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Summary 

An aerial rarely provides a perfect image of a radio brightness distribution. If 
we consider an array as a filter of " spatial harmonics", the image function is a trigono
metric sum approximating the object function. An application of mathematical 
theories shows the influence of the length and the shape of the array on the difference 
between object and image. Whatever the array, the image contrasts are bounded. 
The results provided by various arrays of the same length may be reduced by linear 
transforms. Inaccuracies of measurement, especially those due to the receiver noise, 
add to the systematic error due to the finite length of the antenna. We may try to get 
a compromise between these various causes of uncertainty. 

1. INTRODUCTION 

The most general effect of an aerial used to survey a radio brightness. 
distribution (that we call" object" by analogy with optics) is to provide informa
tion on the object. All properly designed aerials having the same length provide 
the same quantity of information, but in a way more or less convenient to use. 

If we want the information to be directly available, we use a narrow beam 
antenna. In fact, however, its design results from considerations about its 
radiation pattern. If we adopt criteria about the difference between object 
and image, we may design quite different antennae, better fitted to the problem 
of radio astronomy (Arsac 19550). 

If we have an imperfect antenna, to get the best from it, we may wish to 
extract from the given image all the information implicitly contained in it. 
It can be shown that all the images of the same object provided by aerials of 
the same length may be transformed one into the other by linear transformations 
(Arsac 1955b, 19550). The choice of a criterion for the object-image difference 
allows determination of a transformation so that the obtained image agrees 
with this criterion. 

Interferometry, used as far as a distance L, gives the same information 
as an antenna of length L, but piece by piece. The combination of this informa
tion piece by piece according to a suitable process allows an image of the object 
to be formed. Again, the choice of a criterion for the object-image difference 
determines the process to be used. 

The most frequently used criterion is that of the least mean square error 
(Bracewell and Roberts 1954; Arsac 1955b, 19550). It may be slightly defective, 

* Observatoire de Paris, Meudon, France. 



THEORIES OF APPROXIMATION IN AERIAL SMOOTHING 17 

for a large error is not excluded, if limited to a narrow interval. The mathe
matical theories of approximation of functions by trigonometric sums give 
us some precision on the maximum of error, in connexion with the bounds of 
image contrasts. 

II. PARTICULAR FEATURE OF AERIAL SMOOTHING 

The study of the observation of brightness distribution by an antenna 
shows that it behaves in the same way as the formation of an image by an 
optical instrument: 

J+'" 
P(6) = (1j27t) _!(u)g(6-U)dU, 

where f(u) is the brightness distribution of the object (assuming the problem 
reduced to one dimension), g(6) is the antenna gain, P(6) the image (received 
power); u and 6 are angular coordinates on a great circle of the celestial sphere; 
P, f, and g are merely positive functions (Bracewell and Roberts 1954; Arsac 
1955b, 19550). 

The interpretation of such an equation by Fourier transforms is well known 
(Duffieux 1946). However, it seems to us imperfectly fitted to radio astronomy. 
The essential characteristic of the functions P, f, g is that they are functions 
of an angular coordinate on a great circle of the celestial sphere; so they are 
periodic with period 27t. It is only with care that we can define their Fourier 
transform, for it vanishes everywhere, except for an infinite set of equidistant 
points where it is infinite. We must introduce the theory of " distributions" 
(Schwartz 1950). We may resolve such a difficulty by assuming that the 
function f vanishes identically outside the interval -7t, +7t. Its transform 
is then 

It seems more convenient to represent these functions by trigonometric 
series: 

- ro 

, n, 
g(6)=ao+2~ap cos p6. 

I 

g(6) includes only a bounded number of terms owing to the finite length of the 
antenna (Arsac 1955b, 19550). Without loss of generality, we can assume g 
even. Then a'_p=a~ and 

+n , , 
P(6) = ~ apopeip6. 

-n 

In some cases (for instance, investigation of the Sun or some very bright 
radio stars) there are sources on only a limited region of the sky, so that the 
function f nearly vamshes outside a certain interval of length 2bo• We can 
represent f by a new series 

+00 

f(6)= ~ opeip11:6/b 
-00 

B 
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in the interval -b, +b, outside which f vanishes. b may be any number greater 
than boo . So there is an infinity of possible representations. To connect them, 
we have only to introduce the Fourier transform as defined above 

f+bO 

F(x) = -b
o 
f(6)e -ia:6d6, 

limiting the interval of integration to the interval -bo, +bo, outside whichf=O. 
Then 

cp=(lj2b)F(p1tj2b). 

It happens that the most general array, constituted by a line of antennae 
whose abscissae are integer multiples of the same length a (we call it the funda
mental length of the array) has a gain given by 

n 
g(6) =ao+2I:ap cos (2p1ta6jA). 

1 

The sum is always limited to n because of the finite length of the array. 
Under certain assumptions (a of the order of many A) na=L. If we take 
ajA=lj2b <lj2bo the array passes the necessary harmonics to define f on -b, +b. 
We get then . 

+n 
P(6)= I: apcp cos (p1t6jb). 

-n 

Such relations imply that: 

(i) g is a trigonometric sum, 
(ii) P is a trigonometric sum. 

III. GENERAL PROPERTIES OF ARRAY PATTERNS 

It does not seem that the importance of the first conclusion had been 
pointed out before a recent article by Simon (1955). A trigonometric sum of 
nth degree has these properties : 

(i) it has at most 2n zeros, 
(ii) . its derivatives are bounded. By Bernstein's' (1926) theorem, if Q(6) 

. is a trigonometric sum of nth degree and I Q(6) I <M then. 

I Q(p)(6) I <nPM. 

When arrays are concerned, g is in fact a function of 21ta6jA. Noticing that 
g(6) >0 and go being the maximum of g, 

I g-tgo I <tgo, 

I g<p)(6) I «21tL/A)P . tgo· 

Especially- for the small values of 6, 

g.-.go-t62 I g~ l>go-t62(21tLjA)2 • tgo·· 

The value g=lgo cannot be reached for values of 6 smaller than V'2Aj21tL. 
This limit is smaller than the usual value AjL. 
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A comparison of the gains of any array and Dolph's array allows us to get 
either a limit of the width of the main lobe as a function of the level of the side 
lobes, or a gain limit of the array over au interval not including the centre of the 
main lobe. It may be proyed that the gain of an array cannot remain 4 times 
smaller than the gain product of the extreme antennae of the array for sufficiently 
great values of. 8. This result confirms the optical theorem showing that 
diffracted energy in the far part of a diffraction figure is chiefly determined by 
brightness on the pupil edge (Dossier 1954). 

IV. IMAGE QUALITIES 

The second conclusion we pointed out seems still more important in radio 
astronomy. P(8) is not any function, but a trigonometric sum. Experience 
substitutes for the unknown function f(8) the polynomial P. 

If we want image P to reproduce object f,' P(8) must approximate f(8). 
We are led to the problem of the approximation of a function by a trigonometric 
sum. 

I~et us sum up the results of mathematical analysis (Jackson 1930). 

Let f(8) be a periodic function of period 27t: we define its Fourier com
ponents by 

We can get polynomials approximating j, i.e. such as for all values of 8, 
I f-Pn I <rn , rn being the realized approximation. They are built from Fourier 
components of j by a summatory process (Hardy and Rogosinski 1938) 

p~+n 

P":;= ~ m~cpeipe. 
p~-n 

The values m~ are most frequently that of a function m(t) for t=p/n+1 ; 
m(t) vanishes if I t I> 1. m(t) is the summatory function. In very general 
conditions P":;--+f if n--+oo (rn--+O if n--+oo). 

n being fixed, the choice of the summatory function allows us to modify 
the possible values of r n' Among all the processes m(t), there is one and only 
one mmImIzmg rn' The corresponding polynomial P n , called" of best approxi
mation ", is such that the difference Pn-f takes, over the interval -7t to 7t 

(one of the limits being excluded), n+2 extreme values of the same size and 
opposite sign. If f(8) has a bounded derivative of pth order I fCp)(8) I <Mp, 
the minimum of rn, that we write En(f) and call the best approximation of nth 
order of f, is such that 

The first values of C pare : 

and 
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The surnmatory process that minimizes r n varies with the properties of 
1(fJ) (Favard 1937). 

Most summatory processes saturate~ i.e. the approximation attainable cannot 
be smaller than a given limit, only attainable for .f1 certain class of functions. 

Thus the Fejer process" defined by m(t)=l-1 t I, 
+n 

O'n(fJ) = ~. [1-1 pl(n+1) IJcpeiPO 
-n 

(writing O'n for the corresponding polynomial Pn(fJ)) saturates with the degree 
(If approximation lin, i.e. for every function there exists at least one value of fJ 
,such that 1 O'n-f I>aln, whereas for certain functions 1 O'n-f 1 <bin. 
The Fourier process 

+n 
En(fJ) = ~ cpeipO, 

-n 

m(t) =1 if 1 t 1 <1 and m(t) =0 if 1 t I> 1, does not saturate. If possible, and if 
En(f) has the same meaning as above, 

1 En -f 1 <En(f) log (2rcn). 

It is one of the advantages of the Fourier process. Though in most cases 
it does not provide the best approximation, there is no lower limit for the one 
it gives; which is easily understood, for only the Fourier process reproduces a 
trigonometric polynomial without error. Furthermore, the best summatory 
process of an indefinitely differentiable function is Fourier's (Favard 1937). 

Nevertheless, the sum En may not converge to f if n-+ 00, at least for certain 
values of fJ. This is the Gibbs phenomenon. In these cases, other more powerful 
summatory processes make the sums converge to f in every point. Thus the 
processes m(t)=l-1 t I"' are more powerful than Fourier's. 

In the following, we assume the gain of arrays to be normalized so that 

I+b 
(lj2b) _/(fJ)dfJ=l 

From the formulae, as stated above, it appears that an array acts for the 
object f as a summatory process, and provides the approximation 

+n 
P(fJ)= ~ apcpeipO. 

-n 

The approximation obtained depends on n and the set of values ap that 
characterizes the antenna completely and that we have called the "spatial 
pass band" (Arsac 1955b, 1955c). For an array of length L and of fundamental 
length a, na=L. n may be increased, the length L being a constant, by decreas
ing a. It does not necessarily follow a better approximation. 

If f(fJ) has a pth derivative bounded by M p, the function f(rcfJ/b), with 
period 2rc, has a pth derivative bounded by (blrc)PMp-
Thus 
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The best approximation depends only on the total length of the array. 

The saturation problem is more complex. From the definition of P and f 
it follows that: 

Thus 

(1/2b)J+b (P -f)e-iPrte/bd6=(ap -l)op, 
-b 

1 (ap-l)op 1 «1/2b) J::I P-fl d 6, 1 (ap-l) 1 op<rn' 

The difference P -f cannot be smaller everywhere than the greatest value 
of 

For instance, if 

then 
r n> ("A/21tL )k(1/2b) [(2p1ta/"A)kJjl(2p1ta/"A)]. 

Let Nk be the upper bound of xkJjl(X) on the set of points x=2p1ta/"A, 
where 

At this point the process saturates. If n increases, L being constant, the 
denominator increases, for b increases if a decreases. But simultaneously the 
distance between two consecutive points x=2p1ta/"A decreases, and so Nk may 
be increased. For instance, if xkF(x) has its maximum value for x=xo, Nk 
may be smaller than this maximum if Xo and its neighbourhood do not belong 
to the set of points x=2p1ta/"A. By decreasing a, one of the set will tend to xu, 
and Nk increases. We cannot draw a conclusion in the general case. 

We have considered interferometry elsewhere (Arsac 1955b). There is no 
advantage in doing interferometric measurements for antenna spacings other 
than integer _multiples of a same length a (defined as above, i.e. smaller than 
the inverse of the apparent diameter of the source, when a is measured with 
wavelength as unity). Besides, there is an exact equivalence of problems, 
interferometric measures for distances a; 2a; . .. ; na=L giving the same 
harmonics as an array of length L and fundamental length a. 

An array designed to give the Fourier sum of f induces an error smaller 
than En(f) log (21tn). There is advantage in keeping En(f) constant (L constant) 
and decreasing n. Which is easily understood: it often happens that from a 
certain value of x, F(x) has equidistant zeros of abscissae PXl (for instance, a 
circular source of uniform brightness). If we take 21ta!"A=xl all the harmonics 
not passed by the antenna vanish. Ther.e is no error. If we decrease a (for 
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instance, if we reduce it by half) the rejected harmonics are of order fpxlI and 
one harmonic out of two is different from O. There is inevitably an error. 
Finally: 

(i) .A uniform array gives a Fejer sum of f (nth order if there are n+l 
antennae). It can never give an image identical with the object. In any case 
there is at least one point where the difference P -f exceeds the maximum of 
xF(x) on the set of points 2pna/"A; for a circular source of uniform brightness 
and apparent diameter 2bo, for example, 

F(x) =2nboBJ l(boX)/x. 

For b=2bo, N 1NO·6(2nboB), r/B>O·3bo"A/bL=O·15AjL. Moreover, the error 
can be bigger than this value. If we use the results provided by the array 
directly, it is useless to measure with more accuracy than about "A/I0L. 

(li) .An array designed to give the Fourier sum of f may, in some cases, 
give an image identical with the object. For very regular functions (f has no 
rapid variations), it will generally provide good results. For very irregular 
objects (very rapid variations of f) the Fourier series may not converge to f 
and the error may be quite large. This is connected with the Gibbs phenomenon 
(Hardy and Rogosinski 1938). The uniform array does not show the Gibbs 
phenomenon. 

(iii) .A Dolph array is only optimum for practically point sources. 

(iv) .Arrays such as ap =I-1 p/(n+l) Ik may be interesting to build, for 
their order of saturation is smaller than that of the uniform array. The higher 
the order of the zero of met) for t=l, the more powerful the summatory process. 
On the other hand, it provides an even more accurate approximation than the 
order of the zero of I-m(t), for t=O is higher. If En(j) <O/nr, met) sums to 
f with an approximation of the same order if the zero of I-m(t) for t=O is of a 
higher order than r. It is the same for m(t)=I-1 t Ik if k>r. In practice 
k values as small as 2, 4, and 6 will be enough. We have pointed out elsewhere· 
(Arsac 1955b) how one could design an array of a given spatial pass band. 

(v) Interferometry, which separately gives the different harmonics of f 
over a Gertain interval, allows one to get such sums of f as wished. The above 
remarks will help in doing so. 

(vi) If we wish to build an antenna able to provide an image comparing 
various theories (for instance, investigation of solar limb brightening) we will 
choose the type of antenna best suited for the function studied, even if this 
function is not very well known. 

(vii) Usually it is not possible to calculate the systematic error deriving 
from the finite length of the antenna, for the limits reached by f or its derivatives 
are unknown. If one of these limits is known a priori, or a limit of. the co
efficients cp from a certain rank, an upper bound of the error can be estimated. 
Nevertheless, Bernstein's theorem gives us a better understanding of the nature 
of errors due to the finite length of the antenna. If P(El) is bounded by M, 

IPI(El) I «2nL/"A)fM, I P"(El) I «2nL/"A)2 . fM. 
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Assume that we observe an object of the shape given in ]j'iguni 1, and let 
the shape of the image be given in Figure 2. Let D be the width of arc AO ; 
we will certainly get 

MjD«2nLjAHM, D>AjnL. 

This bound cannot be reached because of the continuity of PI(6). If we 
represent arc ABO by an arc of a sinusoid 

P=tM[l-sin {n(6-6o){D}], 
then 

M2n2j2D2«2nLjA)2 . tM, D>Aj2L. 

If we want to represent such an object accurately (for instance, if we want D 
to be slightly different from d) L must exceed 'Aj2d. The regions of maximum 
error of P are those of rapid variation of f. 

p(O) p(n) 

c 

Fig. I.-Object distribution. Fig. 2.-Image distribution. 

In the preceding theory, we have not taken into account the restriction 
g> O. It implies that certain sums cannot be directly obtained. For instance, 
with the Fourier sum we have 

. (6)_sin {(2n+l)na6jA} 
g - sin {na6j'A} . 

As this expression takes negative values, an array cannot provide a Fourier . 
sum. We remove the difficulty by adding a constant to P(6). 

V. IMAGE RESTORATION 

The knowledge of array gain allows the various images of the same object 
given by various antenuae of the same length to be reduced to one another. 
For we have 

+n 
P(6) = 2: apcpeip.,.S/b. 

-n 

A harmonic analysis of P gives the coefficients apcp and, if a p is known and 
different from 0, cp may be deduced from it. It is then possible to build any 
sum of f. Let us write 

k(6) - 1 [a~ n a~ pn61 -2 +1 -+22: - cos - , n ao 1 ap b 

~ a~c eip.,.S/b= ~ p( 2qb )k(6- 2qb ). 
-n p -n 2n+l 2n+l 
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These equations entirely resolve the problem of the restoration of function j 
from function P. Any other polynomial may be built from the approximating 
polynomial provided by the antenna. But we cannot get anything else than a 
polynomial of nth degree. As the result of the above study, the Fourier sum 
Sn' called by Bracewell and Roberts (1954) the" principal solution", is not of 

. necessity the best image we can get with the information given by the antenna. 
Sums corresponding to the 1-1 t Ik process will be often more suitable. Besides, 
this result has been pointed out by Bracewell and Roberts, who notice that 
when the function j is very irregular the defects of the Fourier sum Sn may be 

Fig. 3.-An image distribution (- - -), the first stage of restoration (_._._.), 
and the Fourier sum S. (--). 

smoothed by reducing the Fourier components by "some suitable weighting 
function". The method of Van Oittert's restorations, quoted by Bracewell 
and Roberts, is particularly interesting when the antenna is a uniform array. 
By writing P=j*g for the operation 

we calculate : 

f+b 
P(9)=(lj2b) _pu)g(9-U)dU, 

P1=P+(p-P*g), 
P 2 =P1 +(p-P1*g), etc. 

If P is the Fejer sum of the nth order of j, Pk - 1 is the corresponding sum 
by the 1-1 t Ik process. One operation will be very often enough; it will be 
rarely useful to perform more than three or five. Figure 3 shows the cr 6 sum 
corresponding to the Sun for a: wavelength of 3·2 cm. It is the image of the 
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Sun that would be given by a uniform array of seven antennae, of length L=348A 
(11·10 m), a=58A. Such a sum is built from results of interferometric measures 
(.Alon,Arsac, and Steinberg 1955). We note the result of a first restoration 
m(t)=1-t2 and the Fourier sum SIl. We have been able to get such a sum 
directly (Arsac 1955a, 19550). There is only ,a little difference between these 
last polynomials. ' 

Let us recall that we may realize the restoration by an optical process. 
Such a technique recalls Gabor's methods in electronic microscopy. It is 
enough to have the array passing n harmonics and its spatial pass band to be 
known to get the best possible image (of nth order naturally). 

Let us finally remark that, the restored function being still a polynomial 
of nth degree, the limits of Berns~ein's theorem hold in' this case. This may 
constitute a test for the validity of certain operations of approximate restoration 
(Bracewell 1955). 

VI. NOISY IMAGE 

We have just considered the systematic error due to finite length of the 
antenna. To this error is added the inevitable error of measurement, chiefly 
due to noise originating in the receiver. To the function P is added an error 
DP. This one is only to be considered in the same interval as P. If we know 
many periods of P, the error may be reduced by calculating their mean. Let us 
consider only one period. 

The function DP, being defined in the same interval -b to +b, may be 
represented by Fourier series with the coefficients given by 

J+b 
1 zp 1 =1 (1/2b) _bDP(O)e-iP6dO 1 <Z, if 1 DP 1 <Z. 

Their modulus is bounded by Z. In other words the experiment does not 
provide the exact values of apop ; they may be inaccurate by an error equal 
to Z at most. This may be a limitation on the resolving power of the antenna. 

The known part of the spectrum of f is not limited to the rank of the last 
passed harmonic, but to the rank of the last harmonic whose' amplitude is 
higher than Z. As for every continuous function, op decreases as l/p, it is 
necessary that the last passed harmonics should not be transmitted with too 
small an amplitude. Here lies the principal defect of the uniform array. 

We have established that for a linear array built with antennae of abscissae 
integer multiples of the same length a, two of the antennae of the array transmit 
a harmonic of rank proportional to their distance with an amplitude equal to 
the product of their gain (Arsac 1955b, 19550). Thus it is possible with a given 
number K of antennae to transmit a number of harmonics very much higher 
than K. We must manage to form the set of integers from 1 to N (N being 
the highest possible one) with the distances between the antennae of the array 
taken two by two in every possible manner. With four antennae at abscissae 
0, 1, 4, 6, six harmonics are transmitted all with the same amplitude, the antennae 
of the array being identical. Such an array provides the Fourier sum S 6 (Arsac 
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1955a). Arrays having a greater number of antennae cannot provide the 
Fourier sum, some harmonics having doubled (or more) amplitude. Neverthe
less, it is possible to transmit 13 harmonics with six antennae, 23 with eight 
antennae, ... , etc. We may transmit a number of harmonics of order K2J4. 
Such a possibility is rather convenient, for it allows us to get the maximum 
information with a given number of antennae. Besides, such arrays add a 
continuous background to the function P, which diminishes the accuracy of 
measurements. 

Let us compare the 0, 1,4, 6 array with a uniform array 0, 1, 2, 3, 4, 5, 6 
whose axial gain would be the same. Figure 4 shows a record obtained for 
A=3·2 cm with a 0, 1, 4, 6 array of parabolic antennae of diameter 1·10 m having 
a 2° beam in the meridian plane and 7° in the perpendicular plane (a=:=58A, 

T 

~".' 

t 2 1 MIN 0 

REFERENCE LEVEL (SKY TEMPERATURE) 
-'-'---'----'-'-----------'---'---'---'-' 

Fig. 4.-So1ar scan. 

L=348A). The result obtained with the uniform array of the same axial gain is 
presented in Figure 5. The error of measurement is smaller for the uniform 
array. But this latter transmits six harmonics with the amplitudes: 

a1 =1·96, a 2=1·65, aa=1·30, a4 =0·98, a 5=0·63, a6=0·33, 

instead of ap=l (p=l, ... ,_ 6) for the 0, 1, 4, 6 array. Consequently, if the 
error of measurement is bigger for the incomplete array, the systematic error 
is smaller, for the last harmonics are known with -a higher accuracy. If we had 
compared two arrays built with the same antennae, we should have found that 
the two pass the last harmonic with the same amplitude. The limitation of the 
resolving power by noise is then the same for the two arrays. 

Generally speaking, for an array built with identical antennae, each harmonic 
is transmitted with an amplitude at least equal to the product of the gain of 
two antennae of the array: If an interferometric study of the object is possible 
as far as a distance L with two antennae of the array, the resolving power is not 
limited by noise. 
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If we have K antennae, suitable disposition allows us to obtain up to K2j4 
harmonics. The more we have pass harmonics, the less they will be determined 
with accuracy. For: 

n 
g(6)=ao+2 Lap cos (prr:a6/A)) 

1 

n 
g(6)=ao+2 L ap=K2. 

1 

If n increases, the ap, or at least some of them, must decrease. Then we 
may try to get a compromise between the systematic error due to the number of 
harmonics and the errors of measurement due to amplitudes of harmonics. 
Only a special study of each problem to be resolved will yield the most suitable 
disposition of antennae. 

o 

Fig. 5.-Theoretical images for the 0, 1, 4, 6 and the uniform 
array. 

If we have K antennae and a given length L, a judicious disposition allows 
one to get a greater number of harmonics in the same band of the spectrum of j, 
and then to explore wider regions of the celestial sphere. Again, this operation 
leads to a greater inaccuracy in determining some harmonics. Once again we 
have to establish a compromise between the different qualities to be found in 
the antenna. 
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