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Summary 

Some recovery processes in metals occur at temperatures too high to be readily 
accessible to isothermal calorimetric studies and such phenomena are more conveniently 
inve,stigated using a constant rate of heating. It is shown that the activation energies 
of these processes can be determined from calorimetric work carried out at a constant 
rate of heating. 

I. INTRODUCTION 

In making calorimetric studies of the annealing of deformed metals, two 
principal methods have been adopted. The release of energy has been measured 
either at constant temperature or as the temperature is increased continuously. 
Both methods have inherent advantages. One feature of the isothermal tech­
nique is that the activation energies of the recovery processes can be readily 
determined (Gordon 1955). It is the purpose of this note to point out that 
activation energies can also be determined from calorimetric measurements 
of the type made by Olarebrough et al. (1952) and by Clarebrough, Hargreaves, 
and West (1955) where the rate of heating, i.e. the rate of increase of temperature, 
is constant. These experimental results comprise a series of curves, each of 
which shows the rate of release of energy from a deformed specimen as a function 
of temperature for a. particular rate of heating. From the differences between 
the curves corresponding to different rates of heating, it is possible to deduce 
activation energies. 

II. METHOD OF CALCULATION 

We assume that the state of the deformed metal can be described by one 
or more of a set of qu~ntities such as the number of vacancies, the density 
of dislocations, the amount of metal recrystallized, etc. Then, over a limited 
range of temperature, we assume that the change in state can be ascribed 
effectively to a change in only one of these, denoted by x, and that the energy 
is released in proportion to the change in x. This implies that the total energy 
E which has been released at a given temperature T is a linear function of x. 

We now make the usual assumption that the recovery process follows an 
equation of the form 

ax 
dt f(x)e- Q1BT, •••••••••••••••••• (1) 
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where f(x) is some function, independent of time and temperature, t is the time, 
Q is the activation energy of the process, and R is the gas constant. Then, 
since E is a linear function of x, this can be rewritten to give the rate of release 
of energy M as 

dE 
M=- =g(E)e-Q/RT, 

dt (2) 

where g(E) is independent of time and temperature. 

If the rate of heatiI;lg is ot, we can write 

T=To+ott, ...................... (3) 

where To is some initial temperature, and equation (2) can then be integrated 
formally to give 

JE d~ 
o g(~) =h(E), say, 

=~JT e-Q/R-rd"C' 
ot T. 

1 [R"C'2 ( R"C' R 2"C'2 --;X Qe-Q/R ,< 1-2! 'Q +3! Q2 -. . ... (4) 

the asymptotic expansion being derived by repeated integration by parts. 
Provided that T is sufficiently greater than To and RT~Q, equation (4) can be 
written as 

that is, 

RT2 
h(E)~ otQ e-Q/RT, (5) 

In (T2jot)~QjRT+ln {Qh(E)jR}. . ........... (6) 

If we now choose a particular value of E, say ED the last term of equation (6) 
is fixed and, for each heating rate, the value of T for this El can be determined 
from the experimental results. Thus, if several heating rates have been used, 
Q may be estimated by plotting In (T2jot) against 1jT and determining the slope 
of the resulting line. If onfy two heating rates have been used, Q is given by 

Q _ RTIT2 I otlT~ 
-T T n 2' 

1- 2 ot2Tl 
.................. (7) 

The error made in neglecting all but the first term of the asymptotic expansion 
(4) can be corrected by a process of successive approximations. 

This procedure is, in principle, capable of high accuracy since the mathe­
matics can be made as accurate as is desired and several estimates for Q may be 
obtained by measuring values of T for several different values of E 1• However, 
in practice, a set of temperatures corresponding to a given El is difficult to 
determine accurately because of uncertainties in the amount of energy released 
at low temperatures and in the exact position of the base level above which M 
is measured. Such uncertainties, though small enough to be unimportant in 
the measurement of total energy evolved, may cause large errors in the estimation 
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of Q since this depends essentially on the fairly small differences between the 
temperatures corresponding to a given El for different rates of heating. 

However, one set of temperatill'eswhich can be determined readily and 
accurately is the set of temperatUres T* at which the maxima in the curves 
of t::.P agaipst T occur. Furthermore, it can be shown that these temperatures 
correspond to the release of approximately equal amounts of energy.· For, 
since a maximum requires that d(t::.P)/dT=O, we have, by equation (2), 

f g'(E):! +g(~)R~2 }e-Q/BT=O .. 

By using equations (2) and (3) to substitute for dEjdT we get 

g'(E) + (rxQjRT2)eQ/BT=O, 

and hence, by use of equatIon (5), 

g'(E)+ljh(E)~O. . ............... (8) 

-Since equation (8) is an equation in E only, its solution, which gives the 
value of energy for which t::.P is a maximum, is independent of the rate of heating. 
Thus, to the approximation implicit in equation (5), the temperatures T* at 
which the maxima occur correspond to equal values of energy and these temper­
atures may be substituted into equations (6) or (7) to determine Q. 

If the values of T* are used to determine Q, the result cannot be corrected 
for the effect of cutting off the asymptotic expansion unless the form of j(x) 
(and thus of g(E) and h(E» is known, either implicitly or explicitly. However, 
the effect of such corrections is not likely to be large and, in fact, in one case 
where equation (6) was used and j(x) was known impli-citly (Nicholas 1955), 
the correction to Q was less than 1 per cent., i.e. insignificant. 

The advantages of using the values of T* are that the temperatures can 
be taken directly from the experimental curves and will be insensitive to small 
errors in the position of the base line and to the amount of energy that is released 
at low temperatures. Furthermore, detailed consideration shows that the 
procedure will discriminate between two concurrently acting processes which 
have sufficiently different values of T*. However, if one particular peak 
represents a two-stage process or a set of similar processes having almost identical 
activation energies, then equation (6) will only give some mean value of the 
energies involved and care must be taken in interpreting the result. 

III. ApPLICATIONS . 

Equation (6) can be used to determine activation energies for recrystalliza­
tion from data given in Olarebrough, Hargreaves, and West (1955). Thus, 
for electrolytic copper (99·98 per cent. Ou) the actiTation energy for recrystal­
lization after 45 per cent. elongation in tension is 33 kcaljmole, while for nickel 
(99·6 per cent. Ni) after heavy deformation in torsion, the corresponding value 
is 85 kcaljmole. 

It is clear that the use of equation (6) need not be restricted to calorimetric 
studies even though these have the advantages that a quantity proportional 
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to dx/dt is measured directly and that the amount of energy released by an 
imperfection is almost independent of the temperature of measurement. In 
fact, Parkins, Dienes, and Brown (1951) have already derived the eqUivalent 
of equation (6) and used it in resistivity studies during the " pulse-annealing" 
of AuOu. However, their derivation assumes that f(x) is of the form xY and 
their integration of 1/f(x) is invalid for y=1. Furthermore, they do not 
investigate the integral of exp (-Q/RT) and assume that the varil),tion, with 
temperature, of this integral is negligible compared to the variation of the 
integrand. Actually, their result is valid only because both the integral and the 

. integrand vary with temperature in the same way. 
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