). The information is contained in the 
shape of the line profile as measured from the X-ray photograph with a micro
photometer or directly with a Geiger counter spectrometer. However, the 
profile is subject to influences other than that under study and it is necessary 
to make allowance. For example, if the size of the particles is of interest, 
allowance must be made for the geometrical details of the X-ray camera and a 
number of other factors which combine to produce appreciable broadening; 
and if the state of strain of the lattice is under study then it is necessary to 
allow, in addition, for the broadening due to .the finite size of the partiCle. 
Furthermore, Kot radiation, commonly used in X-ray powder diffraction, is in 
fact a doublet which causes further complication when conditions are such that 
it is neither fully resolved nor fully unresolved. 

In el;lJrly work Scherrer corrected the width of the observed line by sub
tracting the width obtained when the phenomenon under study was absent. This 
is hardly.reasonable (although there is a special case in which it is valid), and 
subsequently Taylor (1941) considered the modifications which arise if the line 
profiles are Gaussian. In this work the observations were not deemed adequate 
to yield more than one parameter, the line width. It has since become desirable 
to calculate the line profiles without initial assumptions as to shape. The 
Fourier analysis method for this has been described by Stokes (1948) and a 
relaxation method has been given by Paterson (1950). 

The basic problem arises in very many connexions and has been recently 
discussed, with respect particularly' to radio astronomy, by Bracewell and 
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Roberts (1954). The prooess of successive substitutions, whioh they describe, 
ought to be applicable in X-ray analysis, bringing with it its advantages. Direct 
application is, however, usually impossible since the splitting of the Kat line 
oauses the process to diverge. This difficulty has been overoome by the intro
duction of a simple method of removing the effeot of the doublet. 

The .. present method is free from the subjeotive element of Paterson's 
method and rather shorter. It is much less laborious than Stokes's method. 
The latter method is, however, the appropriate one where, as in lattice distortion 
studies (cf. Averbach and Warren 1949), one requires the Fourier transform of 
the corrected profile. 

II. THE PROBLEM 

Let A(~) be the apparatus function or instrumental profile. In the typical 
case shown in Figure 1, A (~) has two humps corresponding to the two components 
of the doublet, and the broadening of each component is due to the geometry 
of the camera, etc. This profile was determined experimentally on annealed 
aluminium. If the aluminium il;! now subjected to cold work which would 
broaden an infinitely narrow line into a profile F(~), then the distribution actually 
observed would be G(~). 

Fig. 1 

The actual case illustrated in· Figure 1 and tabulated in Table 1, has been 
taken from Paterson (1950), with small changes in normalization and interval 
of tabulation. 

The relation between the three functions is 

G(~)= J:oo A(~-u)F(u)du. . ............. (1) 

Given G(~), and knowing the effect of the apparatus A(~), it is requiJ'ed to find 
F(~). 

Now A(~) andG(~) may be expressed in the following form 

A(~)= J:oo at(~_-u)II(U)du, (2) 

G(~)= J:oo y(~-U)II(U)du, (3) 

where 1I(~)=a(~) +ia(~-cr), a(~) is the unit impulse function, and cris the separa
tion of the two components of the Kat doublet. We are here using the fact that 
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the intensities of. the two components are in the ratio of 2 to 1. Solving these 
integral equations would yield (X(~) andy(~), which are the forms that would be 
taken by A(~) and G(~) if the doublet were a single line. This is not a difficult 
step, but to clarify the exposition we shall defer the explanation to Appendix I, 
meanwhile assuming that (X(~) and y(~) have been obtained from A(~) and G(~). 
Figure 2 shows (X(~) and y(~). 

TABLE 1 

A(~) X 10' F(~) X 10· G(~) X 10' 

2 0 1 
9 3 3 

42 4 5 
114 7 8 
228 8 12 
314 12 19 
192 20 30 
68 41 50 
28 58 70 
28 91 98 
59 129 124 

114 151 138 
157 145 135 
96 115 120 
34 85 105 
11 53 89 
3 33 84 

18 82 
12 80 
8 72 
6 58 
3 43 
0 28 

18 
11 

7 
4 
3 
2 

From equations (1), (2), and (3), 

and from this it may be shown that 

y(~)= J:oo (X(~-u)F(u)du, .............. (4) 
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provided that the Fourier transform of II(~) has no zeros, a property which 
may readily be verified. Equation (4) shows that the relationship between 
y, oc, and F is the same as that between G, A, and F as in equation (1). 

The method of successive substitutions yields the solution of (4) as the 
following series: 

where 

E:l = J: 00 y(~-u)[a(u) -oc(u)]du, 

E: 2 = J:oo E:l(~-U)[a(u) -oc(u)]du, etc. 

This series converges if !l-a(s) I <1 for all s for which y(s)#O, where a(s) 
and y(s) are the Fourier transforms of oc(~) and y(~) (see Bracewell and Roberts 
1954). When the condition is not met, the series may still give an asymptotic 
representation of F(~), even though ultimately divergent (Bracewell, unpublished 

Fig. 2 

data). It will be found that A(~) fails to fulfil the convergence condition, on 
account of the violent disturbance due to the doublet. But in equation (4) 
this effect has been removed and, although .technically the condition is still not 
met, it fails only for large values of s which do not play an important part if only 
a few stages of correction are required. The series is thus asymptotic to F(~). 

The working is shown in full in Table 2 for the present case. In the first 
column appear the values of oc (Fig. 2), the instrumental profile corrected for 
doublet effect by the method of Appendix 1. The column a -oc is derived from 
the first column by subtracting the latter from the sequence ... 0 0 1 0 0 .... 
It is written on a movable strip of paper and in the reverse sense. (The necessity 
for the reversal of sense will be found in the occurrence of the variable u with 
opposite signs in equations such as (1).) The column y (Fig. 2) is obtained 
from the observed distribution by correction for doublet effect. The values 
of the first correction term E:l are then calculated by summing products of 
corresponding numbers in the second and third columns; e.g. the value marked 
with an asterisk is equal to (-2) x1+( -7) x3+( -23) x5+ ... , and is written 
opposite the arrow. The remaining values are obtained by sliding the movable 
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strip up and down. Succeeding correction columns are obtained from their 
predecessors in exactly the same way. 

Corrections up to 12 per cent. are introduced by ED and up to 3 per cent. 
by E2• The next set of corrections, if calculated, will be found to be all less 
than 2 per cent., which, in the present case, is negligible. The last column, 
y + El + E2, is thus the approximate solution yielded by the method of successive 
substitutions, and is shown as F(~) in Figure 1. 

TABLE 2 

cx X 103 (a-cx) x 103 y X 103 E1 X 103 E2 X 10' Y+E1 +E2 
(read upwards) 

_M_. 

2 -2 1 -1 0 0 
9 -7 3 -1 +1 3 

42 -23 5 -2 +1 4 
114 -67 8 -2 +1 7 
228 -192 12 -4 0 8 
314 +686 -->- 19 -6* -1 12 
192 -228 30 -8 -2 20 

67 -114 49 -7 -1 41 
23 -4? 69 -7 -4 58 

7 -9 95 -1 -3 91 
2 -2 120 I +8 +1 129 

132 +15 +4 151 
126 +15 +4 145 
105 +9 +1 115 
80 -5 0 85 
55 -0 -2 53 
36 -2 -1 33 
22 -3 -1 18 
14 -2 0 12 
9 -1 0 8 
6 -0 0 6 
3 -0 0 3 
1 -1 0 0 
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To solve 

APPENDIX I· 

Removal of Doublet Effect 

A(·~)= J:oo rx(~-U)II(U)du 
for rx(~) when A(~) is given and II(~)=a(~)+ta(~-()), we apply the method of 
successive substitutions. 

Then 

where 

But this reduces to 

r, ,...-
/ \ / 

,/ \ I 
\J , 

\ ./-~I 
\ I 
\ I 
1/ 
" 
Fig. 3 

.. , 

1) =-,-! J:ooA(~-U)a(U-cr)dU 
=-!A(~-cr), 
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which is the same as A(~) but changed in sign, halved, and shifted by cr. And 
'YJ2 must be obtained from 'YJl in the same way. Hence finally 

~(~) =A(~) -iA(~ -cr) + tA(~ -2cr) -. .. . ..... (5) 

Once this simple formula has been obtained, it is easy to understand (see Fig. 3). 
A suffioient condition that it should converge is that 11-fl(s) I <1, where 
h(s) is the Fourier transform of II(~), and this condition. is met for all s . 

. In obtaining ()((~) from A(~) only one correction term need be taken, and in 
obtaining y(~) from G(~) only two. 

Equation (5) has been given by DuMond and Kirkpatrick (1931) who derived 
it by a direct argument. They state that the series converges, adducing the 
(insufficient) fact that the terms tend to zero. .A process formally equivalent 
to equation (5), but adapted for greater convenience in use, has been given by 
Rachinger (1948),* and practical hints are contained in a note by Pease (1948) .. 
The present posing of the problem as an integral equation appears to be novel ;: 
it readily yields the proof of convergence, and shows that ()((~) is not restricted 
to functions which fall to zero outside a finite range of ~, nor even to functions_ 
which approach zero at all. 

* The author is indebted to Dr. M. S. Paterson of the Research School of Physical Sciences, .. 
Australian' National University, for the reference. 




