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Summary 

Writers on elastic after-working or "visco-elasticity" have given a formula 
expressing the stress-history as an integral involving the strain-history linearly. If 
this is to be based directly on experiment, linear superposition is a necessary physical 
datum; but it is not sufficient, and examples are given to demonstrate this_ Necessary 
and sufficient conditions are established in this paper, End expressed in physical as 
well as in mathematiC!il terms; they may admit physical verification in some degree_ 
Histories both with and without beginning are considered. 

I. INTRODUCTION 

Theories of hereditary phenomena generally use a relation between stimulus 
and response of the form 

s(t) = [Lcr(t) + J: qJ(t -'C')cr('C')d'C', . . . . . . . . . . .. (A) 

where cr(t) measures the stimulus at time t, s(t) the response at time t, [L is an 
instantaneous modulus, and qJ(cu) is the intensity of memory over a time cu. 
Such a formula was propounded by Boltzmann (1876) for elastic after-working 
of metals, and further studied by Becker (1925); it was also developed by 
Volterra in studying hereditary phenomena in general. Some writers have 
preferred to use, in place of (A), the formula 

s(t)= rt cr(t-cu)qJ(cu)dcu. . ............. (B) 
.• 0 

This is equivalent to (A) if qJ(cu) is permitted to contain a a-function. 

In the context of visco-elasticity, (A) or (B) is usually based on assumptions 
regarding the micro-structure of the material (Gross 1947; Sips 1950; and 
others). However, theories of micro-structure are designed to explain the 
observations, and a less circuitous course would be to infer (A) directly from the' 
observations. This has been suggested by I. M. Stuart in unpublished work to 
which he has kindly permitted me to refer. 

If (A) holds, it is evident that linear superposition gives the response when 
two sets of stimuli operate together. But, if linear superposition is observed 
to hold, can we conversely infer (A) or (B) ~ Examples below show that this 
converse is false. The question thus arises: What conditions, besides linear 
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superposition, are necessary and sufficient to ensure that the stress-history s(t) 
and the strain-history cr(t) are related by a formula such as (A) or (B) ? 

This paper gives two answers to this question, one for strain-histories with 
a beginning and the other for those without. Most of the components of these 
answers are to be found in mathematical literature, and I am attempting to do 
little more than to assemble them. 

II. LINEAR SUPERPOSITION 

Linear superposition is not enough to ensure (A) or (B). With the meaning 
of "linear superposition" specified below, at L, the truth of this contention 
is demonstrated by the following examples. 

(i) Suppose the material is viscous, with viscosity 'Y), so that the strain
history cr(t) is differentiable for all t and 

s(t)='Y)cr'(t). (1) 

Then the sum of two separate strain-histories clearly gives rise to the sum of 
the corresponding stress-histories, so that linear superposition holds. But 
there is no integrable function 'P((!l) such that (B) holds. For, if there were, 
the strain-histories . 

(t:>O) 

would determine, for each positive integer n, the stress-history 

(t:>O), 

so that 

ISn(t) 1<- 1 'P((!l) 1 d(!l. 
1ft. 
n 0 

Thus sn(t) would tend to zero as n--+ 00, for each fixed value of t; whereas, on 
the contrary, (1) gives 

(t:>O). 

If it is objected that (1) is inappropriate to this subject, as it makes stress 
independent of the previous history of strain, this objection cannot be raised 
against 

but remarks similar to those above apply to this stress-strain relation also. 

(ii) Suppose the stress-strain relation is 

S(t)=f: cr(1")1"d1". . ................... (2) 
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Linear superposition clearly holds, but no relation (B). For if both held we 
should have, putting w=t--r in (B), 

J: O"(-r){cp(t--r)--r}d-r=s(t)-s(t)=O; 

and this would hold for every strain-history, so that 

that is, 

Thus cp(w) would have to be a function of t as well as of w. 

Similar remarks apply to the stress-strain relation 

a plausible enough relation, if physical intuition can be trusted, since it makes 
the stress a weighted mean of the previous strains with the greatest weight 
attached to the most recent strains. 

(iii) Suppose the stress-strain relation is expressed by (4) below, with 
Ij;( w) a continuous monotonic function which is not absolutely continuous 
(Riesz and Sz.-Nagy 1953, Section 24). Linear superposition holds for all 
piecewise-continuous strain-histories, but neither (B) nor (A) is capable of 
expressing the stress-strain relation. For if O"(t) is the unit function defined 
in (3) below, the corresponding stress-history is Ij;(t) which is not absolutely 
continuous, but the right members of (A) and (B) are necessarily absolutely 
continuous. 

On this account the use of a Stieltjes integral is inevitable for completeness~ 
although in calculations which use only elementary functions it reduces to an 
ordinary integral. The Stieltjes integral also has the further advantage that 
no a-function is necessary. 

Additional conditions. In addition to linear superposition L, three other 
conditions, P, Q, and R, concerning stress and strain-histories are required. 
These are as follows. 

L, linear superposition: If two strain-histories O"l(t) and 0"2(t) separately 
entail stress-histories Sl(t) and S2(t), then the strain-history O"l(t) +0"2(t) entails 
the stress-history Sl(t) +S2(t). 

Further, a history of no strain entails one of no stress. 

P, approximation: If strain-histories approximate one another until a certain 
instant, then so do the corresponding stress-histories until that instant. More 
exactly: 

If strain-histories O"n(t) approximate a strain-history O"(t) in the sense of 
uniform convergence throughout t <T, that is, 

as n-l>oo, 

AA 
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where the upper bound is taken for all values of t<.T, keeping n fixed; then, 
for the corresponding stress-histories sn(t) and s(t), 

for each t<.T. 

This excludes stress-strain relations such as (1). It could be expressed in 
the language of functional analysis: the stress at any instant is a continuous 
functional of the previous strain-history, the distance between strain-histories 
being specified as above. Such conditions are essential in a theory of this 
kind. 

Q, invariability: If one strain-history is a replica of another except for a steady 
delay throughout, then the corresponding stress-histories are in the same relation. 
(Of. Volterra 1931, p. 189.) More exactly: 

If, for some particular time of delay a, the relation: 

for all t, 

connects two strain-histories, then, for the corresponding stress-histories 

Sl(t)=S2(t-a) . for all t. 

This excludes stress-strain relations such as (2). It is a condition which 
might fail if the range of deformation were extensive enough to bring on elastic 
fatigue. 

R, relaxation behaviour: The relaxation function vanishes for t<.O, is con
tinuous-on-the-left at all times, and is bounded.* The relaxation function is here 
defined as the stress-history entailed by a strain-history of the unit-function con
tinuous-on-the-left : 

u(t)=O (t<.O), u(t)=l (t>0). . ........... (3) 

Physically it would no doubt be impossible to verify continuity-on-the-Ieft, 
.and immaterial; but some such assumption is needed in the theory to ensure 
the existence of all integrals occurring, unless we abandon such convenient 
fictions as discontinuous strain-histories .. Throughout the paper the dis
continuities of strain-histories will be similarly restricted, for the same reason. 

III. HISTORIES BEGINNING AT t=O 
In order that the stress-history s(t) be expressible, for every left-continuous 

strain-history O'(t) vanishing throughout t<.O, by 

s(t)= f: O'(t-(U)d~((U), ................ (4) 

in which ~ is a function of bounded variation on every finite interval and 

~(t)=O for all t<.O, 

it is necessary and sufficient that conditions L, P, Q, R hold for all left-continuous 
strain-histories vanishing throughout t <. O. 

The function ~(t) is the relaxation function defined in R above. 

* Boundedness is only needed later, for strain-histories having no beginning. 
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Before proving this theorem, the following notes on the meanings of terms 
are necessary . 

.A left-continuous function is continuous everywhere except for an isolated 
set of simple discontinuities-on-the-right. It is easily seen that the sum of 
two left-continuous functions is left-continuous, and that a left-continuous 
function is bounded in any finite interval. 

The integral in (4) is to be understood as a slight extension of the elementary 
Stieltjes integral (Widder 1941, Ch. I), as follows. If f(<u) is continuous except 
for possible simple discontinuities at co, c1, • • ., Ck - 1' ck , where 

we define 

f( <u )dg( <u) = .~ ~ f( <u )dg( <u), Jb k JC. 
a ~-l Ci-l 

............•• (5) 

provided all the integrals on the right exist as elementary Stieltjes integrals. 
This definition is consistent with the elementary definition whenever the latter 
applies to the left side Of (5), but has the advantage that integrability of f with 
respect to g is not necessarily destroyed if both are discontinuous at the one 
point, unless they are discontinuous on the same side of it. 

(a) Proofs that L, P, Q, R are necessary 

We suppose there is a function <.jJ, of bounded variation on every finite 
interval and vanishing for all t<;O, such that (4) expresses the stress-history for 
every" permitted" strain-history, namely those which are left-continuous and 
vanish throughout t<;O. We seek to deduce R, and also L, P, Q for all permitted 
strain-histories to which they are applicable. 

Necessity of R. By our present hypothesis, the relaxation function defined 
in R above must be the stress-history s(t) given by 

s(t) = J: u(t - <u )d<.jJ( <u), •• • • • • • • • • • • • • •• (6) 

and this integral must exist for each t. By (3), the integrand is continuous 
except for a simple discontinuity-on-the-Ieft at <u=t; so the definition of the 
integral reduces to the elementary definition. If t> 0, since the integral exists 
~(<u) must be continuous-on-the-Ieft at <u=t; and then 

If t<;O it follows immediately from (3) and (6) that 

s(t)=O. 

Thus R is established and <.jJ is identified with the relaxation function. 
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Necessity of L. For any two permitted strain-histories GI(t) and G2(t), 
the sum of the corresponding stress-histories SI(t) and S2(t) is 

SI(t) +S2(t) = J: GI(t-w)dy;(w) + J: G2(t-w)dy;(w) 

(7) 

which, by our present hypothesis, is the stress-history entailed by the strain
history GI(t)+G2(t), since this is left-continuous and vanishes for t<O and is 
therefore one to which (4) applies. 

Necessity of P. Let T> 0 and GI(t), G2(t), ... , G(t) be permitted strain
histories such that 

as n-+ 00. 

For the corresponding stress-histories, if 0 < t < T, 

<bn V(y;; 0, t), (8) 

where V(y;; 0, t) is the total variation of y; on (0, t). Since this is independent 
of n, and bn-+O, P follows for T>O. 

P is immediate for T<O since, by (4) and R, 

for all t<O. 

Necessity of Q. Let G2(t) be left-continuous and vanish for t<O; then 
GI(t)=G2(t-8) is another such strain-history, supposing that 8>0. For the 
corresponding stress-histories, at any particular instant t> 8, 

, Jt-a 
s2(t-8)= 0 G2(t-8-w)dy;(w) 

= J: G2(t-w-8)dy;(w)= J: GI(t-w)dy;(w)=SI(t); 

while for t<8 these equations still hold, every term being zero. 

(b) Proof that L, P, Q, R together are sufficient 
As before, we refer to strain-histories which are left-continuous and vanish 

throughout t<O as " permitted" strain-histories. We need first three lemmas. 
Only references or indications of proofs need be given for these. 

Lemma 1. If Land P hold for all permitted strain-histories, A is any real 
number, and a permitted strain-history G(t) entails a stress-history s(t), then the 
strain-history AG(t) entails the stress-history AS(t). 

This is proved successively for A zero or a positive integer, positive rational, 
positive irrational, and negative real. Only for irrational values of A is it 
necessary to use P. 



LINEAR SUPERPOSITION IN VISCO-ELASTICITY 7 

Lemma 2. If L andP hold for all permitted strain-histories, and T is fixed and 
positive, then the ratio 

, s(T) '/bnd , cr(t) , 
t<,T 

is bounded for all permitted strain-histories cr. 

Proof as in Riesz and Sz.-Nagy (1953, p. 149), with Tcr (denoting a functional 

of cr) replaced by s(T) and" cr" replaced by bnd , cr(t) 1. 
t<,T 

Lemma 3. If T is fixed and positive, any permitted strain-history cr(t) can 
be approximated uniformly throughout t <,T, that is, in the sense of P, by permitted 
strain-histories crn(t) which are also step-functions. 

In outline the proof is as follows. Referring to (3), the function 

is continuous in O<,t<,T, the discontinuities of cr(t) being at the points t=tj 
and being cancelled by those of the step-function subtracted from it. Thus 
cr*(t) is the unjform limit, in 0 <,t <'T, of left-continuous step-functions crn *(t). 
Then 

are left-continuous step-functions converging to cr(t) uniformly in 0 <,t <,T. 
Further, they may be defined to be zero throughout t<,O, and these strain
histories crn(t) have the requisite properties. 

We can now proceed to prove the sufficiency of our conditions. We suppose 
that L, P, Q hold for all permitted strain-histories, and that R holds. We seek 
to establish that the relaxation function tjJ, defined in R, is of bounded variation 
on every finite interval, and that (4) expresses the stress-history for every 
permitted strain-history; the proof is set out in these two stages. The former 
stage is essential to the latter; the integral in (4) will not exist for all permitted 
strain-histories unless tjJ is of bounded variation. 

The relaxation function tjJ is of bounded variation on every finite interval. 
The essentials of the following proof are given in Riesz and Sz.-Nagy, p. 109. 
This is part of the proof of Riesz's important theorem expressing linear functionals 
as Stieltjes integrals. It is presented below in a simpler form; simpler because 
the central difficulty in Riesz's theorem is the extension of a functional outside 
its domain of definition, whereas in our context this extension is already provided 
by the relaxation function tjJ. 

To show that tjJ is of bounded variation on an interval (0, T), consider any 
subdivision 0=(00<(01 < ... <(Ok=T, write 

(i=O, 1, ... , k), 

and construct a left-continuous strain-history vanishing for t<,O : 

cr(t)=A; in Ti<t<'Ti-l (i=l, 2, ... , k), 
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where 

This function is expressible in terms of the unit function (3) : 

, k 

a(t) = ~ Ai{U(t-'t'i) -u(t -'t'i-l)}' ....•....... (10) 
i=l 

By R, a strain-history u(t) entails stress-history t!;(t). 
By Q, a strain-history u(t-a) entails stress-history t!;(t-a). 
By lemma 1, a strain-history AU(t-a) entails the stress-history At!;(t-a); 

and by L it, follows that the strain-history (10) entails the stress-history 
k 

s(t)= ~ Ai{t!;(t-'t'i)-t!;(t-'t'i-l)}' .................. (11) 
i=l 

Then 

and 

For fixed T> 0, and any subdivision of (0, T), this expression is subject to the 
bound established in lemma 2. Thus t!; is of bounded variation on (0, T), and 
so on any finite interval. 

The stress-history is given by (4) for every permitted strain-history. To 
prove this we choose a permitted strain-history a(t) and an instant T> 0, and 
consider the approximating strain-histories an(t) provided by lemma 3. 

Since each an(t) is a step-function, and left-continuous, it can be expressed 
in terms of the unit-function (3) in the form 

where 
o =tno <tnl < ... <tnkn =T 

and Ani is the value of an(t) throughout tni - l <t<"tni. The corresponding stress
history is 

by applications of R, Q, lemma 1, and L analogous to those made in arguing 
from (10) to (11) . 

.At time t=T the above stress can be written 
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the Stieltjes integrals existing in the elementary sense because, in tni - 1 <t<tni, 
an(t) is constant except for discontinuity-on-the-right at t=tni- 1 while tj;(T -t) 
is continuous-on-the-right by R. Using the Stieltjes integral defined in (5), 
it follows that 

sn(T) = - J: an(t)dtj;(T -t). . ............ (12) 

It remains only to let n--+ 00 in (12). The left side then tends to s(T), 
by P, where s(t) denotes the stress-history entailed by the given strain-history 
a(t). The right side is expected to tend to 

-J: a(t)dtj;(T -t), ................. (13) 

but before proving this we must know that this integral exists. It does exist 
in the sense of (5), for the component integrals between adjacent discontinuities 
of the integrand exist in the elementary Stieltjes sense; this is because tj;(T -t) 
is of bounded variation and has no discontinuity-on-the-right while a(t) is 
continuous except for a terminal discontinuity-on-the-right. Now 

I J: a(t)dtj;(T -t) - J: an(t)dtj;(T -t) I <bn V(tj;; 0, T), 

where 

and this tends to zero as n--+ 00, by lemma 3. Thus the right side of (12) indeed 
tends to (13), and, by P, 

s(T) = - J: a(t)dtj;(T -t) = J: a(T -w)dtj;(w). 

So (4) is established at any instant t> O. To establish it for t < 0, it is 
clear that the integral is then zero, since tj; is constant in the range by R; so 
we have only to ensure that the stress-history s(t) entailed by any permitted 
strain-history a(t) vanishes throughout t<O. This is a consequence of P and R, 
obtained by taking, in the former, T=O and 

for each n. 
For then 

bnd I an(t) -a(t) I = bnd I a(t) I, 
t<o t<o 

which vanishes because a(t) is a permitted strain-history; therefore, by P, 

sn(t)--+s(t) as n--+ 00, throughout t <0. 

But sn(t)=tj;(t), which vanishes throughout t<O, by R; consequently s(t) does 
the same. 
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IV. STRAIN-IDSToRmS HAVING No BBGINNING 

The preceding theorem applies only to strain-histories vanishing throughout 
t <0, and is not properly applicable to strain-histories having no beginning, 
such as those of steady oscillation. .An extra condition is needed, akin to 
Volterra's principle of dissipation of hereditary action (Volterra 1931, p. 188) 
but not obviously equivalent to it. 

S, decay: Suppression of sufficiently ancient parts of a strain-history has 
practically no effect on the present stress. More exactly: 

If strain-histories an(t) have agreed with a given strain-history a(t) since 
t= -n, so that 

a;.(t)=a(t) (t> -n), 

then, for the corresponding stress-histories sn(t) and s(t), 

sn(t) -i>-s(t) as n-i>- 00, for each fixed t. 

The following theorem, analogous to that of Section III, can now be proved. 

In order that the stress-history s(t) be expressible, for every bounded left
continuous strain-history a(t), by 

S(t)=f:a(t-W)d..jJ(W), ................ (14) 

in which ..jJ is a function of bounded var.iation on (0, 00), it is necessary and sufficient 
that conditions L, P, Q, R, S hold for all bounded left-continuous strain-histories. 

The function ..jJ(t) is still the relaxation function defined in R. 

The infinite integral in (14) is to be understood as 

lim fT a(t-w)d..jJ(w), 
T-HfJ 0 

where the integral on (0, T) is understood in the sense of (5), the sense so far 
used in this paper. 

Proofs that L, P, Q, R are necessary proceed almost as before, considering 
all bounded left-continuous strain-histories instead of only those previously 
permitted. We suppose that (14) expresses the stress-history corresponding 
to each such strain-history, the function ..jJ being of bounded variation on (0, 00) 

and not merely on each finite interval. In the course of these proofs this function 
..jJ is again identified with the relaxation function. The only other differences 
are that infinite integrals occur in (6), (7), and (8). That in (6) reduces at once, 
if t> 0, to the finite integral already considered; those in (7) and (8) are treated 
as before, the latter giving 

for each t<T whether T is positive or not. 
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Proof that S necessarily holds for bounded left-continuous strain-histories. 
If O'(t) and O'n(t) are such strain-histories, related as in the hypothesis of S, (14) 
gives 

Is(t)-sn(t) 1=lfoo O'(t-w)dy;(w) 1 
t+n 

<KV (y;; t+n, (0), 

where K is a bound of 1 O'(t) I. For any fixed t this expression tends to zero 
as n-l>- 00, so that S holds. 

Proof that L, P, Q, R, S together ,are sufficient, supposing that they hold for 
all bounded left-continuous strain-histories. These conditions hold, in particular, 
for all bounded left-continuous strain-histories vanishing throughout t<O; 
so the stress-strain relation (4) applies in all such cases, by the preceding theorem 
in a form slightly modified so as to consider only bounded strain-histories. 

Now suppose O'(t) is any bounded left-continuous strain-history. Let O'n(t) 
be the strain-histories related with it as in S, and let s(t) and sn(t) be the corres
ponding stress-histories. Since O'n(t-n) is a bounded left-continuous strain
history which vanishes for t<O, and sn(t-n) is the corresponding stress-history 
by Q, it follows from (4) that 

Sn(t-n)=f: O'n(t-w-n)dy;(w), 

for all t; whence, replacing t by t +n, 
ft+n 

sn(t) = J 0 O'n(t-w)dY;(w). 

Oonsidering this equation with t fixed and n> -t, the integrand can be replaced 
by O'(t -w), since this function agrees with it throughout the range except possibly 
at w=t+n, and at this terminal value ~(w) is continuous-on-the-left by R. 

Thus ft+n 
sn(t)= 0 O'(t-w)d~(w), .............. (15) 

for each t and each positive integer n> -to 
From (15) we now prove that y; is of bounded variation on (0, (0). If it 

were not so, there would be a succession of instants Wi' starting with wo=O, 
such that 

m 
2: I ~(W;)-Y;(Wi_l) I-l>-oo as m-l>-oo. . ....... (16) 

i=l 

Using these instants Wi we construct a bounded left-continuous strain-history 

(i=l, 2, ... ), 

in which Ai is 0 or ±1 exactly as in (9); then, by (15), 

Sn(O)=J: 0'( -w)d~(w) 
k 

= 2: I ~(Wi) -~(Wi-l) I +O'( -n){~(n) -~(Wk)}' 
i=l 
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where k is the greatest integer i such that CiJ i <n; properly k should be denoted 
kn' and kn---+oo as n---+oo. But the last term on the right is bounded, by R; 
so that, by (16), 

as n---+ 00. 

This contradicts S; and so we must admit that ~ is of bounded variation on 
(0, 00). 

We can now easily deduce that (14) holds for every bounded left-continuous 
strain-history cr(t). In particular, the integral in (14) exists in the sense stated; 
for, if K is a bound of 1 cr(t) I, 

I f:' cr(t-CiJ)d~(CiJ) I<KV(~; T, T')<KV(~; T, 00) 

supposing T'>T; and this tends to zero as T---+oo. Thus (15) gives, for each 
fixedt, 

8n(t)---+ f: cr(t-CiJ)d~(CiJ) 

from which (14) follows by S. 
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