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Summary 

A theory of growing space-charge electric waves, due to Pierce, Haeff, and others, 
is thought to explain the operation of Haeff's electron-wave tube and other amplifying 
devices and perhaps the origin of some solar radio emission. The theory is shown to 
be untenable, the growth predicted being spurious and due to misinterpretation of the 
dispersion equations. 

Two rules are given which should be observed when interpreting dispersion 
equations: 

(a) The frame of reference in which the dispersion equation is developed should 
be stationary in the gas in which the waves are propagated. 

(b) When choosing real or imaginary parts of frequency or propagation constant 
for the dispersion equation, the choice must be consistent with physically realizable 
and relevant conditions. 

An alternative theory of operation of the electron-wave and other growing-wave 
tubes is given and some design factors are briefly discussed. 

I. INTRODUCTION 

The results described in this paper may be applicable to any type of wave 
but refer specifically to longitudinal electron oscillations in a neutral ion-electron 
plasma. These are called space-charge, electron pressure, or plasma oscillations. 
They were first investigated as standing waves (Tonks and Langmuir 1929), 
but a more general theory of travelling space-charge waves is now available 
(Thomson and Thomson 1933; Bohm and Gross 1949a). 

A theory of spontaneous" growth" of space-charge waves in interpenetrat­
ing electron streams or mixed ion and electron streams has been developed by 
Haeff (1948, 1949a, 1949b), Nergaard (1948), Pierce (1948, 1949, 1950), Pierce 
and Herbenstreit (1948), Bohm and Gross (1949b), Feinstein and Sen (1951), 
Rydbeck and Forsgren (1951), and others. The theory purports to show how 
the waves " grow" or steadily increase in amplitude as they propagate along 
the composite electron stream. It is believed to explain the operation of Haeff's 
electron-wave tube and (in varied forms) other growing-wave amplifying devices 
and perhaps also the origin of some solar radio emission. 

It is the purpose of the present paper to show that the theory is not tenable, 
the growth predicted being spurious and due to misinterpretation of the dispersion 
equations. It is possible that the same criticism may apply to the theory of 
operation of the travelling-wave tube (Pierce 1950) although here the position 
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is complicated by the presence of a metal helix in the electron stream. A 
similar criticism applies (Piddington 1955) to a theory of growing transverse 
electromagnetic (radio) waves advanced by Bailey (1948, 1950, 1951, and other 
references). These errors indicate the desirability of some rules to use in the 
interpretation of dispersion equations when dealing with waves in moving gas; 
two rules are suggested. 

Since the electron-wave tube demonstrably does work, it behoves a critic 
of the theory to suggest an alternative mechanism. Possible modes of growth 
of space-charge waves are briefly discussed and a theory of the electron-wave 
tube, and perhaps other amplifying devices, is· suggested. 

II. THE SUBSTITUTION ANALYSIS 

The theory of the electron-wave tube depends on a substitution analysis 
in which certain types of solution are sought of the relevant equations: Maxwell's 
electromagnetic field relationships and the equations of motions of electrons 
in two or more interpenetrating streams having different drift velocities. The 
solutions have the form exp i (wt-kx) and describe plane waves moving in 
time t and space x. In general both the frequency wand propagation constant k 

may be complex quantities: w=wr+iw;, k=kr+iki' where wr,w i, kr,k; are 
real. The wave is then given by exp (k;X-Wit) . exp i(wrt-krx) and so may 
grow or decay in both time and space. The result of the substitution analysis 
is a dispersion equation relating wand k but not giving either directly. The 
derivation of this equation is, apart from occasional mathematical complexities, 
generally not difficult. It is in its interpretation that trouble has been met. 

By equating real and imaginary parts, the dispersion equation provides 
two relationships between the four quantities concerned. Hence two of the 
quantities must be chosen more or less arbitrarily. The procedure from this 
point has been somewhat a matter of physical intuition guided by mathematical 
checks. In many cases, notably the magneto-ionic theory of radio waves due 
to Appleton, Hartree, and others, the results have proved eminently successful. 
However, when dealing with an electron gas which moves relative to the observer 
some serious errors have been made and definite rules of procedure are desirable. 

In the magneto-ionic theory it is usual to assume w;=O and assign some 
particular value to Wr' This means, physically, that the emitter, operating at a 
given frequency, is steady and stationary relative to the observer; otherwise 
the observed wave amplitude would change with time (w;=O). Within one 
frequency range the value of k is then found to be complex with real and 
imaginary parts of opposite sign, indicating a wave which decays in space. 
The decay is associated with a scattering of electrons by collisions with heavy 
ions, atoms, or molecules, thus destroying their ordered motion. Within 
another frequency range k is imaginary, indicating stationary or reflected waves. 
These are described more fully below. 

A similar procedure h.as been followed in the electron-wave tube theory' 
but here values of k are found within certain wave bands which indicate wave 
growth. This is interpreted as indicating an increase in wave energy at the 



GROWING ELECTRIC SPACE"CHARGEWAVES 33 

expense of the kinetic energy of the electron streams. Pierce (1950) has called 
it an electromechanical process. .A somewhat similar theory is used to explain 
the operation of the travelling-wave tube (Pierce 1950). 

Twiss (1951) has sensed a danger in this interpretation of the dispersion 
equation. For a double electron stream he has shown that if k (rather than w) 
is assumed real, then the equation leads to a complex value of w, which might 
be interpreted as a wave growing in time. Such growth is not observed experi­
mentally, so that doubt is cast on the theory. He concludes that a theory of 
growing waves may only be developed in relation to the boundaries of the 
medium which are essential factors in promoting growth. It is shown below 
that neither Twiss's criticism of the theory nor his emphasis of the role of 
boundaries is justified. 

However, there is a fundamental error in the theory of the electron-wave 
tube, due to misinterpretation of the dispersion equation. When correctly 
interpreted no real wave growth is found under any conditions. The main 
reason for the error is that the wave equations are derived in a system of axes 
moving relative to the electron gas. ' 

III. THE MOVING OBSERVER 

Space-charge electric waves comprise perturbations of an electron gas 
together with an (electric) potential field due to the perturbations. They are 
propagated relative to the gas itself and, if this drifts relative to the observer, it 
carries the wave with it so that the latter assumes different apparent properties. 
It is easy to see that a steady, spatially attenuated wave might, in a suitable 
reference system, appear to grow in time. It is less obvious, but will now be 
shown, that other waves may appear to grow in space when no real growth is 
present. 

To illustrate spurious wave growth, the simplest and best-known example 
of space-charge waves is chosen: waves in a gas whose electrons have thermal 
random motions but no mass drift. The dispersion equation (Thomson and 
Thomson 1933; Bohm and Gross 1949a) is 

where vt is of the order of the electron thermal velocity and Wo is the resonance 
frequency of the plasma, and collisions of electrons with heavy ions or atoms 
have been neglected. When w> Wo loss-free travelling waves propagate with 
velocity vtw(W2-w02)-i. When w<wo, k is imaginary and a pair of waves of 
the form exp kiilJ • exp iWrt occur near the emitter. These are standing, 
exponentially spatially attenuated or "evanescent" waves and are, in effect, 
waves which are rejected by the medium and are being reflected back into the 
emitter. It is with these waves that we are concerned; a pair of them is shown 
schematically in Figure 1 (a) . 

.At no frequency do any of these waves grow as they propagate. The only 
spatial intensity change is due to a process of reflection. 
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Now consider these same waves as seen by an observer moving relative 
to the gas with velocity U along the x axis. The waves are now described by 
the constants wHk l given by the Lorentz transformation: 

W=~(Wl + Ukl ) and k=~( kl + ~Wl)' . . . . . . .. (2) 

where ~=(1-U2/c2)-~. When U<c and the wave velocity is of the order c 
or less, the Newtonian transformation 

o _x 

o 
(b) _x 

t PERTURBATION 

ELECTRIC FIELD 

Fig. I.-Schematic diagrams of pairs of evanescent waves radiated 
from the emitting surface x=O. (a) The emitter stationary in the 
gas: waves have the form exp kix. exp i CJ:Jrt (k i positive or negative). 
(b) The emitter moving relative to the gas: waves have the form 

exp (kix-CJ:J/). exp i(CJ:Jrt-krx). 

( 3) 

may be used. For simplicity this form is adopted in the present discussion, 
which mainly concerns low gas and wave ·velocities. This is quite justified, 
since Newtonian mechanics are assumed by Haeff and by the other authors 
referred to in Section I in determining electron motions. The Lorentz trans­
formation leads to essentially similar, but more complicated, results. The new 
dispersion equation, found by combining equations (1) and (3), is 
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When v t2> U2 this equation yields complex values of k1 for real values of 
<01 in the frequency range 

Hence, if it were interpreted in the manner of the electron-wave tube theory, 
it would show travelling waves, one of which grows in space, while remaining 
steady in time. 

This wave growth is spurious; it does not correspond to an increase of 
wave energy at the expense of the electron kinetic energy but rather to a process 
of reflection. .As would be expected, the frequency range within which the effect 
occurs is the same, except for a Doppler shift effect, as that in which a stationary 
observer sees ordinary evanescent waves. 

IV. TRAVELLING EVANESCENT WAVES 

It is desirable to consider in more detail the physical nature of the 
" growing" waves described by equation (4). Later they will be compared with 
the waves of the electron-wave tube theory. In this theory the emitter moves 
relative to the gas and it is convenient to make this assumption here. However, 
contrary to the travelling-wave tube theory, we inith111y choose an observer 
stationary in the gas so that equation (1) is applicable. * Since the observer 
now moves relative to the (steady) emitter he sees a wave whose intensity 
changes with time so that <0 is c~mplex .. 

Equation (1) may be rewritten 

v t 2(kr +ik;)2 = (<Or +i<o;)2 -<002, 

and when real and imaginary parts are equated separately: 

( 5) 

(6) 

Solutions are required of the form <0; = Uk; so that equation (6) reduces to 

(7) 
and equation (5) to 

(8) 

Since all quantities are assumed real, necessary conditions for this form of 
solution are 

We .nowhave the wave fully specified in terms of the (assumed) quantities 
·<Or and <0;. 

* Clearly the form of the dispersion equation for any given set of circumstances is determined 
by the movement of the ob8erver relative to the gas and is not affected by movement of the emitter. 
Having found the dispersion equation the movement of the emitter is taken account of when 
:more or less arbitrarily choosing two of the four variables wr' wi' kr' and ki • This choice is 
·discussed in Section VI. 
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The wave is an evanescent wave being reflected back into the emitter. 
It differs from the stationary evanescent waves illustrated in Figure 1 (a) because 
the emitter is moving. This has two effects: since each successive (in time) 
intensity maximum occurs in a different place the wave is changed to a travelling 
wave and also, due to the changing separation of emitter and observer, it grows 
or decays in time. It may be regarded as a wave packet travelling with group 
velocity wdki= U. 

The type of wave in which we are particularly interested grows in space 
while remaining steady in time. Our travelling evanescent wave acquires this 
property when viewed by an observer moving with velocity U. From equation 
(3) we determine its parameters* as: 

WI =wr+iwi-U(kr+iki) 
=wr+Ukr, 

kl=kr+ik i • 

Thus the wave has the form: 

If the rate of growth is not too rapid this wave has a phase velocity 

v t 2+ U2 
,....., U 

.A travelling evanescent wave is illustrated schematically in Figure 1 (b). 
For numerical examples we might choose w r =10 8 rad sec-I, v t =10 7 cm sec-I, 
and U =10 6 cm sec-I, and two values of wo, say 10 8 and 10 9• The two waves 
are approximately: 

exp m . exp i(10 8t-m), 
and 

exp 100m. exp i(10 8t-m). 

v. THE DOUBLE ELECTRON STREAM 

The theory of the electron-wave tube is most fully developed for the case 
of a double electron stream, the velocities and resonant frequencies of the 
individual streams being Va' Vb' wa, and Wb. Haeff (1949b) and others have 
shown that the dispersion equation is 

W 2 w 2 
-;--~a-C;-k-:-;)2+( b k)2=1 . ................ (9) 
(w-va W-Vb 

They show that within certain, rather wide limits k has complex values when W 

is real and that some of these correspond to waves whose amplitude is increasing 

* It will be seen that the transformation of a given wave from one system of axes to another 
may be effected in either of two ways. The dispersion equation for the new system may be 
found by a Newtonian transformation and the wave then determined by a suitable substitution 
of two of the four variables, WT' wi' kT, ki' in this equation. Alternatively the wave parameters, 
w, k, may be transformed directly to the new parameters, Wl' k1• 
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in the direction of propagation. Maximum amplification occurs when Wa=Wb 
or when wa/Va=Wb/Vb . 

.As shown above, apparent growth of a wave (complex; values of k) may be 
seen by an observer moving relative to gas in which an evanescent wave is 
present. The observer for whom the above dispersion equation was derived is 
moving relative to the gas and so is likely to see such spurious growing waves. 
To see whether real growing waves are present the dispersion equation for an 
observer sharing the " mean" velocity of the gas must be derived. It is not, 
in general, clear what is the " mean" velocity but when the electron streams 
have equal density (Wa=Wb=WO) then clearly the mean velocity is i(va+vb). 
On transforming to a system with this velocity, equation (9) becomes 

where v=!(vb-va). The same result is obtained, of course, by initially assuming 
two electron streams with velocities ±v. If W1 is now assumed real, the values 
of k1 are given by 

v2k12=W12+W02±(4w12W02+W04)i • ...••••••..• (11) 

The upper sign corresponds to travelling waves which do not grow or decay and 
need not be considered further. The lower corresponds, when w12<2w02, to 
imaginary values of k1 indicating waves of the form ex;p killJ • ex;p iwrt. These 
are evanescent waves of tlie "type illustrated in Figure 1 (a). .At no frequency 
do they grow or decay, so that at no frequency can any electromechanical process 
occur of the sort envisaged in the electron-wave tube theory. 

In the more general case when Wa=1=Wb it is not clear what is the" mean" 
velocity of the gas. " However, Feinstein and Sen (1951), in their analysis of 
the two-beam dispersion equation, have shown that amplification (that is, 
complex; values of k) cannot occur when Va = -Vb. This means that if the observer 
assumes the simple arithmetic mean velocity !(va+vb) of the two streams he 
can never see growing waves. There may be other velocities in which he sees 
no apparent growth but it is sufficient for our purposes that there should be one. 
In addition it should be remembered that the case we have analysed (Wa=Wb) 
is one for which, according to Haefi, growth is strongest. 

The real nature of the waves whose growth is predicted by the theory 
concerned is now fairly clear. They are derived in the same way as the spurious 
growing waves of Sections III and IV. Starting with a stationary observer, 
frequency bands are chosen so that evanescent waves are emitted. Observer 
and emitter are then given a drift velocity and the waves change to a type of 
travelling wave (since Wr and kr are both finite) which is still strongly 
ex;ponentially attenuated. Of the two modified evanescent waves one then 
appears to grow and one to decay in space. However, there is no real growth, 
the observed spatial change in intensity being due to a process of reflection and 
the wave travel to the fact that the gas carries the wave past the observer. 

It is concluded that wave growth in the electron-wave tube by the process 
hitherto invoked cannot occur. Doubts are raised regarding the somewhat 
similar theory of the travelling-wave tube and other like electronic devices. 
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VI. INTERPRETATION OF THE DISPERSION EQUATION 

It would seem that when studying space-charge wave properties that a 
system of axes should be chosen stationary in the gas. However, even when 
this is done there may still remain difficulties in the interpretation of the dis­
persion equation since this does not give either W or k directly. Two of the 
four quantities, wr, Wi' kr' ki' may be chosen arbitrarily but the choice must be 
consistent with physically realizable and relevant conditions. 

The choice really amounts to specifying the method of introduction of the 
wave into the medium. For example, consider a dispersion equation which is 
sa.tisfied by complex values of k for real values of W or alternatively by complex 
values of W for real values of k. Both interpretations are reasonable. The first 
means that the wave is introduced by a steady emitter fixed relative to the 
observer; the wave then grows (or decays) in space but not in time. The 
second interpretation is not as obvious but is physically realizable. The wave 
has the form exp-wit. exp i(wrt-k,.x) and so grows (if Wi is negative) in time. 
Assume that prior to t=O the properties of the medium causing wave growth 
were non-existent so that the wave was propagated with uniform intensity. When 
the wave emitted by a distant radiator had permeated the whole gas the growth 
would then commence. The wave would then appear to grow in time since 
"Wave crests passing the observer at later times would have travelled further 
and so have grown more. A.n alternative, and perhaps more realistic, way of 
introducing this wave would be by an emitter whose output increased with 
time at a rate sUfficient to compensate for the growth in space. A.gain the 
medium would be permeated by a wave of uniform amplitude which grew in 
time; again the growth would really be a spatial growth. Thus the alternative 
interpretations of the dispersion equation are self -consistent, indicating a 
medium in which the waves grow as they propagate. This would appear to 
answer Twiss's (1951) main criticism of the electron-wave tube theory .. 

Not all dispersion equations are as unambiguous as that discussed, above. 
The case of the double electron stream with the observer stationary in the gas 
;raises a difficulty. When WI is assumed real the equation takes the form given 
in (11) and the waves are those discUl,!sed above. The alternative assumption 
that ki is real requires consideration; the dispersion equation may be written 

WI2=W02[1 +v2kI2/W02±(1 +4v2kI2/Wo2)i] . ............ (12) 

When v2k12>2w02 both waves are travelling waves of constant amplitude. 
~en v2k12<2w02 the lower sign results in imaginary values of WI so that the 
waves have the form exp -wit. exp -ik,.x. This is a new type of wave: a 
non-oscillatory standing wave. It comprises a spatial distribution of electric 
charge varying sinusoidally throughout the whole of the medium. No oscilla­
tions occur, only exponential growth or decay (in time) of the whole pattern. 

Bohm and Gross (1949b) have used Boltzmann's equation instead of 
Maxwell's momentum transfer equation to derive the dispersion equation for a 
pair of equal-density electron beams. One pair of roots of their equation is 

WI2~-AkI2, ................... (13) 
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where A is a real, positive quantity. This equation is similar to (12) (the lower 
sign chosen) except that WI is imaginary for all real values of k1' that is, for all 
wavelengths. Bohm and Gross conclude that this dispersion equation indicates 
an instability of the system and give a " physical reason" for this instability. 

The waves might be regarded as limiting cases of travelling growing (or 
decaying) waves having the form exp-wit. exp i(wrt-krx). As shown above 
the dispersion equation for such waves may be interpreted by assuming either 
WI or k1 real, corresponding to two different assumed methods of injection each 
of which is physically realizable. In the limiting case when wr-+O the wave 
velocity approaches zero and the wave grows without appreciable movement. 
There are two objections to the conclusion of Bohm and Gross that the limiting 
case indicates instability. First, the waves seem physically unrealizable: 
the limit of zero wave velocity is also a limit of infinite difficulty in injecting 
the waves,. They cannot be propagated into the medium nor instantaneously 
brought into existence with uniform intensity throughout the medium. In 
the case of travelling growing waves the alternative assumptions concerning 
the dispersion equation correspond to alternative (assumed) injection mechanisms 
but lead to identical wave growths. This raises the second objection to the 
interpretation of Bohm and Gross: when WI is made real, equations (12) and 
(13) provide no evidence of wave growth or medium instability. On the 
contrary they yield, in the frequency bands concerned, ordinary evanescent 
waves. Such waves are physically realizable and so provide a satisfactory 
explanation of the equations. The alternative explanation appears untenable. 

The" physical explanation" of the instability is at first sight suggestive 
but on closer inspection is quite unconvincing. It is not reasonable to assume, 
as Bohm and Gross have done, that the two beams are velocity modulated (by 
an initial small disturbance) more Or less independently of one another and that 
the effect is fed back in an amplified form. The electron distribution in each 
beam contributes equally to a total electric field which, in turn, determines 
changes in the electron distribution in each beam. 

VII. REAL GROWING WAVES 

If the mechanism of wave growth of Haeff, Pierce, and other authors is 
abandoned it is desirable to find an alternative. The proposal depends on 
electron thermal motions which have been neglected in most of the analyses 
mentioned but have been included in that of Bohm and Gross (1949a, 1949b). 
Before discussing the mechanism of growth it is desirable to mention other 
effects of thermal motion. 

When neither thermal nor drift electron motions are present, then travelling 
space-charge waves are not possible; the medium may only support stationary 
oscillations of frequency WOo With the introduction of thermal motions a 
dispersion equation of the form given by equation (1) results, and travelling 
waves are supPQrted at frequencies above WOo As seen above, an additional 
drift motion of the electrons may then cause spurious growing waves to appear 
at frequencies below WOo If differential drift, instead of thermal, motions are 
introduced then travelling waves are also possible so that the differential drift 
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serves the same purpose as the thermal motions: it diffuses the stationary 
oscillations and turns' them into travelling waves. 

The discussion of the previous sections seems to suggest that mass drifts 
of electrons are never, in themselves, sufficient to cause real wave growth. 
They may be important, however, in modifying the dispersion equation so as 
to take better advantage of some primary growth mechanism. There is one 
such general mechanism which appeals on physically Intuitive grounds and may 
well be the only mechanism capable of causing growth. It depends on the 
trapping of electrons between potential troughs of the wave and on the extraction 
of the electron kinetic energy by the wave. The simplest way of extracting 
the energy is for the wave to slow down, that is, for the phase velocity to decrease. 
Such an effect requires a medium of variable density and is not likely to be 
important in the case of the electron-wave tube, although it may playa part 
in the operation of certain other tubes and is worth considering as a method of 
amplification. 

-v o y _u 
Fig. 2.-A hypothetical velocity distribution in a two-beam 
electron-wave tube. Velocities are measured relative to the 

mean electron velocity. 

There is another way of extracting the energy, which depends on collisions 
between electrons, a factor not considered in the simple electron-wave tube 
theory. It requires that there be electrons close to the phase velocity of the 
wave; those within a narrow range of velocities will be captured by the wave 
and oscillate between potential troughs. After a time they will suffer a collision 
and be scattered back into the statistically steady velocity distribution f(u) 
of all the electrons. Electrons with initial velocities slightly above the wave 
velocity will, on an average, lose energy to the wave. Those with velocities 
slightly below will gain energy from the wave. If there are more of the former' 
than the latter the wave will gain energy and grow, the criterion for growth 
being af(u)/au> o. The process has been discussed in some detail by Bohm 
and Gross (1949b).* 

The possibility of this method of wave growth in the electron-wave tube 
may be seen by reference to Figure 2. This shows a hypothetical electron 

* They express the growth as an imaginary part of Cil. For the present purposes at least, 
it would be better to express it as an imaginary part of k. This is only a matter of interpreting 
the dispersion equation appropriately. 



GROWING ELECTRIC SPACE-CHARGE WA YES 41 .. " 
velocity distribution relative to the "mean" velocity of all the electrons. 
The two beams are spread by thermal and other effects but have peaks at 
velocities ±v. Let the wave velocity be denoted by V; it is given by the 
possible values of w1jk1 in equatio~ (10). Thus we have 

V=v{1+X±(4X+X2)}-1, ................ (14) 

where X=wo2jW12. Obviously then values of V may occur lying between zero 
and v and so we have oj(u)jou> 0 when u= V, as shown in the diagram. It 
will also be clear that the rate of capture of electrons, and hence of wave growth, 
will be proportional to the intensity of the wave so that the growth is logarithmic 
as observed. 

It is of interest to consider this method of growth for the single-beam 
electron-wave tube developed by Haeff (1949b) and sometimes called the 
" whistle" tube. The theory of operation of this tube developed by Haeff, 
along the same lines as for the double-stream tube, has been criticized by Pierce 

ff(U) 

I 

o v 
.. u 

Fig. 3.-A hypothetical velocity distribution (about the 
mean) in a single-beam electron-wave tube. 

(1950, Ch. 16) who concluded that the fact that the tube worked at all was 
" something of a mystery". The tube would work by the new mechanism, 
provided the electron velocity distribution (about the" mean" velocity) were 
asymmetrical, as shown in Figure 3. It is then possible for j(u) to have a 
positive slope in regions corresponding to the velocity of real travelling waves (V). 

Finally, and tentatively, the mechanism is suggested as applying to Pierce's 
"travelling-wave tube". The same requirement concerning j(u) is necessary 
and the function of the helix is to slow down the wave, presumably close to or 
even below the mean electron velocity, so that the requirement is satisfied. 

VIII. DESIGN OF AMPLIFYING TmJEs 
If the mechanism of space-charge wave growth just described is accepted, 

there are several rather obvious factors which should be considered when 
designing actual amplifying devices. 

In the first place, the energy gain of the wave increases with the slope of the 
j(u) curve at the point where u= V. The slope should, therefore, be made as 
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steep as possible. The use of tWO· separate beams allows steep slopes to be 
attained, particularly if the random electron velocities are kept small. 

There is a second reason why low· electron thermal velocities may be 
necessary. As Bohm and Gross (1949a) have shown, organized oscillations 
cannot exist at all when the wave phase velocity (wJk) is below mean thermal 
velocities. The wave velocity is confined within certain limits by the j(u) 
distribution so that thermal velocities must be kept within closer limits.* 

A second factor promoting growth is the frequency of collisions of electrons 
with electrons. This should be as high as possible so that the rate of circulation 
of electrons between the trapped and untrapped conditions is a maximum. 
Once again a reduction in thermal motions would probably help since the effect 
of higher electron speed on collision frequency is more than offset by the change 
in collision cross section. The effect of electron collisions with heavy ions or 
atoms is to damp the wave by a scattering process. 

A desirable factor in addition to gain is bandwidth and these requirements 
will inevitably clash with one another. Thus change of frequency will change X 
in equation (14) and hence V. A large bandwidth requires a large velocity 
range over which j(u) is large and positive. The combination of a steep and 
long slope of the j(u) curve implies a large value of total electron density and 
this in turn is limited by the minimum frequency to be used. 

It seems likely that the general form of the dispersion equation for several 
beams of different densities will be 

wJk=F(Vl' V 2,· •• , Xl) X 2 , ••• ). • ••••••••• (15) 

By similar choice of the various parameters an optimum balance between the 
different requirements may be effected. This illustrates the importance of 
introducing a second electron beam (or alternatively, perhaps, a helix) j in effect 
it provides another degree of freedom which can be used to obtain optimum 
results. 

Finally, the possibility suggests itself of using a wave whose velocity (relative 
to the mean electron velocity) decreases as it propagates. This would allow a 
large proportion of the kinetic energy of the electrons (within the range of 
variation of V) to be abstracted. A method of achieving this effect might be 
by using a magnetic field which is not constant in direction. This would not 
only change the X terms in equation (15) but introduce fresh terms depending 
on the strength and direction of the magnetic field. 

IX. CONCLUSIONS 

(1) The current theory of the electron-wave tube is untenable j the wave 
growth predicted is spurious, owing to the movement of the observer relative 
to the gas which carries the wave. The criticism applies to some other theories 
of growing waves including, perhaps, that of the travelling-wave tube. 

* The converse argument is that, having a certain, inevitable spread of thermal velocities 
the spread of ordered velocities must be greater than a certain minimum value if coherent amplified 
waves are to occur. This may explain the observed wide spread of ordered velocities in practical 
amplifying devices. 
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(2) Theories of the type concerned may be correctly developed without 
reference to boundaries, although if these are present their effects must be, 
included as additional factors. 

(3) Two rules must be observed in using the method of substitution analysis 
to study waves in gases. First, the frame of reference in which the equations 
are developed should be stationary relative to the gas. Second, when (more 
or less arbitrarily) choosing real or imaginary parts of frequency or propagation 
constant in the dispersion equation, the choice must be consistent with physically 
realizable and relevant conditions. 

(4) The only known method of growth of space-charge waves is by the 
trapped electron mechanism, by which electrons are trapped between potential 
troughs and their kinetic energy abstracted. This seems the most likely explana­
tion of the amplification which undoubtedly does occur in the electron-wa.ve 
and other growing-wave tubes. 
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