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Summary 

The visibility of a Fourier component of a two-dimensional temperature distribution 
which is scanned by certain kinds of rigid aerial is given by the normalized complex 
autocorrelation function of the field distribution over the aerial aperture (assuming 
that turning the aerial in its own plane is nop allowed). Hence, for finite aerials, the 
visibility of the Fourier components falls to zero at finite values of spatial frequency. 
Consequently observation~ need only be made at certain peculiar intervals whose size 
is worked out. Interpolation between observations so spaced can be carried out by a 
method which then, by a simple extension, permits filtering of data which are to be 
freed from high spatial frequencies. Both interpolation and filtering are basic processes 
in the handling of two-dimensional data and contour maps in radio astronomy. The 
restoration of smoothed data is discussed from the viewpoint that only the simplest 
operations on extensive two-dimensional data are feasible, and details of a suitable 
technique of restoration are summarized. Application of further smoothing to existing 
data is shown to be important, and a method for doing it is given, again under the 
restriction to simple operations. The flux density of a source is shown to be given exactly 
by summing one in four of the isolated values observed at the peculiar intervals. 

1. INTRODUOTION 

• 

The essential mathematical phenomena of aerial smoothing have been set 
out by Bracewell and Roberts (1954) in a study (henceforth referred to as paper I) 
of the one-dimensional case; the aim of the present paper is to give the general
ization to two dimensions. On advancing from one to two dimensions, one 
meets a new phenomenon which is connected with the rotation of celestial 
objects in the field of view of some optical instruments (e.g. sextants, theodolites, 
siderostats) but not others (equatorially mounted telescopes, coelostats). 
Identical aerials pointed in the same direction in space, but mounted differently, 
may" see" different temperatures as a result of their" fields of view" being 
differently oriented. Thus, in specifying how an aerial beam is pointed, one 
must give the two direction coordinates and also the "position angle" ~. 

Section II of this paper develops the general equations which form the basis 
of two-dimensional aerial smoothing but the remainder of the paper is restricted 
to the case where ~ is constant over the sky. When ~ is not constant we obtain 
a branch of the theory which includes the important problem of strip integration, 
a development which is covered in another paper (Bracewell 1956). 
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If we suppose a two-dimensional temperature distribution T(x,y) analysed 
into components of the form 

~ii:' (27tuX - cpul ~ii:' (27tvy - CPv)' 

then the effect of aerial smoothing is to eliminate the component if u or v exceeds 
certain limits, and to modify its strength relative to other components if it is 
not eliminated. On the uv-plane the points representing eliminated components 
lie outside a central area, usually circular or rectangular. This is proved in 
Section III and the consequences are worked out in Section IV, which establishes 
the discrete interval theorem according to which an observed distribution is 
fully determined by spot values lying on a rectangular lattice. 

Section V discusses the construction of contour diagrams from data spaced 
at discrete intervals (interpolation) and a procedure for ensuring that contour 
diagrams are free from detail which is not warranted. 

In Section VI the question of cQrrecting for aerial smoothing is taken up 
and emphasis is laid on the necessity for simplicity in any operation that is 
proposed for application to an extensive two-dimensional array of data. 

Section VII deals with the application of aerial smoothing, an operation 
which is called for in the reduction of data. Again the approach is from the 
direction of simple operations .. In Section VIII it is shown that the integral 
over a true temperature distribution is given correctly by the integral over the 
observed distribution and that this integral is exactly evaluated by summing 
only one in four of the spot values just sufficient to determine the distribution. 

II. THE BASIC EQUATION 

Let T(6, cp) be the distribution of brightness temperature for the frequency 
and polarization accepted by the aerial, 6 and cP being the co-declination and 
Right Ascension respectively. 

To specify the orientation of the aerial it is necessary to give not only 
(60 , CPo), the co-declination and Right Ascension towards which the aerial is 
pointed, but also a position angle which determines the rotation of the aerial 
about this main axis. The position angle tjI gives the direction of a transverse 
axis, fixed in the aerial, measured eastwards from north (Fig. 1). 

A 1 (ex, ~) is the directional diagram of the aerial, ex and ~ being spherical 
polar coordinates relative to axes fixed in the aerial. The polar angle ex is 
measured from the main axis; ~ from the great circle containing the main and 
transverse axes. Al(ex,~) is supposed normalized so that 

. . . . . . . . . . .. (1) 

When the aerial is pointed towards (60 , CPo) with position angle tjI, the 
temperature measured is a weighted mean of T(6, cp) : 

...... (2) 
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The co-declination and Right Ascension (e, cp) appearing in the integral are 
related to IX, ~, eo, CPo, and \j; as in the spherical triangle of Figure 1, from which 
we have the relations 

cos e=cos eo cos lX+sin eo sin IX cos (~-':\j;), 
cot (CPo-CP)~-cos eo cot (~-\j;)+sin eo cot IX cosec (~-\j;). 

The basic formula does not appear to have been given explicitly before. 
Among the conditions for its validity are two of interest. Firstly, it has been 
assumed that powers from different directions add, which would not be the 
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Fig. I.-Spherical triangle showing the relation between the celestial 
coordinates e, 'P and the aerial coordinates oc, ~, tJi, eo, 'Po. 

case if there were any coherence in phase. Such coherence can arise from ground 
reflection and it is actually invoked in the case of the sea interferometer, to 
which the present theory is not directly applicable. Coherence between radia
tions from different parts of the sky have so far been detected only as atmospheric 
scintillations. Secondly, it should be noted that the equation applies only to 
rigid aerials for which the aerial pattern does not change with different positions 
of the aerial. Interferometers whose parts may be tilted or rotatedform instances 
of deformable aerials, as do equatorially mounted aerials which receive any 
radiation (via the main beam or side lobes) from the ground. 
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For the present purposes it is desirable to specialize equation (2) to a 
simpler form which still includes essential phenomena of two-dimensional 
smoothing. To do this we note that e -eo and <:p -<:Po will be approximately 
rectangular coordinates if attention is limited to a small fraction of the celestial 
sphere (not near the poles). Let x and y be the approximate rectangular co
ordinates of the point at which the aerial is directed, assume ~ to be constant, 
and use the fact that with a sufficiently directional aerial the area of sky con
tributing to the received power is so minute that the limits of integration are 
unimportant and may for convenience be replaced by infinite limits. Equation 
(2) can then be replaced by one of the form 

(3) 

where ~ and 'IJ are the coordinates of the element d~d'IJ, and T(x, y) and Ta(x, y) 
are respectively the true and measured brightness temperatures at (x, y). The 
function A(~ -x, 'IJ -y) representing the directional diagram is related to the 
definitive directional pattern A 1(1X, ~) in a way which involves the declination 
of the area where the approximate rectangular coordinates are to be drawn; 
therefore, in all that follows, the further assumption is implied that attention 
is confined within a zone of declination (or other appropriate coordinate, such 
as galactic latitude) narrow enough for the function A to have the same form 
throughout. 

III. THE SPECTRAL VISIBILITY THEOREM 

The two-dimensional Fourier transform of Ta(x, y) is defined by 

Ta(u, v)= 5:005:", e-i21t(ux+vY)Ta(x, y)dxdy. ( 4) 

Then, by the two-dimensional convolution theorem (Sneddon 1951), 

Ta(u, v)=A(u, v)T(u, v). . ....................... (5) 

Equation (3), which takes the form of a two-dimensional convolution, we shall 
write as 

following a convenient notationt used in paper I. 

The important quantity A, which will be called the spectral visibility 
function, has a simple relationship to the aerial aperture distribution of electric 
field E(X/A, y/A), where x and yare rectangular coordinates in the plane of the 
aperture. We know that a two-dimensional aperture distribution and the 
angular spectrum of its accompanying field, P (sin y, sin a) are Fourier trans
forms one of the other, provided we adopt as independent variables X/A, y/A, 

t For the sake of simplicity it will be assumed that A(x,y) is symmetrical about both the 
x-and y-axes. The asterisk notation for convolution is then not complicated by the need to 
draw a distinction between " aerial directional diagram" and " response to a point source". 
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sin y, sin 8, where the angles yand 8 are measured from the planes, normal to 
the plane of the aperture, which contain respectively the y- and x-axis. Thus 

and 

E(~, ~) = J:ooI:: (sin y, sin 8) exp [ -i27t(~ sin y+~ sin 8)] 
X d (sin y)d (sin 8). 

We may write this latter equation 

E=P, 

where the bar indicates, here and below, the two-dimensional Fourier transform. 
For real values of y and 8, P is proportional to the field directional diagram. 
Hence the power directional diagram A is given by 

A=const. 1 P 12 , 

or if P is not complex, by 

A =const. P2. 

Hence, by the convolution theorem, 

.1=const. P*P, 
=const. E*E. . .......... " .. '" (6) 

Thus the spectral visibility function .1 is proportional to the self convolution 
of the electric field distribution.t The constant of proportionality is fixed by 
the requirement that .1 (0) should be unity, a consequence of the normalization 
of A. Finally we have 

Ta=const. (E*E)T. . " ............. (7) 

The spectral visibility theorem (7) is useful both as a mental aid to seeing 
the general form of .1 and also as a means for computing it . 

.A most important property of .1 is that, for aerial apertures of finite extent, 
it falls to zero outside a central region in the uv-plane. The shape of this region 
can readily be determined graphically by performing the self convolution 
indicated in equation (6). In general the shape is complicated, but for circular 
apertures it is circular, and for rectangular apertures, rectangular . 

. .An observed distribution taken with an aerial consisting of a finite aperture 
will, by equation (7), have the same property as .1, namely, that its transform 

t In the more general case of P complex and not symmetrical, A is the (normalized) complex 
autocorrelation function of E, 

I: ooI: ooE(X/A-U, Y/A--1J)E*(X/A, Y/A)d(x/A)d(Y/A) 

A(u,v)= J: ooI: ooE(X/A, Y/A)E*(X/A, ylA)d(X/A)d(Y/A) 
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is zero outside a central region. The consequences of this property are given 
in the next section. 

In what follows it is occasionally convenient to say that a function is 
" cut off " if there exists a central region outside which it is everywhere zero. 
Also the term "spectrum" is occasionally used as a synonym for Fourier 
transform. 

IV. THE DISCRETE INTERVAL THEOREM 

A function Ta(x, y) such that Ta(u, v) is zero for I u I >uc or I v I >vc) is 
completely determined by its values at the points (mI2u~ +a, nl2v~ +b), where m 
and n assume all integral values, a and b are arbitrary constants, and the spacing 
between points may be as wide as is compatible with u~>uc and v~>vc' 

The condition on Ta(u, v) may be expressed by saying that it is zero on and 
outside a rectangle which is centred on the origin of the uv-plane and set with its 
sides parallel to the axes; and we may note that this covers the case of Ta(u, v) 
zero on and outside a circle or other region provided the rectangle is chosen 
sufficiently large. 

It is sufficient to give a proof for the case where a and b are zero, i.e. where 
the origin of x and y is one of the sampling points. For, if the transform of 
Ta(x, y) is zero on and outside a given rectangle, so also is that of Ta(x+a, y+b) 
by virtue of the two-dimensional shift theorem, according to which the Fourier 
transform of Ta(x+a, y+b) is Ta(u, v) exp {-i27t(au+bv)}, which must be zero 
where Ta(u, v) is zero. Therefore, if the theorem is true for Ta(x, y), it is also 
true for Ta(x +a, y +b); but values of T a(x +a, y +b) at points of an array which 
includes the origin are values of Ta(x, y) taken over an offset array. 

To prove the theorem we use the bed-of-nails function 2III(x, y) consisting 
of a two-dimensional array of unit impulses separated by unit distance. Thus 

w w 

2III(x, y)= ~ ~ 23(x-m, y-n), 
m=-oo n=-oo 

where the two-dimensional impulse function 23(x, y)=O for x#O or 'y#O, but 

The bed-of-riails function is shown in Appendix I to be its own two-dimensional 
Fourier transform. 

Proof of Theorem 

Let F(u, v)==(4U~V~)-1 2III(uI2u~, vI2v~)*'l'a, a function which may be 
pictured as an array of islands in the uv-plane, each the same as Ta , spaced at 
intervals 2u~ in the u direction and 2v~ in the v direction. The islands will not 
overlap (but may touch) if u~>uc and v~>vc' Under this condition, in the central 
region where I u I <uc and I v I <vc) we have 

F(u, v)=Ta' 
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Hence Ta may be recovered from F(u, v), and consequently Ta may be recovered 
from F(x, y), the two-dimensional Fourier transform of F(u, v). But, by the 
two-dimensional convolution theorem, 

F(x, y)=4u~v~ 2III(2u~x, 2v~y)Ta(x, y), 

which contains values of Ta only at discrete intervals (2U~)-1 and (2V~)-1 of 
x and y. Hence Ta is completely determined by its values at discrete intervals 
of x and y which are equal to or less than (2ucl-1 and (2V~)-1. Since these 
intervals are peculiar to each aerial they will be referred to as the peculiar 
intervals. 

v. INTERPOLATION AND FILTERING 

If the distribution Ta is measured at suitable discrete intervals of x and y, 
the numerical problem of interpolating will often arise. Let the scale factors 
be changed so that (2ucl-1 and (2vcl-1 both become unity. Then it is required 
to calculate Ta(x, y) for any x and y, given 2IIITa. From the preceding section 
we can say that 

where 

- 51, 
M(u, v)=) 

{.O, 

(Iul<t and Ivl<t), 

(Iul>t or Ivl>t). 

In other words, we formally express the recovery of Ta from the array of islands if 
(written now as 2IIITa) as the operation of multiplying by M, the parallelopiped 
function of unit height, length, and breadth. Then, by the two-dimensional 
convolution theorem, 

Now it can be shown that 
M _ sin nx sin ny 

-- n 2xy , 

but because of the character of 2III the convolution integral (8) reduces exactly 
to the sum of products of the array of values of Ta at discrete intervals with the 
array of values of M taken at the same intervals. In calculating any particular 
value, therefore, we need only know a discrete set of values of M. There are 
two principal interpolations for which it is useful to have the M array recorded 
for reference. The points A and B (Fig. 2) show the relation of the required 
points to the lattice points where Ta is known. For interpolation at A, the 
centre of the square, we use 

2III(x-t, y-t)M, 

and for interpolation at B, the mid point of a lattice line, we use 

2III(x-t, y)M. 

These two arrays are given in Table 1 and Table 2. For interpolation at C we 
use the B array with rows and columns interchanged. The reason that inter-
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polation at B needs only the values of T a in the row through B is that a cross 
section of a surface whose (two-dimensional) spectrum is cut off, itself has a 
cut-off (one-dimensional) spectrum. The amount of work needed to perform 

0 0 0 0 0 0 
Xc 

F" 

0 0 0 0 0 X 0 

)( XE KG 
A 

0 0 )( 0 0 0 X 0 
B D 

0 0 0 0 0 0 
Fig. 2.-Known values ofTa are marked O. Interpolated 

values are required at A, B, and C. 

A-interpolation considerably exceeds that for B-interpolation, so that in practice 
it will often be preferable to use only B-interpolation, proceeding by steps such 
as D, E, F, G (Fig. 2). Table 2 is given at greater length in Table 1 of paper I. 

TABLE 1 

ARRAY FOR A·INTERPOLATION 

(The first octant is shown at greater length on the right) 

0·08 0·08 0·005 

0·05 0·14 0·14 0·05 0·008 0·006 

0·08 0·14 0·41 0·41 0·14 0·08 0·016 O·Oll 0·009 

0·08 0·14 0·41 0·41 0·14 0·08 0·045 0·027 0·019 0·015 

0·05 0·14 0·14 0·05 0·405 0·135 0·081 0·058 0·045 

0·08 0·08 

We have so far assumed that T~ is cut off outside the rectangle determined 
by I u I =uc' I v I =vc) without enquiring whether it is also zero anywhere within 
the rectangle; but if the aerial has circular symmetry, as is often the case, the 
cut-off boundary will be circular. 

I~et A fall to zero on the circle U 2 +v 2=R2. Then 

'i! =N 2IIIT a a' 
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- fI, N(u, v)= 
0, 

(U 2+V2<R), 

(U 2+V2>R). 

and we know that 
N _ RJ1{27tRY(X2+y2)} 

- y(X2+y2) • 

TABLE 2 

ARRAY FOR B-INTERPOLATION 

o o 

o o o o 

-- 0-127 0-212 0-637 -- 0-637 0-212 0-127--

o o o o 

o o 

The array for A-interpolation in this case is shown in Table 3. When the aerial 
is elongated and produces a " fan beam", then as long as the position angle of 

TABLE 3 

ARRAY FOR INTERPOLATION WHEN THE AERIAL HAS 

CIRCULAR SYMMETRY 

(Only the first octant is shown) 

0-005 

0-016 0-0l6 

0-027 0-005 0-006 

0-025 0-038 0-030 0-022 

0-391 0-102 0-046 0-027 0-018 

the beam is kept fixed, this case is covered by the scale change making (2ucl- 1 

and (2vcl-1 unity. In practice a rectangular lattice of points is used to define the 
data. 
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The operation of filtering is closely related to interpolation, but the 
independent variables, instead of assuming discrete values, vary continuously. 
It is required to remove the spectral components outside a certain cut-off 
boundary-which is precisely the means by which interpolation was effected. 
However, the integral does not reduce to a summation as in that case. The 
filtered value T a corresponding to an unfiltered value T is given by 

Ta=M*T, 

in the case of a rectangular cut-off boundary. To evaluate this integral we 
would calculate a summation 

T~~={ 2III(~, ~)M }*T, 

which would approach the desired integral as the spacings ~ and "YJ approached 
zero. Just how small they need be we shall now enquire. 

v 

Fig. 3.-To illustrate the function -PIII(iu, tv)*M. 

Beginning with the coarsest interval ~="YJ=1, we find Tll=T, that is, no 
filtering has been achieved; but with ~="YJ=l, we find 

T t l={2III(2x, 2y)M}*T, 
whence 

- f (u v) -}-Ti !=!( 2II1 2' 2 *M T. 

Thus Tt 1 consists of a central part M T=~ plus islands in the uv-plane covering 
only one-quarter of the plane, as shown in Figure 3. For many purposes this 
would be sufficient filtering, since the components to be rejected would often lie 
chiefly just beyond the central region. 
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The test for adequacy of filtering is to compare B-interpolations with T 
in the most unfavourable areas. Where further filtering is required, further 
application of the same process with ~="Y)=t will remove the eight peripheral 
islands of Figure 3 as well as others further out. Table 4 gives for permanent 
reference the array needed for the summations to which filtering is reduced by 
the suggested procedure. Subsequent stages of filtering, where indicated, use 
exactly the same array. 

A further comment may be made on a procedure which appears at first 
sight to be equivalent to filtering. If T is read off at discrete intervals corres
ponding to the desired cut-off, the set of values so obtained defines a function 

TABLE 4 

ARRAY FOR FILTERING 

0 

0·016 0 

0 0 0 

0·045 0 0·027 0 

0 0 0 0 0 

0·101 0 0·034 0 0·020 0 

0·250 0·159 0 0·053 0 0·032 0 

!-------------------------

with cut-off spectrum which may then be recovered by interpolation. But 
this function, M*(2IIIT), is not the same as Ta since it is contributed to by high 
frequency components of T. A use for it is suggested in Section VII. 

Both interpolation and filtering have application to the handling of contour 
diagrams of brightness distribution. When data have been obtained at the 
peculiar intervals, it is not always easy to draw the contours in by eye, especially 
in places where the contours are tightly bunched or strongly curved. Inter
polation of extra values is here useful. On the other hand, when data have 
been obtained continuously or semi-continuously high frequencies can appear 
accidentally, and may be revealed by interpolation and removed by filtering. 
One source of spurious high frequencies is undoubtedly the freehand interpolation 
of contours-the apparent detail so generated should be ignored during subse
quent interpretation. In fact, before any spatial detail near the limit of resolu
tion is discussed, it should be filtered to ensure that no spurious feature is included 
which is unjustified on the known aerial resolution. 
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It is unlikely that any of the published surveys of galactic noise have been 
filtered and it is certain that many of them contain unwarranted detail. It is 
suggested that when publishing a contour diagram one should make clear how 
the interpolation was done and whether filtering was done. As an alternative~ 
or adjunct, to a contour diagram, a table of values at the peculiar interval would 
have merits. 

VI. RESTORATION 

The possibilities of restoration have been studied in paper I for one dimension 
and they are the same in the present case. In brief, nothing can be done about 
spectral components near or beyond cut-off, but the correct relative proportions 
of the remaining components can be restored. Whether a given T a can be 
gainfully restored depends on T-whether it falls to an unimportant level before 
the aerial cuts it off. If it does so, the distribution is fully resolved and may be 
confidently restored. More usually, however, T is such that the justifiable 
degree of restoration is a nice compromise between improvement due to the 
restored balance of the low frequency components and deterioration due to 
overshoot and magnification of errors. 

The method of successive substitutions is applicable in two dimensions 
but has the disadvantage of reqillring an amount of computation that renders 
it infeasible in much of the recent extensive high resolution work. There 
therefore appears to be scope for a less elaborate procedure which would at least 
indicate the order of magnitude of the corrections and enable one to see where 
fuller attention to restoration might be wise. The special case of a Gaussian 
aerial has been approached on this basis (Bracewell 1955a) with encouraging 
results. The method is a generalization of one worked out for the one-dimen
sional case (Bracewell 1955b) in which the correction is given by the amount by 
which the distribution lies above the mid point of a certain chord. In two 
dimensions it is useful to imagine the corresponding plane, but the calculation 
mnst be done numerically, not graphically. The amount of the correction is 

- HLlxx +Llyy)T a' 

where Llxx is the second difference of Ta when y is kept constant, and the interval 
over which the differencing is done is equal to v'2 times the standard deviation 
of the Gaussian beam. In the case of beams other than Gaussian the correction 
becomes 

-(XLlxx+~Llyy)Ta' 

where X, ~, and the differencing intervals IX and ~ are fixed by matching 
X sin 2 7tIXU +~ sin 2 7t~V to A -1-1 as previously described for the one-dimensional 
case (Bracewell 1955c). 

VII. CARRYING OUT AERIAL SMOOTHING 

The need to carry out aerial smoothing numerically can arise in various 
ways: 

(a) In comparing data obtained with different aerials but on the same 
wavelength, further smoothing on the better resolved data must be carried out. 
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(b) In determining spectra by comparison of data taken on different wave
lengths, different resolving powers must usually be allowed for. 

(0) In utilizing optical data presented in the form of contour diagrams or 
counts showing the frequency of occurrence of celestial objects, some numerical 
operation akin to aerial smoothing must first be applied. 

One might consider restoring the less well-resolved data before making 
comparison, and in some cases this might be desirable, but more often the 
sacrifice of detail in the procedure discusJ!led here will be more than compensated 
for by the reliability of the comparison; for a smoothed distribution can be 
uniquely determined whereas there is uncertainty in the determination of a 
restored distribution. 

Case (0) differs from (a) and (b) through the presence of high frequency 
components resulting from the high resolution of optical data, and such data 
should first be roughly filtered by taking running means, smoothing by eye, or 
some other appropriate method. 

Since the present problem has arisen in connexion with aerials having 
Gaussian beams, Gaussian smoothing will be used to illustrate the proposed 
methods. 

Let 
1 (X2+y2) A(x, Y)=27t0'2 exp - 2C.f2 ' 

where 0' is the standard deviation of any section through x=O, Y=O. Then 

A(u, v)=exp {_27t"O'2(U2+V2)}. 

We now take T to stand for a distribution which is to be smoothed and let Ta 
represent the result of the smoothing. The operation by which Ta is obtained 
from T must be such that 

~=AT 
=exp {_27t0'2(U2+V2)}T. 

We shall take as an approximation to this exact formula, for reasons which 
follow later, 

Ta=t{l+cos 2 y(27t) O'U cos 2Y(27t)O'v}T. . ......... (9) 

The degree of agreement with the accurate Gaussian function is shown in 
Figure 4. Applying the Fourier transformation to equation (9) we have 

Ta(x, y)=tT(x, Y)+ i{T(x-XD y-xl)+T(x+xD Y-XI) 
+T(x+xl , y+xl)+T(x-xu y+x1 )}, •••••••••• (10) 

where 

Equation (10) is interpreted diagrammatically in Figure 5 which shows a square 
grid ruled at intervals Xl' First take the mean of the four values surrounding 
the value (100) to, be corrected and then average the result with 100. Alter-
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natively, average the differences shown in smaller figures and subtract half the 
amount from 100. The value for T a is thus 98 ·5. The possibility of reducing 
the numerical operations to this simple procedure of averaging was the reason 
for selecting the approximating function in equation (9). 

The amount of work involved in applying the operation here described is 
consistent with the economy of effort desirable in any two-dimensional operation, 
and is much less than the work involved in carrying out smoothing by convolution 
with a Gaussian distribution. A little further study is, however, necessary 
for two reasons. Firstly, the function A cannot be strictly Gaussian since it 

o 

-J (27T)aU 

Fig. 4.-Agreement of the approximating function 
with the Gaussian distribution. 

must fall to zero outside an interval set by the finite extent of the aerial and 
secondly, the approximating function is periodic. 

The periodic character of the approximating function 

is obviously immaterial ifT is zero for values of au and av greater than (!7t)!. 
Any method of ensuring that this is so would therefore be sufficient to render 
the periodic character inoffensive. One approach is to filter the data numerically, 
but a simpler procedure would often be sufficient. The values of T taken at 
critical intervals of u and v define a function T' whose transform is zero beyond 
the stated limits. If T' represents T adequately, within the limits of accuracy 



TWO-DIMENSIONAL AERIAL SMOOTHING IN RADIO ASTRONOMY 311 

of the observations, then one may proceed immediately to operate on these 
values in the manner described in connexion with Figure 5. 

The fact that the function A cannot be strictly Gaussian in practice leads 
to a step such as is shown by the dotted line in Figure 4. Possibly this is too small 
to be important in many cases, but circumstances will vary from case to case 
and it may be desirable at least to investigate the effect. .An excellent fit 
to the stepped distribution can be obtained by adding a constant to the approxi
mating function and altering the coefficient t to compensate. The result will 

98 

~ 
95 

100 

97 + 98 

Fig. 5.-Illustrating the numerical procedure for 
smoothing. 

depend on the particular aerial considered, but for the 1500-ft Mills Cross it 
becomes, on the v=O axis, 

0·45{1+cos 2V(27t)cru}+0·1. 

The agreement of this function with exp (_27tcr 2U 2) is extremely close. The 
net effect is to weight the central value (100) when it is being averaged with the 
mean of the surrounding values. 

VIII. THE CALCULATION OF FLUX DENSITY 

As the result of a survey with a pencil beam, the distribution of observed 
brightness temperature T a over a discrete source has been established and 
subtraction of the background is assumed to have been attended to. The flux 
density S of the source is given by integrating T over the solid angle occupied 
by the source, thus 

We now show how to evaluate S from knowledge of T a , first proving that 
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The integral of a function between infinite limits is equal to the value of its 
Fourier transform at the origin, e.g. put u=v=O in equation (4). Hence 

I:ooI:oo Tadxdy=[AT]u~v~o 
=(T]u~v~o, 

provided A is normalized so that I:ooI::dXdY=l, when [A]u~v~o=1. 
But 

therefore 

It is consequently sufficient to calculate the flux density of a source by integrating 
Ta; nothing is lost through unawareness of the fine detail in T. 

We now show that the integral can be replaced by a summation. If 
Ta=O for I u I>i and for I v I>i, then 

I: ooI: :adxdy=4[ 2III(2u, 2v)*Ta]u~v~O 
=[ 2III(ix, iY)Ta]U~V~O 

= I: ooI: ~III( ix, iy)Tadxdy 

00 00 

~ ~ 4Ta(x-2[L, y-2v). 
(L~-OO V~-OC! 

Alternatively, a fortiori, 

provided IX and ~ are both less than 2. This result permits a great time saving: 
to integrate T a , it suffices to sum only one in four of the discrete values necessary 
to specify Ta' The proviso that 1'a=O for I u I> i and for 1 v I> i is automatically 
met when the units of x and yare equal to the peculiar intervals associated with 
A(x, y), but if Ta(O, ±i) or Ta(±i, 0) are not all zero, then 

If Ta is discontinuous at any of the points u=O, v= ±i or u= ±i, v=O, the 
fact would be revealed as inequality between the four possible summations 
based on the points (x, y)=(O, 0), (0,1), (1,0), (1,1) (their mean being correct). 
There are different ways of regarding this phenomenon. One can avoid it 
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entirely by taking oc and ~ less than 2. On the other hand one can use it for 
testing data supposed to be free of components of semi-period equal to the 
interval of tabulation. 
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ApPENDIX I 
The Two-dimensional Fourier Transform of the Function 2III 

The integral J:<>J:~III(X, y)dxdy not being convergent, the function 

2III(x, y) does not possess a regular two-dimensional Fourier transform: we 
are concerned here with showing that it has a transform-in-the-limit, and that 
this transform is identical with 2II1 itself. We prove in full the corresponding 
result for the one-dimensional function III(x), which has not been given before, 
to the author's knowledge, and indicate the method of proof for 2III. 

Consider the functiont 
co 

F(oc, x)=oc-I exp (_1tOC2X2) ~ exp {-1toc-2(x-n)2}. 
n=-oo 

For each oc, F(oc, x) represents a row of Gaussian spikes of width oc, the whole 
multiplied by a Gaussian curve of width OC-I. We shall consider the limit of 
this function as oc-+O. It is easy to show that limF(oc, x)=O for x#n, and 

In+t 
that, for every n, lim n_tF(oc, x)dx=1. It follows thatt 

lim F(oc, x)=III(x). 
(X---+O 

We now consider the transform of F(oc, x), and show that as oc tends to zero 
this transform approaches a limit which is III(s). In determining the transform 

t In following this proof it will be helpful to notice that, in our * and III notation, 
F((X, x)=exp (-TC(X2X 2){(X-I exp (-TC(X-2x2)*III(x)). Furthermore, exp(-TC(X282) is the Fourier 

transform of (X-I exp (-TC(X-2X2); and the factors are so chosen thatJ co (X-I exp (-TC(X-2x 2)dx= 1, 
-co 

irrespective of the value of (x, thus ensuring that lim (X-I exp (-TC(X-2x 2)=a(x), whence, in due 
{lourse, limF ((X, x)=III(x). The line of proof is to deduce, by conventional means, that F((X, x) 

has a regular transform, viz. 

(X-I exp (-TC(X-2x2)*{exp (-TC(X282)III(8)), 

.and that both F((X, x) and its transform approach III as (X-+O. 

t This equation is to be interpreted in the same sense as one interprets lim (X-III(x/(X)=a(x), 
namely, as permitting convenient notation as integrals for expressions which, when rigorously 
.expressed, are limits of integrals. 

B 
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of F(oc, w) we first notice that the factor OC-l~ exp {-7toc-2(w-n)2} is periodic 
in wand may therefore be expressed as the Fourier series 

00 

~ exp (-7toc2m2) cos 27tmw. 
m=-oo 

Hence 
00 

F(oc, w)= ~ exp (-7toc2m2) exp (_7tOC2W2) cos 27tmw. 
m=-oo 

Applying the Fourier shift theorem we find for the transform of F(oc, w) 

00 

F(oc, s)=oc-1 ~ exp (-7toc2m2) exp {-7toc-2(s---':m)2}. 
m=-oo 

This function isa row of Gaussian spikes of width oc with peaks lying on a 
Gaussian curve of width oc-1, and clearly, ' 

lim F(oc, s)=III(s). 
ex--+O 

Hence the transform-in-the-limit of III is identical with itself. 

A similar proof can be given for 2III by showing that the regular two-
dimensional transform of G(r*2III) is r*(G2III), where . 

G(w, y)=exp {_27t2OC2(W2+y2)}, 
and 

r(w, y)=(27tOC2)-1 exp {_(2oc2)-1(W2+y2)}. 

Here G and r are a transform pair, and r has the property lim r=2~. The 
doubly periodic function r*2III can be expressed as a double Fourier series and 
the two-dimensional shift theorem can be applied term by term. Both G(r*2III) 
and r*(G2III) approach 2III as. oc~o. 




