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Summary 

It is shown that the so-called "clock paradox" can be resolved completely in 
terms of the restricted theory of rela.tivity. Properly applied, the theory gives a 
unique and unambiguous value for the relative retardation of two clocks. The seeming 
paradox can, and does, arise only through using the" rate" of a moving clock without 
due regard to the exact significance of the quantity so described. 

The usual hypothetical experiment, in which an observer M travels away from, 
and returns to, an observer R, with constant speed in a straight line, is described in 
terms of an accelerated reference system in which M remains at rest at' the origin; 
but it is shown that such a description cannot be regarded as the account tha.t would 
be given by M of the experiment. 

The principle of equivalence is completely irrelevant to analysis a.nd discussion 
of the relative reta.rdation of clocks unless there is a real gravita.tional field to be taken 
into account and, except in such a case, the general theory of relativity can add nothing 
of physical significance to an analysis correctly made using the restricted theory. 

I. INTRODUCTION 

In discussions of the so-called clock paradox it is usual, and it suits our 
present purpose, to consider the following hypothetical experiment. It is 
supposed that two observers Rand M, equipped with identical synchronized 
clocks, are initially at rest together, e.g. at the origin of an inertial reference 
system S. The observer M is sent on a journey along the x-axis of S, travelling 
away from R with uniform speed v for a timeT; coming to rest for a time't", 
and then returning with the same speed v to rejoin R after a total time 2T + .. 
as read on R's clock. 

It will, ill the first instance, be supposed that the times required to accelerate, 
or decelerate, M are so small that they can be neglected without appreciable 
error. This can always be realized, even for moderate accelerations, by supposing 
T to be very great (McOrea 1951), or it may be justified for rapid accelerations 
as has been shown by Melller (1952). It is always assumed that acceleration 
of a clock has no direct effect on its rate (e.g. Melller 1952); this is also a basic 
assumption in the general theory of relativity. 

According to. the restricted theory of relativity, measurements made in the 
reference system S, e.g. by the observer R, must show that the rate of M's 
clock, while it is in motion with speed v, is less than that of· R's clock by the 
factor l/y= (l-v2/o2)1. Therefore, when M rejoins R, at the end of his journey, 
his clock must be retarded, relative to R's, by the amount 2T-2T/y. This 
is an inescapable prediction of the theory once it is assumed that M's clock 
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is not directly affected by acceleration; .it was stated by Einstein (1905) in his 
famous first paper on the theory. 

This relative retardation effect is a surprising consequence of relativity 
theory; but it is not more surprising than the reciprocity of relativistic variations 
of length and mass, than the relativity of simultaneity, or than the equivalence 
of mass and energy. There is therefore no reason to regard the effect, as such, 
as a paradox. . 

Nevertheless, the term "clock paradox" has been widely used because 
an appearance of paradox does arise when one considers inertial reference 
systems 8' and 8" in which M is at rest during his outward and return journeys; 
for the restricted theory also predicts that measurements made by observers 
in 8' and 8" must show that the rate of R's clock is less than that of clocks,such 
as M's, at rest in their own systems. This seems incompatible with the predicted 
retardatiou of M's clock relative to R's at the end of the experiment. 

The" clock paradox" can therefore be expressed as a difficulty in recon
cilingthe asymmetry of the retardation of M's clock relative· to R's with the 
symmetry, required by the restricted theory of relativity, between measurements 
in the systems 8 and 8' and between measurements in the systems 8 and 8". 

Alternatively, it is often expressed as a difficulty in reconciling the 
asymmetry of the relative retardation with the symmetry, considered from a 
purely kinematical point of view, between the motions of M relative to Rand 
of R relative to M. 

It is quite generally accepted that the paradox can only be resolved by 
denying the applicability of the restricted theory and by using the general 
theory of relativity. 

It is, however, shown here that it can be resolved completely in terms of 
the restricted theory. It is also shown that the general theory can add nothing 
of physical significance to an analysis correctly made in terms of the restricted· 
theory. 

II. THE PREDICTIONS OF THE RESTRICTED THEORY OF RELATIVITY 

To apply the restricted theory of relativity to our hypothetical experiment, 
we consider three inertial reference systems 8, 8', and 8" whose corresponding 
axes are all parallel and whose origins coincide at the instant t=t' =t" =0. The 
~ystem 8' moves with uniform speed v, relative to 8, in the direction of the 
positive x-axis of 8; the system 8" moves with the same speed v relative to 8, 
but in the opposite direction. These reference systems must be regarded as 
having continuous existence before, during, and after the experiment, quite 
independent of the motions of the moving observer M. The restricted theory 
then gives rigorously the relations between measurements made in the three 
systems. The Lorentz transformations give, for the relevant relations between 
measurements made in 8 and 8', 

x'=y(x-vt), t' =y(t -vxjc2 ), 

X =y(x' +vt'), t =y(t' +vx' jc2), 

( la) 
(Ib) 
( Ie) 
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and corresponding relations between measurements made in Band B". These 
equations relate the B-coordinates of an event to the B' or B"-coordinates of 
the same C1)ent. 

In our hypothetical experiment there are four identifiable events. 
We suppose that the observers Rand M are, initially, at rest at the origin 

of B, that their clocks are set to agree with the clocks of this system, and that 
M's journey commences at the instant t1 =t1 =ti =0. The first event E1 is the 
beginning of M's journey; it is marked by M's departure from the origin of B 
and his coming to rest at the origin of B'; its B-coordinates are Xl =0, t1 =0 
and its B' -coordinates Xl =0, tl =0. The second event E2 is the termination of 
M's outward journey; it is marked by M's departure from the origin of B' 
and by his coming to rest in B; its B-coordinates are x2=X, t2=T and its 
S'-coordinates X2=0, t;=T'. 

If it happens that we know the time interval t2 -t1 =T between these 
events, as determined by R, we can predict the time interval t; -t~ =T' between 
the events as read by M on his clock. Noting that vT=X, equations (Ia) 
give 

T'=t;-tl=y(T-vX/c 2)=T/y. . ......... (2a) 

Conversely, .if T' were known, the value of T could be predicted. Noting that 
xl=x;=O, equations (Ib) give 

T=(t 2 -t1)=yT'. . ..................... (2b) 

Equations (2a) and (2b) are identical. They specify unambiguously the relation 
between the measurements made by Rand M, each using his own clock, of the 
time occupied by M's outward journey. They show that M's measure of this 
interval is less than R's. 

The third event E3 is the beginning of ]['s return journey; it is marked by 
M's departure from the point x=X in B at the time t=T+T, and by his coming 
to rest in B". The fourth event E4 is the termination of M's return journey; 
it is marked by his coming to rest at x=o in B at the timp, t=2T+T and by his 
ceasing to be at rest in B" 

The interval read by M on his clock between the eventsE3 and E4 may be 
denoted by T". Using the relations corresponding to equations (I) it maybe 
shown that this is related to T by 

T"=T/y=T'. . ................... (3) 

The interval read by M on his clock between the events E2 and E 3, when he is 
at rest in B, will obviously be equal to T. 

Thus when M reaches R at the end of the experiment the total elapsed time 
as read by him on his clock will be 

T" +T +T' =2T' +T=2T /y +T. 
Remembering that y is greater than unity, it fpllows that his clock will be 
retarded relative to R's by the amount 

2T-2T'=2T-2T/y, ................ (4) 
when he rejoins R. 
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This· result must be regarded as .the unique and unambiguous prediction of the 
restricted theory. It is not possible to obtain any different result by direct application 
of the Lorentz transformations; it is immaterial whether M's readings of his clock 
are calculated from given readings by R of his clock, or vice versa. 

How then can any paradox, or appearance of paradox, arise in the application 
of the restricted theory to the hypothetical experiment considered? 

It can and does arise only through an incorrect application of the Lorentz 
transformations, in which a, calcUlation is first made of the " rate" of a moving 
clock and t~is "rate" is then applied without due regard to its exact meaning. 

III. THE "RATE"" OF A MOVING CLOCK 

If the observers in the inertial reference· system S wish to determine the 
rate of the moving clock M, any method they can devise is, of necessity, 
equivalent to one basic procedure. They can, in effect, only compare this. 
clock with two synchronized clocks 0 1 and O2, at rest at x and x+3x in their own 
system, with which it is coincident at times t and t +3t. 

To predict the result of this procedure, using the restricted theory, we 
consider the inertial reference system S' in which the clo~k M is at rest at its 
origin. Then the two events, which are the coincidences of the clock M with the 
clocks 0 1 and O2, have respectively the S-coordinates x,t and x+3x, t+3t and 
the S' -coordinates O,t' and O,t' +3t', where t' and t' +3t' are the readings of the 
clock M at the two coincidences. Using the equations (1), noting that x' =0 
for both events, we find· 

3t' =3t/y (<V' constant). . . . . . . . . . . . . .. (5a) 

Thus the clock M records a shorter interval between these events, which occur 
at the same place in S', than do the clocks of the system S. No other method is 
available to the S-observers to measure the rate of the moving clock M, so we 
are justified in describir:tg the ratio 3t' /3t =1/y as the "rate" of the clock M 
according to the S-observers. 

If we suppose that observers also exist in the system S', and if they wish 
to determine the rate of the clock R, which is stationary in the system S, they 
must adopt a similar procedure, and we can predict that they will find 

3t=3t'/y (x constant) ................ (5b) 

for the relation between the interval 3t, read on the clock R, and the interval 
3t' read on the clocks in their own system~ between two clock coincidences 
at the same place in S. Again we are justified in describing the ratio 3t/3t' =1/y 
as the" rate" of the clock R according to the S' observers. 

Although there is good reason to refer to equations (5a) and (5b) as giving 
the" rate" of a moving clock according to the S~observers, and according 
to the S' -observers, respectively, the exact sign~ficance of the equations must never 
be forgotten in applying them in particular cases: they are, strictly speaking, 
relations between measurements, made in Sand S', of time intervals between 
events which occur, on the one hand, at the same place in S' and, on the other 
hand, at the same place in S: this is expressed by the restrictive conditions 
"x' constant" and "x constant" in the two equations. 
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If then the Lorentz transformations are to be utilized by first calculating 
clock " rates", the relevance of each such " rate" to the particular case must 
be carefully considered. 

IV. THE ORIGIN AND RESOLUTION OF THE "PARADOX" 

The events El and E 2, which are the beginning and end of M's outward 
journey, occur at the same point in the system S'. Equation (5a) therefore 
gives correctly the relation between the measurements by Rand M of the time 
interval between these events; this relation is the same as that, given in equations 
(2), obtained by direct application of the Lorentz transformation. Similarly, 
the corresponding measurement by R of the rate of M's clock during his return 
journey will give correctly the relation between the measurements made by M 
and R of the interval between the events Ea and E 4 , as given in equation (3). 
The measurements by Rand M of the interval betweep the events E2 and Ea 
will, of course, both give the time't". The retardation of M's clock, relative to 
R's, during the experiment will therefore be given by equation (4), just as was 
found by direct application of the Lorentz transformations. 

On the other hand, since the events El and E2 do not occur at the same place 
in S, equation (5b) cannot be used to find a relation between the measurements 
made by Rand M of the interval between these events. This applies also to the 
interval between the events Ea and E 4• 

The" paradox" has arisen through ignoring this distinction. It is completely 
resolved once the exact significance of equations (5a) and (5b) is taken into account. 

There is no need to reconcile the symmetry of the equations (5a) and (5b) 
with the asymmetry of the predicted retardation because equation (5b) has 
no direct relevance in this particular case. 

The asymmetry of the predicted retardation is obviously consistent with the 
dynamical asymmetry involved in the original specification of the experiment, 
which required that M should be subjected to acceleration and that R should 
not. On the other hand, the Lorentz transformations do not in themselves 
take into account any such dynamical asymmetry, for they are solely relations 
between measurements made in inertial systems. How then does the application 
of these transformations lead to an asymmetrical clock retardation corresponding 
to the prescribed dynamical asymmetry of the motions of Rand M ~ 

The answer is not far to seek. Because M is the accelerated observer, i.e. 
the one to whom something happens, the identifiable events Ell E 2, E a, E4 are 
all coincident with M. The events El and E2 which mark the beginning and 
end of M's outward journey therefore occur at. the same place in S', but at 
different places in S. The dynamical asymmetry is thus displayed as an essential 
asymmetry in the relations of the events El and E2 to the systems Sand S' 
and, similarly, in the relations of the events Ea and E4 to the systems Sand S". 

We may therefore fairly, if somewhat picturesquely, claim that the restricted 
theory is not deceived by the apparent kinematical symmetry of the motions, 
of M relative to Rand R relative to M. 
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V. THE INVARIANCE OF THE RELATIVE RETARDATION 

The retardation of M's clock, relative to R's, given by equation (4), is an 
invariant for all observers and for all reference systems. That this must be so 
is obvious on general physical grounds; for the reading on any clock of the 
time of an event coincident with it must be the same for all observers. Thus 
the interval read on a clock between two events coincident with it is an invariant, 
i.e. the proper time of the clock. In the present case the events E1 and E 4, 

which mark the beginning and end of the experiment, are coincident with both 
clocks, so that 2T +r and 2T' +1' are their proper times. The relative retarda
tion, given by the difference between these proper times, is therefore also an 
invariant and may be, calculated in any way, or in any reference system what- , 
soever, that may be convenie,nt. 

The proper time 6' of any clock, in arbitrary motion with instantaneous 
speed u in an inertial reference system 8, between two events coincident with 
it at the 8-times 61 and 64, is given by 

f6. 
6'= (1-u 2 /c 2 )!d6 ................ (5c) 

ij, 

on the accepted assumption that equation (5a) gives the" rate" of the clock 
at each instant when the intervals at and i)t' become infinitesimal. The invariance 
of this integral to Lorentz transformations is readily verified. 

The invariance of the relative retardation could be illustrated by calculating 
the proper times of the two clocks in the system 8 (as we have done in effect 
in the foregoing) and by repeating the calculation for the system 8' by using 
the" rates" of both clocks, according to the 8' observers, given by equation (5b). 

VI. MEASUREMENTS AND PERCEPTIONS OF THE MOVING OBSERVER 

The observer M, while at rest in 8', would have found the" rate" of R's 
clock to be less than that of his own by the factor l/y, and would have found 
that R was moving away from him with speed v. It may therefore be inferred 
that, had he remained at rest in 8' until the corresponding light data from R 
had reached him, his measurements, like those of hypothetical permanent 8' 
observers, would have shown the reading on R's clock to be T' /y, and the distance 
of R to be vT', at the instant immediately pr~cedingthe eventE2• Yet, having 
come to rest in 8, if he remained so for long enough for the corresponding light 
from R to reach him, his own measurements would show that the reading of 
R's clock was yT', and that the distance of R was yvT', at the instant immediately 
after event E 2• 

Such inferences and possible measurements are summarized in Table 1. 
The sudden changes in the readings of R's clock and in R's distance are fully 
accounted for by the corresponding sudden changes in the systems of reference. 
Appearanee of paradox can arise only if, as has often happened, the reading 
T' /y of R's elock at the instant before event E2 is torn from the context of Table 1 
and is eontrasted with the predicted retardation of M's elock relative to R's 
at the end of the experiment. 
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The data of Table 1 indicate a sudden change in the reading of R's clock 
during the event E2 by the amount y(v2Ic2)T'. If the duration of this event is 
denoted by 't"~ it may be argued that, in some sense, the average" rate" of R's 
clock is y(v2Ic2)T' I't"~ during the event. If, as we have assumed, 't"; is very small 
compared with T', this" rate" will be enormous unless v 2 is correspondingly 
small compared with c2• It may also be argued that, in a similar sense, R's 
speed reaches the enormous average value (y-l)vT'/'t"; during this event. 

It must be clearly recognized that the systems of reference indicated in 
Table 1 are those in which M happens to be at rest at the instants indicated; 
they are not, in general, the systems of reference that could be used by hini 
. in making measurements relating to distant events occurring at these instants. 

INFERENCES AND POSSIBLE MEASUREMENTS RELATING TO THE INSTANTS IMMEDIATELY BEFORE 

AND IMMEDIATELY AFTER THE EVENTS E2 AND E 3 , AND RELATED DATA 

Event E2 Event E3 

Instant Instant Iflstant Instant 
Before After Before After 

---
M's own clock reading · - T' T' T'+'t' T'+'t' 
System of reference .. · . S' S S S" 
R's speed . . - . · . v 0 0 v 
" Rate" of R's clock · . l/y 1 1 l/y 

Reading of R's clock · . YT'(l-~) yT' yT'+'t' Y'l"( l+~) +'t' 

R's distance . . . . · . vT' yvT' yvT' vT' 

Thus Table 1 cannot properly be regarded as an account of the experiment 
in terms of M's measurements and observations, and it cannot be inferred that 
M's observations would show that the" rate" of R's clock and the speed of R 
had reached enormous values during the short intervals occupied by the events 
E2 and Ea. It is, in any case, obvious that he would not have any immediate 
perception of such effects. 

To describe M's immediate perceptions we must specifically exclude any 
allowance for light transmission time. Let us suppose that R's clock emits, 
and is illuminated by, a flash of light at the end of each second of its own time. 
The reading of R's clock which M will see, in the literal sense, at any time can 
then be stated in terms of his reception of these flashes. The arrival of each 
flash at M is a definite event coincident with M; the reading of M's clock at 
the instant of its arrival is therefore the same for all observers and may be 
calculated in any convenient way, e.g. in the system S. We find, of course, 
that what M sees, in this literal sense, can be expressed in terms of the relativistic 
Doppler effect. 

During his outward journey M would receive the flashes of light from R's 
clock at the rate of y(c-v)lc per second so that he would see, literally, R's clock 
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running more slowly than his own; the reading he would see on R's clock at the 
time T' at which his outward journey ended is [y(c-v)/c]T'. 

During the event Ea the rate of arrival of the flashes would increase to one 
per second and would remain at this value while M remained at rest in S; the 
reading he would see on R's clock at the time T' +t", at which his return journey 
started, is [y(c-v)/c]T' +t'. 

During the event Ea the rate of arrival of the flashes would increase further 
to y(c+v)/c, and would remain at this rate during M's return journey, so that 
he would see, literally, R's clock running faster than his own; the reading he 
would see on R's clock at the time 2T' +'t' at which he reached R is 

y{(c -v)/c}T' +'t' +y{(c +v)/c}T' =2yT' +'t'. . . . . .. (6) 

Thus M's immediate perceptions would be perfectly consistent with the predicted 
retardation of his own clock, relative to R's, at the end of the experiment; 
they would not disclose, or even suggest, any "racing" of R's clock during the 
eventsE2 and Ea. 

VII. DESCRIPTION OF THE EXPERIMENT IN TERMS OF THE COORDINATES OF THE 

ACCELERATED REFERENCE SYSTEM Sm 
A complete and consistent account of ,the experiment can be given by 

describing it in terms of the coordinates Xm' tm of the accelerated system of 
reference Sm in which M remains at rest, at the origin, throughout the experiment. 
This system Sm is identical with the inertial system S' during M's outward 
journey; it becomes identical with a system So, at rest relative to S, as a result 
of the event E 2 ; it becomes identical with a system S~, at rest relative to SH, 
as a result of event E 3, and remains so during M's return journey. 

The, transition of Sm from identity with S' to identity with So at event E 2, 

or from So to S~ at event E s, may be specified in terms of a continuous succession 
of inertial reference systems in each of which M is successively at rest at its origin. 
The coordinates of the successive inertial systems are related by non-homogeneous 
infinitesimal Lorentz transformations (see, for example, Meller 1952, Ch. IV). 
Since we are concerned only with measurements which, in each successive 
inertial system, are simultaneous with the instant at which M is at rest at its 
origin, we may define the time tm of M's clock as the time of the accelerated 
system Sm which comprises this continuc;lUs succession of inertial systems. The 
coordinates xm of Sm may be identified at each instant with the x-coordinates 
of the inertial reference system in which M is at rest, at its origin, at that instant. 

The transformations relating the, coordinates of the system Sm to those of 
an inertial reference system, such as So; take a relatively simple form if the 
rest-acceleration of M has a constant value g during each of the events E 2, E s, 
etc., as it would in fact have if M were, on each occasion, subject to a constant 
force, i.e. as measured in an inertial reference system. These transformations 
enable us to describe, in terms of the coordinates of Sm, phenomena and events of 
which a description is already available in terms of the coordinates of an inertial 
reference system. 
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We will consider, as an example, the eventE2 which terminates M's outward 
journey, denoting by "t'2 and "t'~ the time occupied by this event as determined by 
R and by M respectively. 

Before the instant T' at which eventE2 commences, the system Sm is identical 
with the inertial reference system S', so that 

Xm=X'; tm=t' (tm<T'). . ............. (7a) 

.At the instant T' +"t'~ at which event E2 ends, 8m becomes identical with an 
inertial reference system 80, at rest relative to S, defined by : 

xo=x-X; to=t-T+To; To=T' +"t'~-"t'2' ...... (7b) 
so that 

(7c) 

During the interval "t'~ M is subject to a rest-acceleration g (which has a negative 
value) and the Sm-coordinates are related to the So-coordinates by: 

where 

1+gxo/c2=(1+gxm/c2) cosh [g(6~-"t'~)lc], 

g(62 -"t'2)/c=(1+gxm/c2) sinh [g(6~-"t'~)jc], 

62=to-To; 6~=tm-T'; 
To<to<To+"t'2; T' <tm<T' +"t'~. 

(7d) 

(7e) 

The coordinate Xm of R's clock is given by equation (7d) when we put xo= -X. 
Neglecting the distance travelled by M during his deceleration, it is easily 
verified that xm has the values 

xm= -X/y at tm=T', 

xm= -X at tm=T' +"t'~, 

in agreement with the values given in Table 1. 

The velocity U m of R's clock at any instant may be found by differentiation 
of e.quation (7d). Noting that dxo/dtm=O, this gives 

um=-c(1+gxm/c2) tanh [g(6~-"t'~)/c]. . ..... (Sa) 

It is easily verified that at the onset of the acceleration at tm=T' this velocity 
suddenly assumes the value -'0(1 +gxm/c2) but decreases to zero at tm =T' +"t'~. 

Readings t=T+62 of R's clock which, in the system 8 m , are simultaneous 
with the readings tm=T' +6~ of M's clock, are given by equation (7e) when xm 
is put equal to the coordinate of R at each instant considered. It is easily 
verified that this gives the readings 

t=T/y2 at tm=T', 

t=T+"t'2 at tm=T' +"t'~, 

in agreement with the values given in Table 1. 
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The" rate" of R's olook in the system 8 m is obtained by differentiation of 
equation (7e) and is given by 

dtjdtm=[(1+gxmjo2)2-u~jo2]l; Xo= -X, ........ (8b) 

and this may be written 

dtjdtm=(1-gXjo2) sech2 [g(e~-'t'~)jo]. . ......... (8e) 

Under the conditions being considered, this "rate" does not differ greatly 
from the value (1-gXjo2) during the event E 2 ; it approximates to _gXjo2 
and may reach enormous values if X is large. Since g is negative, this is con
sistent with the average rate y(v2jo2)T' j't'~ inferred in Section VI from the data 
given in Table 1; for we may write, approximately, g=-vj't'~ and X=yvT'. 
The" rate" of a standard olock stationary in 8m, for which um=O, can similarly 
be shown to be 

dtjdtm=1+gxmjc2 ; xm constant, .......... (9a) 

and will, in general, be very large for large negative values of xm, g being negative. 
The velocity of light in Sm at any point having the coordinate xm is obtained by 
differentiating equation (7d) and inserting the value c for the velocity in the 
inertial system 80• One obtains 

om=o(l +gxmj(2). . ................ (9b) 

The factor (1 +gxmj(2) may ~each very large values for large negative values of 
x m, the value of g being negative. 

Graphical Representation : We can thus build up a complete and coherent 
description of the experiment in terms of the coordinates of the accelerated 
system 8m• The foregoing results are consistent with the inferences, drawn 
in Section VI, from the data summarized in Table 1. Equation (9b), for the 
velocity cm of light at any point in the system 8 m, enables us to account also, 
in terms of the 8 m coordinates, for M's immediate perceptions, summarized in 
Section VI, of the readings of R's clock. 

Such a description, or a corresponding description in terms of the co
ordinates of the inertial reference system 8, can best be presented graphically 
in the manner illustrated by the diagrams of Figure 1; these refer to an experi
ment similar to that so far considered, and differing only in that the times 't'2 

and 't'3 occupied by the events E2 and Ea have been assigned relatively large 
values to facilitate the graphical representation. 

In Figure 1 (a), any event that takes place on the x-axis of the inertial 
reference system 8 is represented by a point having coordinates x,t in the diagram. 
'The arbitrary units of length and time used are such that the velocity c of light 
is unity. Points representing events. which are simultaneous in 8 lie on a line 
parallel to the axis of X; any line parallel to the axis of t is the world line of an 
object at rest in 8 and, in particular, the axis of t is itself the world line of the 
observer R at rest at x=o. The world line of the observer M is shown; starting 
at t=O, he travels away from R with speed v=O ·6c until t=T=12·5;. he 
is then decelerated by a constant force (g= -0 ·5c per unit time) and comes to 
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rest at m=8 at time t=T+r2=14; he remains at rest until t=T+'t'2+r=18 
and is then accelerated towards R by a constant force (g= -0 ·50 per unit time) 
to reach the speed v=0·60 at t=T+'t'z+'t'+'t's=19·5; he travels with this 
speed to reach R again at t=2T+'t'2+'t'+'t'a=32. 
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Fig. I.-Description of clock retardation experiment in terms of the coordinates 
of inertial and accelerated reference systems S and Sm. World lines of light flashes 

emitted by R's clock are shown. 

The readings tm of M's clock which, in the system S, are simultaneous with 
readings t of R's clock can be calculated by means of equation (5c); these 
readings have been scaled off along M's world line. It is seen that M's clock 
reads only tm=26·8 when he rejoins R at t=32. 
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We suppose, as in Section VI, that R's clock emits, and is illuminated by, 
a flash of light at the end of each unit of time. The world lines of these flashes 
are straight lines in the diagram: the intersection of each with! M's world line 
represents the arrival of a flash and its perception by M. The reading tm of M's 
clock at the arrival of each flash can be ascertained from the time scale marked 
off on M's world line. It will be seen that the rates of arrival of the flashes are 
consistent with those given in equation (6), it being noted that in the present 
case v=O ·60 and 1jy=(1-v2j02)1=O ·8, so that y(o-v)jo=i and y(0+v)jo=2. 

In Figure 1 (b) any event taking place on the xm-axis of the accelerated 
reference system 8m is similarly represented by a point having coordinates xm' tm 
in the diagram. The axis of tm is itself the world line of the observer M, at 
rest at xm=O. The world line of the observer R is shown; starting at tm=O 
he moves away from M with speed v=O ·60 until tm=T' =10; his speed suddenly 
increases to the value um =2 ·40 (equation (8a)) and then decreases until he comes 
to rest at xm= -8 at tm=T' +!~=11·4 ; he remains at rest until 
tm=T'+'t'~+'t'=15·4 and starts to move again, towards M, at first slowly but 
reaching the speed um =2 ·40 at tm =T' +'t'~ +'t' +'t'~ =16 ·8; his speed is then 
suddenly reduced to v=0·60 and he travels with this speed to reach M at 
tm=2T' +'t'~+'t'+'t'~=26 ·8. 

The readings't of R's clock, which are simultaneous in the system 8 m with 
readings tm of M's clock, may be calculated by means of equation (7e); these 
readings have been scaled off along R's world line. It is seen that the reading 
of R's clock has only reached t=8 at tm==10, but that its rate during the interval 
't'~ is so high (equation (8b)) that its reading becomes t=14 at tm=11·4. Its 
rate is the same as that of M's clock during the interval 't' but again reaches very 
high values during the interval 't'~, so that t=24 at tm=16·8. Its rate then 
becomes less than that of M's clock by the factor 1fy=0·8 so that its reading is 
t=32 when R rejoins M at tm =26 ·8. 

The world lines of the light flashes from R's clock are also shown. During 
the intervals 't'~ and 't'~ the velocity of the light is 0(1 +Uxmj02), as given by equation 
(9b), and reaches the value 40 at xm = -8. The variation of this velocity with 
xm results in the worid lines being, in general, non-linear and this results, in 
spite of the large variations in the rate of R's clock, in the perception of the 
flashes by M at the times predicted by Figure 1 (a.) and by equation (6). 

VIII. THE SIGNIFICANCE OF THE ACCELERATED REFERENCE SYSTEM 

It is commonly assumed that the 8 m-description, represented in Figure 1 (b), 
is the account that the observer M would give of the experiment, even if his only 
data were his own perceptions and measurements. This assumption is not 
justifiable. It presupposes that M could himself measure the 8 m-coordinates 
of every event; but this is not, even in principle, possible. 

The accelerated reference system 8 m was defined by stating that its co
ordinates are, at any instant, identical with those of the particular inertial 
reference system in which M is at rest, at the origin, at that instant. The motion 
of M thus specifies a multiplicity, which will in general be infinite, of hypothetical 
inertia~ reference systems, each of whose coordinates is to be used at a particular 
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instant or during a particular interval. These coordinates may be predicted, 
for any event, by means of the Lorentz transformation, if the coordinates of 
that event in anyone inertial reference system, such as S, are already known. 
The S,.;-coordinates provide a summary of all such predictions. 

Thus a description of events in terms of the Sm-coordinates cannot furnish 
more information than is already available in terms of the coordinates of inertial 
reference systems. 

On the other hand, measurement of the coordinates IlJm, tm of any event 
presupposes, by definition, actual measurement in the particular inertial reference 
system in which M is at rest, at its origin, at the instant tm considered. This, 
in turn, presupposes the existence in that particular inertial system of observers 
at rest, either permanently or, at the very least, for the time required for tranS
mission of light throughout the spatial region of interest. Thus, in general, 
the observer M could not himself make these measurements. 

This conclusion was already foreshadowed in the discussion of the data of 
Table 1 in Section VI. It was there pointed out that, even though M was at 
rest in the system S' until his outward journey ended at the instant T', he could 
not verify the reading T' fy of R's clock, or its distance vT', which we inferred 
would be simultaneous in the system S' with the reading T' of his own clock; 
for light emitted by R's clock at the instant its reading was T' fy could not reach 
M until long after he had ceased to be at rest in S'. These inferences could in 
fact be verified experimentally only by hypothetical observers at rest in S', 
i.e. in the inertial reference system whose origin coincided with M at the instant 
t' =T'. Thus even the data presented in Table 1 cannot properly be regarded 
as M's account of his own observations during the experjment; it is no more 
than a summary of data, measurable in systems S, S', and S", selected in a way 
defined by the motion of M. 

When, as in Section VII, the accelerated reference system, from tm =T' 
. to tm=T' +t"~, comprises a continuous succession of hypothetical inertial systems 
in each of which M is at rest only instantaneously, it is obvious that M could 
not, even in principle, determine the coordinates IlJm, tm of distant events because 
he would not remain at rest in any of these inertial systems for a finite time. 
Reference to Figures 1 (a) and 1 (b) also shows that, even when M is at rest in 
the system S from tm=T'+t'~ to tm=T'+'t'~+t', he could not determine the 
coordinates of R because light signals emitted by R's clock during this interval 
would not reach him until after he had come to rest in sn. 

It has been implied in the foregoing that M would be restricted to methods 
of measurement, based on the transmission of light, such as would be possible 
in practice using optical instruments. No account was taken of the possibility 
of his utilizing in any way a real physical system having continuous extension 
throughout the region occupied by R and himself during the experiment. 

Such a physical system at rest with R is quite conceivable. If it were 
provided with visible markings of the spatial coordinates IlJ and if it were equipped 
at appropriate points with standard clocks synchronized by the S observers, 
the observer M could in fact determine the S-coordinates of any events. The 
result would be a trivial verification of the S-description of the experiment. 
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On the other hand, a physical system, of sufficient extent, moving with M 
is difficult to imagine unless one supposes the distance travelled by M,. or the 
accelerations to which M is subjected, to be very small. Nevertheless, it is 
necessary to examine whether such a system, however impracticable, could in 
principle enable M to measure the 8 m-coordinates. 

The conditions to be met can be definitely prescribed. It is necessary that 
a real coordinate frame, of sufficient extent, moring with M, and corresponding 
exactly at every instant to the coordinates xm of the accelerated reference system 
8 m, should be, in principle, physically realizable and that it could be supposed 
to be equipped with clocks adjusted to keep the time tm' i.e. coordinate clocks, 
as distinct from the standard clocks of the restricted theory of relativity (equation 
(9a)). The observer M could then determine the coordinates of any event by 
noting the point in the coordinate frame, and the reading of the coordinate clock, 
coincident with the event. These observations would not be affected by the 
time of transmission of light from the point of occurrence of the event to the 
observer; they could in fact be made by any observer who could read the 
coordinate clock, and identify the point in the coordinate framework, coincident 
with the event. 

In general, such a physical system is not realizable, even in principle. 
The fundamental restriction is that there can be no transillission of gravitational 
fields, or of stresses in a physical system, with a speed greater than that of light. 

The effect of this restriction is easily illustrated. The accelerated system 
8 m of Section VII is identical with the inertial system 8' at tm=T'; it becomes 
identical with 80 at tm=T' +t'~ (Fig. 1 (b)). The corresponding real coordinate 
frame would, at every instant, have to be contracting at the same rate at every 
point to preserve its identity with the succession of inertial reference systems 
which constitute the system 8 m during its transition from S' to 80• This would 
reqUire, at the onset of M's acceleration, instantaneous transmission of stress 
throughout the system, as judged by 8' observers, and this is clearly incompatible 
with the postulates of th~ theory of relativity. . 

More specifically, it can be shown (e.g. Moller 1952, Ch. VIII) that the 
coordinates X m, tm defined, during the interval T2' by equations (7d) and (7e) 
correspond to a rigid coordinate frame subject to a steady rest-acceleration g 
of its origin and equipped at appropriate points with clocks keeping the time tm' 
each being adjusted to a rate less, by a factor (1 +gxm/c2 ), than that of a standard 
clock at rest with it, as required by equation (9a). When viewed from an 
inertial reference system this rigid framework would be subject at each point 
to a Lorentz contraction determined by the speed of that point; this speed would 
depend on the accelerated motion of the origin of the frame and on the resultant 
contraction of the system as a whole. The equations (7d) and (7e) are, clearly, 
inapplicable unless the acceleration g of the origin has been so long maintained 
that a steady state has been reached throughout the system. 

Thus accelerated reference systems such as 8 m, in which the accelerations 
.are transitory, as they are during the events E2 and E a, can have no realizable 
physical counterpart which would, in principle, permit an observer, such as M, 
to measure the system coordinates. The artificiality of the system 8 m is demon-

c 
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strated in Figure 1 (b) by the discontinuities in R's velocity at tm=T' and 
tm=T' +'r~ +t"+'r~ and, perhaps even more forcibly, by the discontinuities in 
the velocity of light, since these occur simultaneously at all points in an inertial 
reference system as, for example, in S' at tm =T'. 

It appears that the only case in which a relative retardation of clocks would 
occur in the interval between their successive coincidences, and in which observers 
at rest in a relevant accelerated reference system could measure the system 
coordinates of every event of interest, is that in which the accelerated reference 
system corresponds to a steady rotation. This case would arise if an observer R' 
were at rest in an inertial reference system and if an observer M' moved in a 
circle with constant speed so that he coincided instantaneously with R' each 
time he traversed the circle. 

Thus, except in such a special case, the description of a clock-retardation 
experiment in terms of the coordinates of an accelerated reference system does not 
represent the account that would be given of the experiment by the accelerated observer 
as a result of his own perceptions and measurements. 

It must not be overlooked that the observer M in our experiment would in 
fact be aware of effects of his own acceleration and, simultaneously, of Doppler 
changes in the frequency of arrival of regular light signals from R's clock. The 
only sensible account he could give of these perceptions, taken together with 
such measurements as he might make by optical methods, would of necessity 
be similar to the account given in Section VI above. 

IX. THE GENERAL THEORY OF RELATIVITY 

The accelerated reference systems considered in Sections VII and VIII 
are conventionally regarded as part of the subject matter of the general theory 
of relativity. 

The foregoing discussion shows that this part of the general theory can add 
nothing of physical significance to an analysis, properly made in terms of the 
restricted theory, as in Sections II-VI, of the relative retardations of clocks 
due to their arbitrary motions in a region free of gravitational fields. 

Furthermore, it is easy to see that any application of the principle of equivalence 
of the general theory to such cases would be quite trivial. 

The principle states that any accelerated system of coordinates is, physically, 
completely equivalent to, and indistinguishable from, a similar system at rest 
in a gravitational field, so far as the perceptions and measurements of observers 
at rest in the two systems are considered. The principle thus permits the 
course of events in a gravitational field to be predicted by calculating, by means 
of the restricted theory of relativity, the course of events as described in the equi
valent accelerated reference system . 

. The converse process of calculating the course of events in an accelerated 
reference system from that in the equivalent gravitational field must be essentially 
trivial, since it would, in principle, involve first calculating the latter from the 
former. ' 
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It 'is true that the 8 m-description represented in Figure 1 (b) could have 
been derived equally well by ascribing the effects experienced by M as a result 
of his own acceleration to. the existence of a static gravitational field haying a 
potential galm(l +galm/2( 2 ) during the intervals "2 and "3' and having zero value 
!1t all other times. Expressions already known (i.e. already calculated using the 
principle of equivalence), for the rate of a clock and for the velocity of light 
in this gravitational field, would lead to the same results as those set out in 
equations (8) and (9) of Section VII. 

This approach to the problem is based on the explicit assumption that it 
is the point of view of the observer M which is being considered, for he alone 
could suppose that the effects he experienced might be due to a gravitational 
field; all inertial observers would be aware that the region was free of any such 
field. It has therefore been generally assumed that the result of the analysis, 
e.g. the 8 m description, is the account that M would give of the experiment as a 
result of his own perceptions and measurements (e.g. Tolman 1934; McOrea 
1951; Meller 1952). 

It was shown in Section VIII that this assumption is not justifiable because 
the reference system 8 m does not correspond to any physical system that is 
realizable even in principle. This conclusion is not affected by the introduction 
of the concept of the equivalent gravitational field. On the contrary, nothing 
could demonstrate more clearly the artificiality. of the reference system 8m 

than the statement that its physical equivalent is a gravitational field which is 
everywhere zero until the instant tm=T', has the potential galm(1+galm/2c 2 ) 

from tm=T' to tm=T' +,,~, and becomes zero everywhere again at tm=T' +,,~. 
The concept of such a field is completely incompatible with the limiting value c 
for all velocities measured in inertial reference systems; for it may be seen 
from Figure 1 (b) that the time tm=T' is everywhere identical with the time 

. t' =T' of the inertial reference system 8', and the time tm=T' +,,~ is everywhere 
identical with the time to=T' +,,~ of the system 80, so that the specified field 
would have to be created simultaneously at all points in 8' and be destroyed 
simultaneously at all points in 80• 

Thus the principle of equivalence can contribute nothing of physical 
significance to the analysis; it 'only accentuates the artificiality of the description 
of our hypothetical experiment in terms of the coordinates of the accelerated 
reference system 8m• 

It must not be overlooked that the principle of equivalence was utilized 
(Tolman 1934) to resolve, by means of the general theory, the so-called paradox 
of the restricted theory. In effect, the" paradox" was resolved by denying 
the applicapility of the restricted theory to the problem and then using instead 

,conclusions that had been derived from the restricted theory by means of the 
principle of equivalence. This tortuous procedure succeeded in hiding the 
paradox rather than in resolving it; for it scarcely need be pointed out that the 
procedure would be quite invalid if the restricted theory were indeed not properly 
applicable to the problem considered. However, the resolution of the" paradox" 
in Section IV above and the subsequent discussion show that the general theory 
can contribute nothing of physical significance to an analysis properly carried 



262 G. BUILDER 

out by means of the restricted theory except when there are permanent gravi
tational fields to be taken into account, as in the case analysed. by Mikhail 
(1952). 
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