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isotropic distribution. The points obtained at the largest angles are seen to­
lie well below the line. These two spectra were recorded for an increased gain 
in the counter I amplifier to spread the counts over a larger number of channels,. 
and this may have introduced an error. 

We conclude that the angular distribution of the <x-particles contributing 
to the formation of the ground state of 5He in reaction (a) is isotropic at a 
deuteron energy of 900 ke V to within an experimental error of 2 per cent. 
There is no evidence for a "'knock-on " reaction to within this accuracy. The­
most simple explanation of the result is that primarily s-wave deuterons are 
responsible for the reaction. The necessary spin assignments under this. 
assumption are discussed by Riviere (1956). 

This work was carried out as part of the research programme of this: 
laboratory under Professor E. W. Titterton. 
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SOLUTION OF FLOW PROBLEMS IN UNIDIMENSIONA.L 
LAGRANGIAN HYDROMAGNETICS* 

By R. E. I~OUGHHEADt 

Introduction 
A problem of considerable interest in many branches of astrophysics is 

. that of the subsequent behaviour of a current which at an initial time t=O 
is largely concentrated within a given region of an ionized gas of infinite extent. 
In particular, it has been suggested by Alfv8n (1950) that a high current discharge 
in an ionized gas is likely to constrict because of the electromagnetic attraction' 
between parallel currents and that this constriction effect may be involved in 
the formation of solar prominences. Similar considerations may also be of 
importance in studies of magnetic fields in the spiral arms of the Galaxy. 

The solution of an initial value problem of this type is greatly complicated 
by the non-linear character of the hydro magnetic equations. governing the­
motion of the ionized gas. However, in the simple case of the unidimensional 
motion of an ionized gas in which the magnetic field is everywhere at right 
angles to the direction of motion of the fluid, a numerical solution can be carried 
through using a finite difference scheme along the lines proposed by the author-
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in a previous paper (Loughhead 1955). The complexity of the numerical 
.computations can be reduced if, instead of using the hydromagnetic equations 
in their usual Eulerian form, the problem is formulated in terms of the Lagrangian 
f\quations of motion. The process of numerical solution then comes well within 
the capacity of a desk machine. 

Lagrangian Equations for Unidimensional Flow 
It is convenient to introduce Cartesian axes Ox, y, z such that the magnetic 

field in the fluid is everywhere directed in the y-direction and the motion of the 
fluid 'occurs parallel to the x-axis and depends on the single spatial coordinate x. 
The analysis is especially facilitated by the use of the Lagrangian representation 
in which a number h is attached to each plane section of particles normal to the 
x-axis, so that the changing position of each section is given by a function 
x(h, t). If p(x, t) denotes the density of the fluid at the point x and time t, 
then h may be conveniently defined by the relation 

IX(h,t) 

h= pdx. 
x(O, t) 

(1) 

According to this definition h is equal in magnitude to the mass per unit cross 
section area between the plane x(h, t) and a "zero" plane x(O, t). Another 
important result 

(h t)ox(h, t) =1 
p, oh (2) 

can be obtained by differentiating (1) with respect to h. 

Then the Lagrangian equations governing the motion of the fluid may be 
stated in the form (cf. Loughhead 1955) : 

(H-r)t=O, 

(p-rY)t=O, 

Vt+(:~ +p t =0, 

(3) 

( 4) 

(5) 

(6) 

where H is the component of the magnetic field in the y-direction, -r=l/p is 
the specific volume, v is the velocity of the fluid in the x-direction, p is the scalar 
pressure, y is the ratio of the specific heats of the gas, and the subscripts t and h 
denote partial differentiation with regard to t and h respectively. The units 
employed are Gaussian. In this form the equations are identical with those 
given by Kaplan and Stanyukovich (1956) in a recent paper. 

Equations (3) and (4) lead to the two integrals of motion 

H-r=a(h), 

p-rY=b(h), 

(7) 

(8) 
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where a and b are functions of h specified in the initial conditions of the problem. 
Using (7) and (8), equations (5) and (6) may then be written in the forms 

where 

(11) 

and 

-rk=J( H2.+ YP)-
41tp p 

(12) 

is the local value of the hydromagneti( wave velocity V. 

When H = 0, the quantity -rk becomes simply the sound velocity q= v(yp!p) 
- and the equations (9) and (10) reduce to the well-known gas dynamical equations 
for an unionized fluid. Also, if the state of the fluid is uniform at time t=O, 
then ~(-r, h)=O, and -rk is a function of -r alone. In this case the hydromagnetic 
equations for an ionized fluid are identical with the corresponding gas dynamical 
equations except that -rk represents the hydromagnetic wave velocity and not 
the velocity of sound. Under these circumstances the hydromagnetic equations 
may be solved by methods identical to those used to treat the corresponding 
equations of gas dynamics. This fact has been previously pointed out by 
Kaplan and Stanyukovich (1954). 

For other problems where the initial state of the fluid at time t = O is not 
uniform, -rk is in general an explicit functiol1 of h as well as of the specific volume -r, 
and the whole process of solution is greatly complicated. Kaplan and 
Stanyukovich (1956) have attempted to find particular solutions for the case 
of non-uniform initial conditions. Their method is based directly on equations 
(5) and (6), and consists essentially in replacing the total pressure P = H2/81t+p 
by a postulated analytical expression, which then makes the equations mathe­
matically tractable. 

While the particular solutions obtained by Kaplan and Stanyukovich 
are useful in providing some insight into the nature of the hydromagnetic flow, 
it is important to point out that a full numerical solution can be obtained for. 
any given initial value problem by a finite difference method based on the 
characteristic forms of equations (9) and (10). The advantage of using the 
Lagrangian representation is that, instead of having to solve four partial dif­
ferential equations simultaneously as in the Eulerian scheme (cf. Loughhead 
1955), one has now to deal only with two, and the amount of numerical computa­
tion is much reduced. This reduction of effort is due to the existence in the 
Lagrangian representation of the two integrals of motion (7) and (8). 

To obtain the Lagrangian equations in characteristic form one merely 
adds and subtracts k times equation (10) to and from equation (9), yielding the 
relations -

Ve+kVh='k(-re+k-rh)-~(-r, h), .............. (13) 

Ve-kVh=-k(-re-k-rh)-~(-r, h) . ............ (14) 
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In each of the equations (13) and (14) the variables v and 't" are both differentiated 
in the same direction along a common curve in the (h-t) plane, whose slope is 
given by 

dhjdt=±k .................... (15) 

respectively. When H =0, the equations (13) and (14) become the normal 
Lagrangian equations describing the unidimensional adiabatic motion of an 
unionized fluid. 

Difference Equations 
To proceed with the numerical somputation in any particular initial value 

problem consider a rectangular mesh in the (h-t) plane whose (l, m)th point 
is defined by 

where 
( 16) 

(17) 

is the mesh ratio. The mesh ratio must be chosen to satisfy the stability 
condition 

r·1 ~~ I < 1 ..••............ (18) 
max. 

throughout the region of integration. 

The technique is now to replace derivatives along characteristics by finite 
differences, the choice of difference quotients (forward or backward) being made 
so as to preserve the domain of dependence. If VI, m and 't"l, m denote the values 
of the solutions of the difference equations at the net point (hH t ",), the character­
istic equations (13) and (14) are replaced by the difference equations 

VI,m+1 =Vl,m -rkl,m[vz, m -i(VI-l,m +VI+1,m)] +irk21,m('t"I+1,m -'t"I-I, m) 

-t::.t'~Z,m' .................................... (19) 

't"1,m+1 ='t"l,m -rkl,m['t"l,m -i('t"I-I,m +'t"I+I,m)] +ir(VI+l,m -VI-I,m)' 

(20) 

Equations (19) and (20) determine the values of the variables v and't" along the 
line t mH = constant in terms of the values along the preceding line t m=constant, 
and hence enable the solution to be stepped off given the initial values of the 
variables at time t=O. 

The Lagrangian method may also be adopted for axially and spherically 
symmetric flows, but, in these cases, it does not afford the considerable reduction 
of numerical computation outlined in the analysis above. 

Note added in Proof (February 6, 1957).-Trial computations performed by 
Miss J. Ward have confirmed the utility of the numerical method described 
above. 
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