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Summary 

It is important in length determinations by interferometry to 'know the effect 
on the fringe p attern of an entrance aperture of finite size through which'· the light 
enters the interferometer . . The correction generally applied hasbeen found to be in 
error (Bruce 1955). This paper is a further discussion of this correction. Both two· 
beam and multiple-beam systems are discussed and show, in accordance with experi· 
ment, that the correction at present applied for the finite size of the aperture appears 
to be invalid. Formulae are developed and curves are given from which the correction 
to be applied for any particular length and aperture size can be very easily determined. 

I. INTRODUCTION 

The usual obliquity correction formula involves a term due to the displace
ment of the aperture off the optic axis and another due to the finite size of the 
aperture itself. If the centre of the aperture is displaced a distance x from the 
optical axis and f is the focal length of the collimator then the angle subtended 
at the collimator between the aperture and the optic axis is 

Now 
6=tan-1x ff· 

p"A=2t cos e 
"-'2t(1 -x2 f2f2 ). 

In this equation p is the fringe order and t is the path difference. 

The obliquity is seen to be x 2 f2f2 per unit length. There remains the 
correction for the finite aperture size which is derived by taking the average 
correction for the whole area of the aperture calculated in the manner above. 
This correction is therefore given by 

J J (~+~)dXdY 
J JdXdY 

per unit length, and for a circular aperture of diameter d is d2f16f2 whilst for a 
rectangular aperture of length a and width b is (a2 +b2)J24f2. Since x=O in the 
Kosters interferometer the only correction applied is the latter. However, in 
tests made at large path differences with a variable entrance slit, the fringe 
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displacements predicted by the usual formula were not observed and further 
investigation of the effect seemed desirable. The method of investigation pre
sented in this paper involves a different approach to that used in paper I (Bruce 
1955) in that differentiation under the integral sign is used and the results 
expressed in terms of Fresnel integrals. 

size 

II. THE FRINGE DISPLACEMENT FOR A FINITE APERTURE 

(a) Two-Beam Systems 

'Phe intensity distribution of two-beam interference fringes when the finite 
of the entrance aperture is considered is easily shown to be 

11 =JU/2 J b
/
2

. cos2 (Kcos 6)dXdY~bjJe" 2cos2 (K cos 6)d6, 
-~2 -~2 0 

.. ( 1) 

for a rectangular aperture of dimensions b in the x direction and a in the y 
direction (a~b), 6r =a/2j, and 

1 2 = J~7! J: cos2 (K cos 6)XdXdq;=27tf2J~" cos2 (K cos 6)6d6, .. (2) 

for a circular aperture of radius r. AlsoK =27ttj'A, t is the path difference and x, 
6 and q;, and r are as in Figure 1. 

Fig. I 

The displacement of the fringe maxima and minima from their positions 
corresponding to an ideal point source will be determined in each case by finding 
the values of K for which aI/aK =0. For the narrow slit, using differentiation 
under the integral sign, 

aI Jer 
a~ oc. Il sin (2K cos 6) cos 6d6. 

Putting cos 6=1-!62 we have 

~ict:; J (2~){Sin 2KC(u) -cos 2KS(u)}, 

where 

JlI 

S(u)= 0 sin !7tz2dz, 

C(u)= r: cos !7tz2dz, 
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are the Fresnel integrals and 

Thus we have all/oK =0 when 

K=1tan-lS(u)+.ln1t (n 0 1 2 3 ) ~ C(u) 2 ="" .. ". , ...... (3) 

whereas for two-beam fringes from an ideal point source aI/aK=O when 
K=!n1t. With an accuracy of a few parts in a million, K may be taken as 
21tl/A in the arguments of the Fresnel integrals, l being the length of the end bar 
and the correction al to be applied is thus 

_ A -1 S(v) 
al - 41t tan C(v)' """ .. " ............ (4). 

with 

The maximum value of the correction is approximately 0 ·17 fringe which occurs 
when the ratio of the Fresnel sine and cosine integrals is a maximum.' This 
position corresponds to a phase difference !K6; between central and extreme 
rays through the aperture of the order of half a wavelength which corresponds 
to the Rayleigh criterion for two-beam fringes of good definition. For an end 
bar of length 300 mm, the fringe displacement for a narrow slit of length 0 ·3 mm 
used with a collimator of focal length 208 mm (which is a typical case occurring 
in practice) is obtained from equation (4) as 0·11 fringe. The displacement for 
a slit of length 0·6 mm is almost the same. 

Observations showed that the displacement (if any) on increasing the slit 
length from O· 3 to 0·6 mm was verified by several observers to be definitely 
less than 0·1 fringe. Application of the correction formula (a2+b2)/24.f2 
per unit length indicates that the fringe displacement would be approximately 
0·3 fringe. The correction 2a l /A (=fringe displacement) as a function of 
V(4l/A)6r( =2V d/1t) is shown in Figure 2. Points on the axis where 
d=1t/2, 1t, 21t, . .. are also shown. 

A similar result to that given in equation ( 4) can be obtained for the cireular 
aperture 

01 f6,. oK oc (I sin (2K cos 6)6 cos 6d6 

I6,. 
=6~(6r) - I(6)d6 

. (I 

integrating by parts, where 

1(6) = f: sin (2K cos 6) cos 6d6, 
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which was evaluated for the case of the slit and 

1(6r)= f: r sin (2K c~s 6) cos 6d6. 

Thus 812/8K=O when 
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which leads to a correction (32 of amount 
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.A plot of (32 as a function of y'(4l/A)6r is given in Figure 2 also. Note that in 
this case the phase difference between central and extreme rays, tK6~, is a 
multiple of 7t at positions of maximum fringe displacement. The curve obtained 
agrees precisely with that obtained in paper I by Ii; different approach. 

The correction (3l and (32 of course both reduce to zero for 6r =0. 

244 B. S.THORNTON 

which was evaluated for the case of the slit and 

1(6r)= f: r sin (2K c~s 6) cos 6d6. 

Thus 812/8K=O when 

0'18 

0'1 

f\ 

/ \/ / '\ I (\/ 
'f\ 

2 i / I 1\ I I 
/NAR~7 \ I I \J I I \ ~ I 

SLIT 

/ II ~ I I 
8 f 

/ . '; !clRCULAR I / . I HOLE . 
6 

/ / /1 II / 
4 

II / ,/ I 
2 

P V I I .",' 

0'16 

0'14 

0'10 

0'0 

0'0 

0'0 

0'0 

- I ! 

!41T " 71' 371' 

Fig. 2 

which leads to a correction (32 of amount 

I 
IJ 

I 

I 

/ 
I 

4 
47T 

0'500 

0'4375 

~ 0'375 ~ 

0: 

:s 
:::l 

li! 
0'3125 Q 

~ 
~ 

0'250 U 

:s 
ili 
c 
,W 

0'1875 " 
Z 

~ 

0'125 

0'0625 

o 

.A plot of (32 as a function of y'(4l/A)6r is given in Figure 2 also. Note that in 
this case the phase difference between central and extreme rays, tK6~, is a 
multiple of 7t at positions of maximum fringe displacement. The curve obtained 
agrees precisely with that obtained in paper I by Ii; different approach. 

The correction (3l and (32 of course both reduce to zero for 6r =0. 

244 B. S.THORNTON 

which was evaluated for the case of the slit and 

1(6r)= f: r sin (2K c~s 6) cos 6d6. 

Thus 812/8K=O when 

0'18 

0'1 

f\ 

/ \/ / '\ I (\/ 
'f\ 

2 i / I 1\ I I 
/NAR~7 \ I I \J I I \ ~ I 

SLIT 

/ II ~ I I 
8 f 

/ . '; !clRCULAR I / . I HOLE . 
6 

/ / /1 II / 
4 

II / ,/ I 
2 

P V I I .",' 

0'16 

0'14 

0'10 

0'0 

0'0 

0'0 

0'0 

- I ! 

!41T " 71' 371' 

Fig. 2 

which leads to a correction (32 of amount 

I 
IJ 

I 

I 

/ 
I 

4 
47T 

0'500 

0'4375 

~ 0'375 ~ 

0: 

:s 
:::l 

li! 
0'3125 Q 

~ 
~ 

0'250 U 

:s 
ili 
c 
,W 

0'1875 " 
Z 

~ 

0'125 

0'0625 

o 

.A plot of (32 as a function of y'(4l/A)6r is given in Figure 2 also. Note that in 
this case the phase difference between central and extreme rays, tK6~, is a 
multiple of 7t at positions of maximum fringe displacement. The curve obtained 
agrees precisely with that obtained in paper I by Ii; different approach. 

The correction (3l and (32 of course both reduce to zero for 6r =0. 



OBLIQUITY EFFECTS IN LENGTH INTERFEROMETERS. II 245 

(b) Multiple·Beam Systems 
In multiple-beam systems the effect of obliquity is not as important as 

fOI'the two-beam case since the path differences involved are necessarily very 
small. The case of a rectangular aperture used in a multiple-beam interfero
meter will be discussed as an example. For the transmission ca.ge the intensity 
distribution is given by 

, Ja!"]. Jb i2 dxdy 
7 4= ~a/2 _b/21-tR2 sin2 (K cos a) 

=2 ~~2 J:'i-O 'COS~~KC08e)' ' ... , , . . '.'. . (6) 

whel'e .H2=4r2j(J -r2)2:=.l<'abry's " Coefficieut of i<'ineBse" and 0=R2J(2+.H2). 

l~xpanding the integrand in equation (6) as a Fourier series with 2K cos a as 
the independent variable we have 

(7) 

where 

A =-2JT: 
n 'It 0 

--·- ·- .. ·dz- · ·---- '.' -- -- . .. cosnz 2 f1-V(1-02)]" 
1--0 cos z - v(l -02 ) 0 . 

Therefore 

01' J'Or '" '::OK' ex: ~ Ann cos a sin (2nK cos Old!:) 
u 0 "'~l 

= ~ AnnJin?:x' lsin 2nKC(Vnu)-eos 2nKS(Vnu)j. 
11-1 . 

'l'he same form can be obtained for the reflection case. 

Now multiple-beam interference conditions requireK to be small (K---10 3 ), 

so the argument of the Fresnel integrals, for aT equal to 0 ·001 and n as large 
as 40, is approximately 0·2 and up to such values the Fresnel sine integral is 
very small and may be neglected in comparison with the Fresnel eosine integral 
and the latter is very elosely given by 

'J'herefol'tl 

and 

aT, v A . . . L ::OK oc..- tin SIll 2n.n, 
U n=l 

oR, ~ D . 2 K oK oc '" . lin sm n , 
,,·-1 

when K =0, l'lt, ro, ... as for an ideal point source. 
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Thus it may be concluded that the correction due to the above effect is 
negligible for multiple-beam systems. The implied symmetry of the fringes 
in the above analysis is not correct, for consideration of the effect of phase 
changes introduced by multiply reflected beams shows that the fringes will be 
asymmetrical (Brossell1947). 

III. THE IN'.rENSITY DISTRIBUTION S 

The fringe intensity distributions are themselves not of great importance 
but can be found if required in several ways in the different cases. 

The formulae for the two-beam intensity distributions and those for the 
multiple-beam cases, can in each instance be shown to reduce to the corres
ponding formula for an ideal point source provided K is not too large. .As an 
example the case of a rectangular aperture in a two-beam system will be 
examined. 

Substituting y=jtan 9 in equation (1), we obtain 

I =K2b1J6r cos2 (K cos 9)d9 1 0 (Kcos9)2 , .......... .. (8) 

which can be compared with the expression J sin2 (K sin rx)drx/(K sin rx)2 
occurring in the formula for the diffracted energy from a rectangular aperture. 
The integral in equation (8) can be evaluated as follows using a Maclaurin 
expansion: 

cos2 (K cos 9) =cos2 K + K92 sin 2K - ~{6K2 cos 2K +K sin 2K} +-

Therefore 

I b1[ 
2 KJ K' 2KJ (6K2 cos 2K +K sin 2K)J 

1= cos 1+ sm 2- - 4 ! --- 3+ ' .} 
where 

J 1 = tan 9" 
2 00 ( --1)"22"(2 211, - 1) 2 + 2n -- l 

J 2 = 9,. tan 9r+2n~1 -(2+2n -l )(2n) ! B 2,,9,. , 

and 8 211 are Bernoulli's numbers, 

Taking tan 9r = 9r =a/j, II is given by 

II =ab[cos2 K + 0 '9789; K sin 2K - 0 ·0017H)~.{6K2 cos 2]( + K sin 2K} -t . 
= ab ros2 1( for 9,,......,,0· 001 and K ::j> 1 05 or SO , 
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IV. CONCLUSIONS 

The effect of the finite size of the aperture in practice does not exceed 0 ·17 
fringe approximately for a narrow slit and 0·5 fringe for a circular aperture and 
can be conveniently found using the formulae and curves given in this paper. 

The usual correction due to the finite size of the aperture appears to be 
invalid for long lengths. 
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