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Summary 

The extension of the WKB method to a complex potential, as used in the optical 
"model of the nucleus, is discussed. The formula for the complex phase shifts is formally 
-deduced, and its accuracy tested against exact calculations for a square potential 
well and a well with sloping sides. At low energies there occur large discrepancies; 
the WKB phases vary regularly with energy, whereas the exact values oscillate violently 
.about the WKB values in a characteristic way and marked resonances occur. The 
factors affecting the accuracy of the method are discussed. 

At higher energies the fluctuation of the phases about the WKB value is less marked, 
and its effect largely cancels out as the result of a larger number of phases being involved 
in the scattering. 

1. INTRODUCTION 

The WKB method for the determination of phase shifts in collision problems 
has been remarkably useful, notably in the scattering of electrons by atoms 
(Massey and Burhop 1952), and its range of validity is well understood. With 
the success of the optical model of the nucleus, in which a potential with an 
imaginary component is used, there arises the question of the correct method 
of application of the WKB method to a complex potential and its range of 
validity. 

The method has been found valid for nucleons incident on nuclei with 
energies large compared with the nuclear potential (Mohr and Robson 1956), 
in which case one may use an" obvious approximation to the WKB formula 
(Massey and Mohr 1934). In this approximation the ratio of the imaginary 
to the real component of the phase is equal to the ratio of the imaginary to the 
real component of the well depth. 

At lower energies, in a calculation of IX-particle scattering with a com
paratively large imaginary well depth, B. A. Robson (unpublished data) in this 
laboratory recently found that a tentative adaption of the WKB formula without 
approximation gave an imaginary component of the phase many times the 
value given by numerical integration of the wave equation. 

An examination of the situation seemed to be called for, including a formal 
justification of the natural generalization of the WKB method for a complex 
potential, in order to see whether extra approximations were involved. 
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II. DEDUCTION OF THE FORMULA 

For a potential V = Vr+iV;, the modified radial equation for the lth order 
wave is 

u" +(U +iW)u=O, 
where 

primes here and later denoting differentiation with respect to r. The solution 
will be of the form 

u=F sin cp +iG cos X, 

where F, G, cp, and X are functions of r. To avoid unduly complicated formulae 
we make the approximation X=CP, which we shall find is a good approximation 
for a constant V, i.e. for the greater part of a nucleus. Substituting this form 
for u in the differential equation, and equating separately to zero the coefficients 
of sin cp and cos cp in both the real and imaginary terms, we obtain 

F" _Fcp'2= - UF, 

Fcp" +2F' cp' = WG, 

and similar equations with F and G interchanged. Putting 

F=G cosh~, G=G sinh ~ 

gives, on neglecting terms of second order, 

cp'2_~'2= U, 

2cp'~'=W. 

(la) 
(1 b) 

(2) 

If we write (U +iW)l=P+iQ, where the principal values of P and Q are taken, 
then we have 

cp= r Pdr, ~= r Qdr. .. ............ (3) 

From (3) we have 
cp'=P. ...................... (4) 

From (1 b)we obtain d(F2cp')jdr= WFG. Subtracting the corresponding equation 
with F and G interchanged, integrating the result, and using (4) gives 

F2-G2-:-A2P-I, 

where A 2 is the constant of integration. Substituting (2) then gives 

The radial equation therefore has the solution 

U=AP-i sin (cp+i~) (5) 

with cp and ~ given by (3). A is fixed by normalizing the wave function. The 
formula (5) would result from the obvious generalization of the WKB method 
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to a complex potential; but our deduction shows that in addition to the approxi
mations inherent in the ordinary WKB method, .the further approximation 
X = cp is involved. We shall find that this approximation is good only for a 
constant potential. 

In the absence of a scattering potential 

u=AoUot sin (CPo+i~), 

where the suffix nought denotes values obtained with Vr=O= Vi' The 7th 
order phase 1J is therefore given to a first approximation by 

(6 ) 

On analogy with the Langer modification of the WKB method for real potentials, 
one might expect (6) to give improved values on taking (1+t)2 in place of 
1(1+1) in each integrand. 

The question of the lower limits of integration in (3) has now to be settled, 
for none of the integrands has a zero as for real V. Examination of the behaviour 
of the integrands in specific cases indicates that with little error one may take 
the lower limit of integration to be zero. For as r decreases below the classical 
distance of closest approach, ~ and ~o both become large but their difference 
diminishes rapidly. We shall now test these conclusions for the case of a 
constant potential. 

III. IMPROVEMENT AND TEST OF THE FORMULA FOR A OONSTANT POTENTIAL 

The WKB method for a real potential V = Vr gives 

u= u-t sin El, where El=!1t+f' Uidr, . .. . . . .. (7) 
To 

and ro is the zero of U. It may easily be shown that, for constant Vr , this value 
of u reduc·es to r times the Debye asymptotic expansion of the spherical Bessel 
function jl(Krr) where K;=2mli-2(E+ V r). One finds that the Debye form, 
which is much more accurate than the ordinary form of the asymptotic expansion, 
gives the first zero of jl(X) to an accuracy of about 0·05 in x, and higher zeros 
with smaller errors, up to quite high orders 1. (7) will therefore be accurate for 
real and constant V. 

For complex z=x+iy, the values of x which make Re L(z) zero are still 
given better, though not nearly so much better, by the Debye form than by the 
ordinary form of the asymptotic expansion of jl(Z); but the values are found to 
be given best of all by the zeros of Ux). This result may be seen as follows. 
From Taylor's theorem 

Re u(x+iy)=u(x) -ty2u"(x) + .... 
.At a zero of u(x) we have u=O, and hence, from the form of the differential 
equation for u, u"(x) and higher even derivatives will be small, provided U is 
slowly varying and W is small.· Under these conditions, then, the zeros of 
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Reu(x+iy) will be relatively independent of y for small y. .A better approxi
mation to 'YJ than (6) will therefore be 

'YJ=(e-eo)+i(~-~o)' ................ (8) 

To test the accuracy of phases calculated from (8), comparison was made 
with phases calculated exactly for a square well in the usual way (Mott and 
Massey 1949) with complex values taken for the wave numbers. The test was 
made particularly stringent by the choice of a low incident energy, for which 
the WKB method would not be expected to be so accurate, namely, 4 MeV 
neutrons. Taking a nucleus of mass number 100 and a well depth of 
42+4'6iMeV, we obtain kR=3" KR=10+0·5i, where K and k are 27t times.the 
interior and exterior wave ilUmbers respectively, and R is the nuclear radius. 
The exact values obtained for the various order phases are given in Table 1, in 
the second column. The real part was found to be well within 1 per cent., in 
nearly every case, of the value of the corresponding phases for KR=10, justifying 
preference for (8) rather than (6). 

TABLE 1 

PHASES OF ORDER l FOR 4 Mev NEUTRONS INCIDENT ON A NUCLEUS OF MASS NUMBER 100, 
REPRESENTED BY A SQUARE WE= OF DEPTH (42+4·6i) Mev, FOR WHICII kR=3, KR=10+0·5i 

WKB Method 
l Exact Born 

Method Formula (8) Formula. (9) Approximation 
-

° 6·58+0·17i 6·97+0·50i 6·60+0·17i 15·87+1·75i 
1 7·47+0·25i 6·73+0·49i 7·48+0·24i 14· 39+1' 59i 
2 5·61+0·16i 6·19+0·48i 5·62+0·16i 5·00+0·55i 
3 5·96+0·07i 5·12+0·46i 5·96+0·07i 0·87+0·96i 
4 3·13+0·08i 3·96+0·44i 3·13+0·08i 0·09+0·0li 
5 3·14+0·002i 2·86+0·41i 3·14+0·002i 0·01+0·00li 
6 3·14+0·00Oi 1·99+0·37i 3·14+0·000i O·OO+O·OOOi 
7 O·OO+O·OOOi 1·19+0'-32i 0· 00+0' OOOi 
8 0·55+0·25i 
9 0·1l+0·15i 

The WKB phases given by (8) with the Langer modification are shown in 
the third column of the table. Large errors are' evident, which may be classified 
into three types: (i) the real component varies regularly with l, whereas· the 
real component of the exact phases jumps about irregularly, (ii) the real com: 
ponent is much too large for the higher order phases, (iii) the imaginary com
ponent is always much too large. Errors of type (i) are due to the marked 
difference in wavelength inside and outside the potential well; thus, in the 
extreme case of zero incident energy, a phase of given order jumps discontinuously 
by multiples of 7t as KR is increased through successive half-integral multiples 
of' 7t. Errors of type (ii) are due to the exterior wave functions for the larger l 
having no longer an oscillatory character in the region of the edge of the potential 
well, but an exponential character. Errors of type (iii) arise from the same 
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general feature of a considerable difference in the shape of the wave function 
inside and outside the nucleus; they will be discussed in more detail later. 

We should expect to eliminate these types of error for a nucleus with a 
sharp boundary by fitting the interior WKB wave function onto the exterior 
wave function. This gives 

Br-1 sin (6 +i~) =cos 'YJ jl(kR) +( _)1 sin 'YJ j-l(kR), • . .• (9) 

and a similar equation in the derivatives, from which to eliminate the constant B 
and obtain an improved value for the phase 'YJ. Values so obtained are given 
in the fourth column of Table 1. Their close agreement with the exact values 
justifies the approximations made in deriving the formula (8) and confirms the 
reasons given for the failure of this formula. 

Values obtained with the Born approximation are also shown in the table 
for comparison. They are seriously in error, even when the phases are small, 
when the approximation is best. 

IV. ApPLICATION TO A NUCLEUS WITH A DIFFUSE SURFACE 

The exact solution for a constant potential is relatively simple, and the 
calculations of the previous section were merely for a preliminary test of the 
WKB method. For a non-uniform potential, however, exact calculation of 
phases involves lengthy numerical integration of the pair of coupled differential 
equations into which the radial equation separates when u and V are complex. 
If the WKB method could be used, it would certainly be much quicker. 

The form of non-uniform potential tried was 

V=Vo, r<R-a; 

= Vo(R+a-r)j2a, R-a<r<R+a; 

=0, R+a<r; . 
} • • •• (10) 

i.e. V falling linearly to zero over a distance 2a at the nuclear surface. Values 
of 2ajR of 0 . 2, O· 4, and 0 ·6 were taken, also the value 0 ·2 with a Woods-Saxon 
tail added; and the incident energy and maximum well depth were as in 
Section III. 

As for a constant potential, large discrepancies were again found between 
the exact phases and those calculated from (8). The equation (9) with the 
amplitude factor P-! included on the left-hand side was applied at the edge 
r=R+a of the nucleus, but this procedure did not improve the accuracy of the 
phases obtained. The reason is that while the phase of the real component of 
the interior wave function is given fairly well by 6 +i~, the variation of amplitude 
is given poorly by the factor P-!. The improvement on the WKB method 
due to Bailey (1954) was tried, which for our problem gives 

u=exp (-tp'p-l) sin (p2_ip'2p-2)!, 

where p2= U +iW, and which obviously reduces to the usual WKB formula for 
p' =0. This wave function was fitted at the boundary r=R +a to the exterior 
wave function, but the accuracy of the phases so obtained was not greatly 
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improved. Inspection of the values of u r and u i obtained by numerical integra
tion showed that the approximation X = cp made in Section I is poor for a varying 
potential, and that the phase is extremely sensitive to the shape of the wave 
function just inside the nuclear surface-much more so than for V real. A 
highly accurate interior wave function is required, and any iterative or other 
method of finding it with sufficient accuracy would be almost as laborious as 
numerical integration of the wave equation. 

V. ENERGY-DEPENDENT FLUCTUATIONS IN THE PHASE SmFT 

In view of the unexpectedly large fluctuations of the phases about the 
approximate WKB values, especially of the imaginary component, the energy 
variation of the phase was investigated over the energy range 0-140 MeV. 
The zero order phase for a square well (with the same radius as in Section III) 
was studied for simplicity. The formula (6) without the Langer modification 
then reduces to 

"flo=(K-k)R, 

while the exact value of "flo is given by 

tan ("flo+kR) = (kR/KR) tan KR. 

V i was increased regularly from 3 to 15 MeV over the energy range (Lane and 
Wandel 1955), and Vr kept constant at 42 MeV. 

The exact values of "flr and "fli' the real and imaginary components of "flo, 
are graphed in Figure 1 as a function of E!, and are seen to oscillate violently 
above and below the WKB values in a characteristic way. This behaviour 
may be understood through the following picture. Let us represent ur and u i 

by displacements in the x and y directions respectively, and r by distance along 
the z axis. Then from (5) the interior wave function is an expanding spiral with 
Oz as axis, flattened so as to be thinner in the y direction. The exterior wave 
function, sin (kr+"flr+i"fli)' is a helix with Oz as axis, flattened in the same 
direction, the ratio of the widths of the helix in the y and x directions being 
tanh "fli. At low energies the z-distance between successive loops of the helix 
is much larger than the z-distance between successive loops of the spiral. Fitting 
the spiral and the helix together smoothly at the boundary thus involves a double 
requirement, which is usually met only by a stretching of the helix in either 
(a) the x direction, (b) the y direction, or (0) some intermediate direction. Oase (a) 
occurs when u r is near a zero and u i near a maximum at the boundary, and 
corresponds to a diminished value of tanh "fli. Oase (b) is the reverse, and 
corresponds to an increased value of tanh "fli: this is a resonance effect, which 
gives values of tanh "fli up to 1 (large "fli). Large changes occur simultaneously 
in "flr. A resonance effect occurs also for purely real potentials, as shown by the 
dotted curve for "flr' obtained by an exact calculation· with' K real; but the 
fluctuations in the curve are much less violent. 

, A similar effect is to be expected for higher order phases, so long as the 
exterior wave function is still oscillatory. 
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The effect' of rounding off the potential at the boundary does not affect the 
general behaviour shown in Figure 1. Thus the dot-dash curve, obtained by 
numerical integrations for the potential (10) with 2a/R=O '4, exhibits just a,s 
marked a resonance effect as the curve for a square well. The occurrence of 
the resonance at a lower energy is due merely to the effective mean radius for 
potential (10) differing from the average value R. However, rounding off the 
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Fig. I.-Energy dependence of the real and imaginary parts of the zero order 
phase shift, for neutrons incident on a nucleus of mass number 100. 

Exact, for square well, complex potential; 
WKB, for square well, complex potential; 
Exact, for square well, real potential; 
Exact, for well of form (10) with 2afR=0·4, complex potential. 

potential brings the values of 1)i around a minimum nearer to the WKB value; 
an effect which is due to the interior and exterior solutions fitting together more 
readily when there is a finite region over which the alteration from spiral to 
helical form can take place. 

For IX-particles, much larger values of Vi are required to match the greater 
absorption in nuclear matter (Mohr and Robson 1956). The interior wave 
function is then a very rapidly expanding spiral, and the increased difficulty 
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of fitting it to the exterior wave function will produce in general a very greatly 
diminished value of 1)i' unless the potential well is rounded off near the edge. 
For a square well, increasing Vi causes 1)i to increase first to a maximum and 
then decrease to smaller and smaller values. 

For high energy nucleons, the values of 1) fluctuate much less about the 
WKB values, and also many phases contribute to the scattering cross section, 
so that the fluctuations largely cancel each other out and produce little effect. 
The WKB method may therefore be used at intermediate and high energies, 
the region of validity depending on the size of the nucleus and on the final 
accuracy required. The number of phases effective in scattering is of the order 
of KrR, and the magnitude of this quantity will be a rough indication of the 
accuracy of cross sections calculated with the WKB method. The method 
need not, of course, be restricted to the case considered here of the same radial 
dependence of Vr and Vi' 

The significance of the results of calculations that have now been carried 
out for many nuclei at energies of only a few Me V with a square well is limited 
somewhat on account of the sensitivity of the calculated results to the form 
of the potential near the nuclear surface. .A square well is not a realistic form 
of potential to adopt. 
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