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Summary 

The radio sources are assumed to be galaxies sharing in the red-shift phenomenon. 
The counts of such sources to successive limits of flux density are interpreted in terms 
of the model universes of general relativity. The flux density in each infinitesimal 
interval of frequency is assumed to be proportional to a power of the frequency and to 
a multiplicative parameter, both these quantities being regarded as functions of the 
red-shift, i.e. of the time of travel of the radiation. All sources at the same diStance 
from the observer are assumed to be identical radiators; this permits the intro
duction of a standard comparison source_ The data in the Sydney catalogue can then 
be intE'!rpreted in terms of radio sources of constant strength·(i.e. which are independent 
of the red-shift) if they are similar to NGC 1275, taken as standard. If they are similar 
to Cygnus A, the data imply that the sources were radiating more strongly when their 
radiation left them than is Cygnus A now. This type of conclusion appears to be 
unavoidable for the data of the Cambridge catalogue. It is briefly explained how to 
modify the theory to take account of a variation with time of the space-density of 
sources and also of a mixture of comparison sources. 

1. INTRODUCTION 

It has been known for 20 years that counts of the numbers of galaxies to 
successive limits of apparent magnitude at. optical wavelengths would lead to 
important conclusions about the nature of the astronomical universe. Observa
tions of this kind can be interpreted in terms of the uniform model universes of 
general relativity and the theoretical method of attack is known (McVittie 
1956). The optical data, however, suffer from the defect that the apparent 
magnitudes of faint galaxies are very difficult to determine, and progress in this 
direction is likely to be slow. In contrast, the analogue of the apparent 
magnitude of a radio source can be measured with, relatively speaking, very 
great accuracy and speed. In the catalogues of radio sources published by the 
Oambridge (Shakeshaft et al. 1955) and the Sydney (Mills and Slee 1957) observers 
respectively, there are numerous· sources classified as extragalactic. It is true 
that, whereas the flux density (equivalent to the apparent magnitu~e of an· 
optical source) of such a source can be measured satisfactorily, it is not so easy 
to distinguish real from spurious sources as it is with an optical telescope. This 
is, of course, because of the as yet imprecise directivity of the radio telescopes 
employed. Preliminary as the Oambridge and Sydney catalogues may be, it 
is still worth while to work out the theory of the distribution in space of extra
galactic radio sources on .the assumptions (a) that these sources are galaxies 

* University of lllinois Observatory, Urbana, Ill., U.S.A. 
A 



332 G. C. MCVITTIE 

of some kind and that the red-shift phenomenon applies to them even if they 
have not been identified with optical objects; (b) that the uniform model 
universes of general relativity provide the appropriate theory for the purpose; 
(0) that the dispersion in intrinsic flux density of the sources, at each instant of 
cosmic time t (see equation (2.01)), is negligible. Clearly, (0) is a bold assump
tion since, even amongst those sources that have been identified as colliding 
galaxies, the flux density of Cygnus A (IAU 19N4A) observed at the Earth, 
is 100 times or more that of NGC 1275 (IAU 03N4A). Yet, from their optical 
red-shifts, the distance of the former object is three times that of the latter. 
In Section V a suggestion for removing assumption (0) is made. The theory 
will be presented in terms of observable quantities, flux densities, red-shifts, 
numbers of radio sources, etc., rather than in terms ,of the derivative concept 
of distance. Though the procedure may seem roundabout, it avoids all the 
complexities inherent in the notion of the distance of an object whose red-shift 
may be large and which is located in a universe the nature of whose geometry 
is not known a priori (McVittie 1957). 

The analysis of the spatial distribution of radio sources is less complicated 
than that for optical sources because the former have a relatively simple spectral 
energy distribution function. The flux density from a radio source is usually 
given in watts m-2 (C/S)-l and, if v is the frequency, the amount of energy 
crossing a unit area in unit time at the point of observation, in the infinitesimal 
frequency interval I dv I is proportional to VZ I dv I where the spectral index'x 
is a number lying between -0,6 and -1·0 (Ryle 1955). It is true that recent 
work by Adgie and Smith (1956) indicates that, for Cygnus A, x varies with the 
frequency between these limits. Nevertheless we shall assume that x is a 
constant. Converting to wavelength, this flux is therefore "A -x-2d"A, which it is 
convenient to write as 

"Ap-1d"A, ..................... (1.01) 

so that p is a number lying in the range O:;;.p:;;. -0· 4. 

II. UNIFORM MODEL UNIVERSES 

In this section we shall summarize various results on uniform model universes 
that will be needed. The proofs will be found in the relevant sections of " General 
Relativity and Cosmology" (McVittie 1956; hereinafter referred to as GRC). 
The metric is (GRC Section 8.2) 

d 2-dt2-R2(t)(dr2 +r2d62 +t2 ~in2 6dcp2) (2 0·1) 
8 - 02(1 +kr2/4)2 , ...... • 

where 8, t have the physical dimensions of time, r, 6, cp are dimensionless spatial 
coordinates, R has the dimensions of length and is an undetermined function 
of t, and k, the space-curvature constant which determines the nature of the 
geometry, can be made to have the values +1, 0, or -1 by a suitable choice of 
the unit of r. It is convenient to locate the observer 0 at r=O and to assume 
that all his observations are made at the same instant to' The gravitational 
effects of the distribution of galaxies are idealized by replacing the galaxies 
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by a continuous perfect fluid of density p and pressure P where (GRC (4.225), 
(8.210), (8.211)) 

81tGp=3(kc2 +R'2)jR2_A, ............. . 
81tGPjc2= -2R"jR-(R'jR)2.-kc2jR2+A, 

(2.02) 

(2.03) 

a prime denoting a derivative of R and A being the cosmical constant. Thu,s 
the distribution of perfect fluid is spatially uniform because p and P depend on 
the time alone, apart from constants, and it is in this sense that spatial uniformity 
is to be understood in a theory based on (2.01). 

Sources of radiation are defined (GRC Section 8.4) to have world-lines 
along which t=8 and r, 8, rp are constant. A source Pi located at r=ri, emitting 
radiation at time ti which reaches 0 at time to, has r i , ti connected by (GRC 
(8.409)) 

f to dt fO dr 
c t. R(t)=- r.1+kr2j4' .......... (2.04) 

• t 

an equation derived from the motion of the light ray. The red-shift in the 
.spectrum of the radiation from Pi' as observed at 0, is (GRC (8.412)) 

a=RojRi -1, .................. (2.05) 

where R(to)=Ro, R(ti)=Ri • Here a=d"Aj"A, where "A is the wavelength of the 
radiation received at 0, the wavelength of emission at Pi being "Ai. Since the 
red-shift is common to all lines in the spectrum of Pi (Lilley and McClain 1956 ; 
Minkowski and Wilson 1956), we have also (GRC (8.601), (8.602)) 

d"A=(l+a)d"A i . . ..•.... (2.06) 

The distance between 0 and Pi depends partly on the operational procedure 
that is used to measure it and is not an absolute quantity as in classical theory 
(GRC Section 8.5). In cosmology the type of distance normally employed is 
luminosity-distance D, which is such that the intensity of the radiation from a 
source falls off as the inverse square of D. It can be proved that for a source 
,such as Pi (GRC (8.517)) 

R~ri 
D= Ri(l +kr1j4)" . . . . . . . . . . . . . . . . .. (2.07) 

The total number of sources Pi that have r-coordinates in the range 
{}<r<ri is (GRC (8.702)) 

. .. . . . . . . . .. (2.08) 

where IX is an absolute constant and 1jQ is the fraction of the whole celestial 
sphere over which the observer 0 counts the sources. This result depends on 
the assumption that each source has fixed (r, 8, rp) coordinates but it does not 
imply that each source radiates in exactly the same way. Since each r in the 
integrand of (2.08) is connected with the corresponding time of emission by 
(2.04), it follows that the formula for N makes allowance for the different 
times of travel to 0 of the radiation from the sources in each successive shell 

AA 
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centred at O. Thus, since the distribution of sources is changing its scale with 
time while remaining similar to itself, the number N will not correspond to that 

. in an instantaneous picture of a " uniform" distribution of sources at rest in a, 

Euclidean space, even if k=O, which is the condition for a space of this kind. 
There are two ways of comparing the foregoing formulae with observation. 

The :first is to pre-assign R as a function of t and also to pick particular values 
of k or of A, or of both these constants. This method usually employs the device 
of assuming a special form for Pin (2.03) and determining R from the resulting 
differential equation.' Examples will be found in the work of Hoyle and Sandage 
(1956) or of Shakeshaft (1954); the second author, apparently influenced by 
the creation of matter theory of Bondi and Gold (Bondi 1952), presupposes. 
that R is an exponential function of t and that k=O. The second method is 
to us~ the observations themselves to determine, as far as possible; R(t} and 
the constants k and A. It will be used here and it depends on the assumption 
that R(ti } can be expanded in a Taylor series in terms of the time of travel,. 
to-ti' of the radiation from the source to the observer (GRC Sections 9.1 and 
9.2). Elimination of the time of travel between (2.04), (2.05), and (2.07} 
will then give D as a power series in a (GRC (9.21 O)}, namely, 

(2.09) 

where 
(2.10) 

and a subscript denotes that the functions are evaluated at t=to' Inverting' 
we have 

In a similar way it follows that (GRC Section 9.3) 

where 

a2=4R~/k. (2.13) 

It is to be noticed that the coefficient of e~ch successive term in these expansions 
involves a higher derivati:ve of R, evaluated at the instant to, than the preceding' 
one. The formula (2.12) gives, of course, the number of sources whose 
luminosity-distances do not exceed D. . 

Observations of the red-shifts of galaxies versus their apparent magnitudes: 
in the opti9al range yield numerical values of the Hubble parameter hI and of 
the acceleration parameter h2' essentially through fitting the data to formula· 
(2.09) (Humason, Mayall, and Sandage 1956; McVittie 1957). For our present 
purpose, the numerical value of hI isij.appily not .required; it lies between 
8·75 and 4'64x10-18 sec-I, according to tbe method of, i:Q.terpretation of the·. 
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da,ta that is employed (McVittie 1957). The value of h2 is still more uncertain; 
if we write h2= -qohi, the number qo is given as 2·5 ±1 by Hoyle and Sa,nda,ge 
(1956), whilst McVittie (1957) concludes tha,t 2·7<qo<5·6. Thus in (2.10) 
we write 

where qois likely to be grea,ter than 1·5 and less than 5 ·5. Incidentally, the 
Bondi a,nd Gold creation of matter theory requires that qo= -1 (Hoyle and 
Sandage 1956) and therefore this theory does not apparently agree with the 
presently available optical data on red-shifts. Again, if Po, Po denote the values 
of the density and pressure at time to, it is usually accepted that POlc2 is negligibly 
sman compared with Po' Thus by (2.03) and (2.14) 

A=(-2qo+1)hi+c2k/R~, .......... (2.15) 

and then (2.02) becomes 

41tGp~= (qo + l)hi +c2kIR~. (2.16) 

It therefore follows, since po> 0, that 

(qo+1)hi> -c2k/R~. . ............. (2.17) 

It should be remarked that the equation 

c2kIR~= (2qo -l)hi 

found by Hoyle and Sandage (1956) is not so much a consequence of the observa
tional data as a, result of their a priori assumption that A=O. 

III. THE NUMBER OF RADIO SOURCES 

We shall convert the formula (2.12) into one involving the limiting flux 
density from a radio source corresponding to the limiting luminosity-distance D. 
The first step is to connect the flux density Si of a, radio source lying in the shell 
of radii ri+dr and ri with its luminosity-distance D i • The assumption will be 
made that, for an observer at unit distance from the source and observing the 
radiation shortly after its emission, the flux density in the infinitesimal range 
dA; of wavelength is, by (1.01), 

. C(~i)Ar(8i)-ld~, ................ (3.01) 

C a,nd p being functions of ~i which can be expressed as 

C(~i)=Co(1+Cl~i+~~1+ . . -), •• i. ,~ •••• (3.02) 

P(~i)=Po(1+Pl~i+~~1+ . . -), (3.03) 

where COl Cll C2,· ••. and Po, Pll P2" . . are constants. Here· ~i is to be 
regarded as a replacement for the time ti of emission of the radiation. Thus· 
the flux density is the same for all sources with the sa,mer; but may differ for 
different rio In view of the remarks made in Section I, it will be assumed that 

O>Po> -0'4. . ............... (3.04) 
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The flux density in watts m-2 measured at 0 in the range A' to A of observed 
wavelength is, by (2.06) and (3.01), 

1.= O(ai ) JA'cr(A)AP(I'i)-ldA 
, D~(l +ai)p(Oi) A ' 

where cr(A) is the " extinction factor" which allows for the imperfect recording 
by the apparatus of the incoming energy. Dropping the subscript i and 
assuming that· cr(A) is approximately constant over the range of integration, 
we have 

1- O(a)cr (A'P(o) -AP(o)) 
- D2(1 +a)p(o)p(a) . 

In this formula there occur the constant 00 of (3.02), which depends on the 
strength of the source as this would be measured at unit distance from it shortly 
after the time of emission of the radiation, and the luminosity-distance D of 
the source from the observer. Neither of these quantities is, in general, known 
for a radio source whose flux density is measured. For a given flux density 
the source may be weak and nearby or strong and remote. Following the 
practice of optical astronomy, where the flux density corresponds to apparent 
magnitude, we introduce the analogue of absolute magnitude. To this end 
it will be supposed that a typical, or standard, source has been found whose I, 
denoted by Is, has been measured with the same apparatus and which also has 
a known red-shift, as' This standard source is presumed to have the same 
constants, 0 0, Oil O2,, .. and Po, PI' P2" .. , as have the other sources that are 
being studied. Denoting quantities referring to the standard source by the 
subscript s, we have 

I o(a) (1 +as)p(os) p(as) A'P(o) -AP(o) D; 
Is = o(as) (1 +a)p(o) pta) A'P(os) -AP(os) D2' 

If S, Ss are the flux densities in watts m-2 (c/s)-l then 

S-~- IAA' 
- y-y'-e(A' -A)' 

and so 

.... (3.05) 

. . . .. .. .. .. . . ... (3.06) 

for the same range of wavelength for the standard source as for the other. 

The factors on the right-hand side of (3.05) will now be expanded in power 
series in a and in as, except for the factor involving the ratio of luminosity
distances. It is convenient to do this for In (III,) in the first instance, and we 
find, after some calculation, 

O(a) _. 2 ~2 . 2 
In o(as) -Ol(a -a,) +(02 -01)(0 -as)/2 + ... , 

(1 +as)p(os) _ 2 2 
In (1 +a)p(o) - -po(a -a,)-PO(2P1 -l)(a -as)/2 -. ., 

In p(as) = -p (a -a ) _ (P2 -pil(a2 _a2)_ 
pta) 1 s 2 8' •• , 

A'P(o) -AP(o). . 2 2 

In A'P(os) -AP(os) =ll(a -a,) +(l2 -h)(a2 -as)/2 + ... , 
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where 

l2={POP2().'p'(ln ),')-).P,(ln ).)+ 

p~pi().'p'(ln ),')2-).p,(ln ).)2)}j().'Po_),Po). 

Thus (3.05) is 

In (1115) = -2 In (DjDs) -2b1 (a -as) +b2(a 2 -a;) +. 
where 

Hence it follows that 

} .. (3.07) 

. ., 

(3.08) 

(3.09) 

337 

where the exponentials are to be expanded to the order a2 or a~ only. Define 
a variable y by 

y=(IsII)IiDs exp (blas-b2a~j2) 

=(IsII)IiDs{1+blas+(bi-b2)a;j2}, .............. (3.11) 

and then (3.10) is 

y=D{1 +b1a +(bi -b2)a2/2 + ... }. . . . . . . . . .. . . .. (3.12) 

But now by (2.11) we obtain 

y=D{1 +b1(h1Dlc) +(bi -b2 -b1h)(hlDjc)2j2 + ... }, .. (3.13) 

and so inverting this series by successive approximations 

which expresses D as a power series in the ratio of flux-densities parameter _yo 
Introducing the constant A by 

lOA = 47t1X3D~{1 +b1as +(bi -b2)3;/2}3, 
3QRo 

and taking the logarithmic forms of (2.12) and (3.14), the number of radio 
sources with flux density ratios up to yare given by 

.. , 

or, if E=ln 10=2·303, 
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where, using (2.13) also, 

b3=t+bi+bl +tb2+th(1+b l )+110 0;2' ............ (3.16) 
Roh1 

The non-Iogarit~mic form of (3.15) is 

N = 10.4 (Is /I)312 r 1-3(1 +bl)(hly/o) +3tb3+~(1 +bl )25(h I Y/O)2+ . .. J, 
... ; ................ (3.17) 

and (3.15) and (3.17) are the final forms of the formulae for log N and for N 
respectively. 

In actual computations, the relation (3.06) is used to calculate (Is/I) 
through the flux densities measured in watts m-2 (C/S)-l. Terms in h1y/o may 
be computed from (3.11), (2.09), (2.14), and (3.06) which give 

h1y/o=(ss/s)!as (first approximation), . .. .. .. .. .. ... (3.18) 

= (Ss/S)!as{l +(2b1 ~qo+1)as/2} (second approximation) . 
.................... (3.19) 

Again, if equation (3.10) is multiplied by hl/o and (2.09), (2.14), and (3.06) 
are used, we obtain 

as{l +(2bl -qo+1)as/2}(Ss/S)!=a{1 +(2b1-qo+1)a/2 + ... }, 
.................... (3.20) 

an equation that can be used to calculate the red-shift a corresponding to S. 
But this is possible only if the series that have been employed are rapidly con
verging and this need not be so if a is large. In this connexion, it· should be 
noted that in special and general relativity the relative velocity of source and 
observer tends to 0 as a tends to infinity (Dingle 1950). This is in contrast t,o 
the classic;11 case where a relative velocity 0 corresponds to a=1. 

If all terms on the right-hand side of (3.15) after the second are omitted, 
and (3.06) is also used, we obtain 

log N =B -3/2 log S, ............ (3.21). 

where B involves Ss' Ds' and as' This equation states the" -3/2 law" for the 
distribution of radio sources provided that it is assumed that the standard 
soUrce is the same for all sources, i.e. that its flux density does not depend on S; 
The omission of the terms in (3.15) is justifiable in two quite different ways. 
Firstly, it may be supposed that h1y/o, h2(Y/O)2, etc. are negligibly small, which 
means that the red-shifts and the other parameters involving the motions of 
the sources are regarded as being small. In addition, as the last term of (3.16) 
demonstrates, powers of ky2/R~ are to be regarded as negligible. This is equi
valent to asserting either that k=O (Euclidean space) or, if k equals +lor -1 
(spherical or hyperbolic space), that the square and higher powers of the r'atios of 
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the luminosity-distances of the sources to Ro are small. Thus this method of 
obtaining (3.21) from (3.15) implies that the sources are all, cosmically speaking, 
near to the observer and so moving slowly in a model universe (2.01) where Ro 
is large. 

But there is a second way i)1 which the " ~3/2 law" can be obtained. It 
has already been noticed that, in the infinite series such as (3.12) or (3.15), 
the coefficient of each successive term contains a higher derivative of R, calcu
lated at the instant to! than the preceding one. Of these derivatives, the first 
and second are determinable from the presently available data on optical red
shifts and both these derivatives occur in the coefficients of the second-order 
terms of the series. Thus one of these series could be selected and the coefficients 
of the third and higher order terms could be equated to zero by a suitable cnoice 
of the third and higher order derivatives of R. In addition, in either (3.15) 
or (3.17), the coefficient of the second-order term could be made to vanish 
by a suitable choice of the constant c2k/(10R~hi), provided that the condition 
(2.17) were not thereby violated. Thus a " first-order log N model universe" 
will be defined as one in which, by a suitable choice of the derivatives of R 
combined with b3 =0, formula (3.15) becomes exactly 

(3.22) 

and a " second-order log N model universe" will be one in which the formula 
becomes exactly (b 3 *0) 

3 3b 
log N =A +3 log (Is/I)! -'E(l +b1)(h1yfc) + E 3(h 1Y/C)2. .. (3.23) 

Similarly a " first-order N model universe" would be one in which (3.17) would 
reduce exactly to 

N =lOA(Is/I)3/2{1-3(1 +b1)(h1y/c)}, .............. (3.24) 

with a corresponding definition for a second-order N model. This reduction 
of one series to a simple form does not also reduce all the other series to a finite 
number of terms. For example, in a first-order log N model (b 3 =0), though 
(3.15) has become (3.22), it does not follow that the coefficients of the terms 
of order greater than the first in (3.17) vanish also. Now suppose that, in a 
first-order log N model (3.22), it turns out that the constant b1 is approxi
mately equal to -1. Then this model will also reproduce the" -3/2 law" 
(3.21) even though the red-shifts of the sources may be large and the constant 
Ro not necessarily large. These two ways of obtaining (3.21) indicate that 
the observational determination of a " -3/2 law" for a set of sources tells us 
by itself very little either about the nature of their motions relative to the 
observer or about the curvature of space. 

In a first-order log N model, b3 =0, and so the formula for determining 
the sign of k is, by (2.14) and (3.16), 

c2k/R~=5hi{(1 +bIlqo-2 -2bi -3b1 -b2}, ...... (3.25) . 
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and then by (2.15) and (2.16) we also have 

A={(3 +5b 1)qo-9-10bi-15b l -5b2}hi, 

4nGpo={(6 +5b1)qo-9 -lObi -15b l -5b2}hi, 

(3.26) 

(3.27) 

from which the value of the cosmical constant and of the present value of the 
density could be calculated given hD bD b2, and qo' Since the density must be 
positive we must have 

(6 +5b1)qo-10bi-15b l -5b2> 9. . ......... (3.28) 

By (3.06) and (3.11), log y-2 differs from log S only by a constant, and so 
from (3.15) we find that 

d log N d log N = _ '!f. d In N 
d log S d log y-2 2 dy 

3 
=-2f1-(1 +b1)(h1yjc) +2b3(h1Y/C)2 + ... } ... (3.29) 

Thus the terms in this power series are proportional to those of the series in 
(3.15). Hence, in a first~order logNmodel using (3.06) and (3.18) also, 

d log N 3 " 
d log S -2{1-(l+b1)as(Ss/S)'}. . ............. (3.30) 

IV. COMPARISON WITH OBSERVATION 

At the present time the observational data that could be used in combination 
with .the .foregoing formulae are of a preliminary nature. Nevertheless it is 
useful for illustrative purposes to discuss them and we begin with those of Mills 
and Slee (1957) on counts of radio sources of Class II (extragalactic), which we 
reproduce in columns 1 and 2 of Table 1. As Mills and Slee point out, the 

TABLE 1 

OBSERVATIONAL DATA, CLASS II SOURCES (MILLS AND SLEE) 

Range of S No. of Sources Limit of I N 
Categol'Y (W m-2 (C/S)-I) in Range S 

(1) (2) (3) (4) 
--. 

(a) <lOx 10-26 42 7 X 10-26 311 
(b) 10- 19·9 177 10 269 
(e) 20- 39·9 68 20 92 
(d) 40- 79·9 19 40 24 
(e) 80-159·9 5 80 5 

weakest category (a) is very incomplete and the strongest category (e) is probably 
statistically deficient. In column 3 are given the lower limits of the ranges of S ; 
in the Mills and Slee catalogue, the Class II sources are, unfortunately, not 
separately indicated but, taking all sources, galactic and extragalactic, it seems 
lik;ely that 7 X 10-26 Wm-2 (C/S)-l is the lower limit for category (a) . . In column 4 
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are the cumulative totals for the sources listed in column 2. Suppose that we' 
wish to interpret the data in columns 3 and 4 by means of a first-order log N 
model. With the aid of (3.06) and (3.18) we can write (3.15)as 

A-~{8s(Ss/S)!}bI =log N -3 log (Ss/S)1 +~8.(Ss/S)!. (4.01) 

. To make use of this formula, however, a standard source must be selected and' 
this will be done in two different ways as follows. 

(a) NGO 1275 (IAU 03N4A) as Standard (Mills and Slee) 

Let it be assumed that all the Class II sources have, on the average, the 
same 0(8) and p(8) as this pair of colliding galaxies. The optical red-shift is. 
8s =0 ·018 (McVittie 1957) and the flux density measured with the Sydney 

TABLE 2 

NGC 1275 AS STANDARD (MILLS AND SLEE) , 

'Category I 
, 

8 N logN (8s/8)! 3 log (8s/8)! ~8s(8s/8)1 
--. 

(a) 7 X 1O~26 311 2·49 5·86 2·30 0'14 
(b) 10 269 2·43 4·90 2·07 0·12 
(0) 20 92 1·96 3·46 1·62 0·08 
(d) 40 24 1·38 2·45 1'17 0·06 
(e) 80 5 0·70 1·73 0·72 0·04 

instrument is Ss=240 X 10-26 W m-2 (Cjs)-I (Mills 1952). The relevant items. 
in the computations of the terms involving Sand N in (4.01) are shown. 
in Table 2. The equations of condition for A and b i are shown in Table 3. 

9ategory 

(a) 
(b) 
(0) 

(d) 
(e) 

TABLE 3 

EQUATIONS FOR A AND b1 

Equation A for b1 =-0·1 

A-0'1419b1 =0·3321 0·32 
A-0·1l87b1 =0·4782 0·47 
A -0' 0839b1 = O' 4289 0·42 
A-O· 0593b1 =0· 2723 0·27 
A-0·0420b1 =0·0252 0·02 

Aforb1 =-1'12 

0·17 
0·35 
0·33 
0·21 

-0·02 

A least squares solution of equations (a) to (d) indicates that A=0·27 and 
bi = -1,12 and therefore (4.01) becomes 

3 
logN=0'27-2'log(S/Ss)+0'003(Ss/S)1, .... (4.02) 

w:Qich is shown in graphical form as curve I in Figure 1. The physical significance' 
of this result will be discussed below. If we assume that bi = -0 '1, and that, 
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log N =1·0 corresponds to log (8s /8)=0·5 (point X of Fig. 1) then, in place of 
(4.02), we find 

3 
10gN=0·29-:2log (8/8s )-0·022(8s /8)', .... (4.03) 

which gives the curve II of Figure 1. In Figure 1 the points for categories (a) 
-to (e) are shown for the values of 8/8s deduced from the fifth column of Table 2 .. 
As was to be expected, the category (e) does not fit either curve satisfactorily. 

In view of the uncertainties in the data it would be difficult to assert that 
.either of the curves I or II is to be preferred to the other. Since, for curve I, 
0 1 lies fairly close to -1, the formula (4.02) closely mimics the" -3/2 law" 
(3.21) and indeed this is the reason, on the present interpretation, why Mills 

z 

" o 
.J 

3'0 

~~"~75~-_~1~'5~---L----_~1~'0~---L----_~0~'5~---L----~0 
LOG (s/S5) 

Fig. I.-Plot of log N against log (S/Ss): Sydney catalogue with 
NGC 1275 as standard source. 

"and Slee regard their data as in accord with this law. But from the physical 
point of view.the two curves have widely different implications. 'Considering 
-curve II first, for which b1 = -0 ·1, it is to be noticed that, if there are no secular 
changes in the radiative properties of the sources, then in (3.02) and (3.03), 
o and P are simply the con~tants 0 0 and Po. Further, by (3.07), (3.08), and 
(3.09), it follows that 

b1 =b2 =Po/2, .................. (4.04) 

and therefore, by (3.04), 0>b 1 >-0·2. Thus curve II, or formula (4.03), 
represents the case of no secular changes in the radiative properties of the sources. 
'The condition (3.28) for the positiveness of the density is verified for the range 
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.o>b1>-0·2and b1=b2, provided that qo>I·5 .. The space-curvature constant 
k has an indeterminate value in this model, since we have from (3.25) 

c2k/R~=5hi(0 '8qo-l'28), if b1 =b2= ~O ·2, 
=5hi(qo-2), if b1 =b2 =0, 

and therefore k depends critically on the value of qo that is adopted, in the range 
1· 5 <qo <5· 5. Assuming that 3 can be calculated from the first approximation 
to (3.20), it follows that the red-shUt for the weakest sources (a) of Table 2 is 
of the order of 0 '1, i.e. that their distances lie between that of the Corona Borealis 
(8=0'07) and of the Bootes cluster (8=0'13) of galaxies. 

Turning next to curve I, or formula (4.02), it is no longer possible to avoid 
the hypothesis of secular changes, since (4~04) is inconsistent with (3.04) 
when b 1 = -1 ,12. The simplest interpretation is now to assume that P is 
independent of 8, and therefore equal to Po, and that 0 is a linear function of ~. 
This means that, in (3.02) and (3.03) . 

0 1 *0, On=O (n=2, 3, 4,. .), 
Pn=O (n=l, 2, 3,. .), 

and therefore, by (3.07), (3.08), and (3.09), 

b1=(p'0-0I)/2, b2=(Po-Oi)/2. . ....... (4.05) 

For the sake of definiteness, let Po have the mean value for the range (3.04), 
namely Po=-0·2. Then b1=-1'12 and (4.05) give_ 

01=2'04, b2=-2·18. . ........... (4.06) 
Thus 

and therefore, even for 8=0'1, 0/00 is 1·2 which would mean that even the 
,strongest of the sources of Table 2 were, at the moment their radiation left them, 
emitting some 20 percent. more powerfully than isNGC 1275 at present. Since 
the time of travel of the radiation from a source for which 8=0'1 is of the order 
·of 400 million years, it would be necessary to suppose that colliding galaxies 
()f the type of NGC 1275 were subject to a very rapid-cosmically speaking
attenuation in their radiative properties. 

The condition (3.28) for b1 = -1'12, b2= -2 ·18 is satisfied for any positive 
.qo; the space-curvature formula (3.25) gives . 

c2k/R~=5hi( -0 ·12qo+l·03), 

a result which suggests, rather inconclusively, tha't k is positive for qo lying in 
the range 1'5<qo<5'5, so that space is spherical. 

The rapid rate of diminution in the strength of a source implied by curve.I 
(formula (4.02)) seems rather implausible; until observation Q-efinitely disproves 
it, it would be better to accept curve II (formula (4.03)) in spite of the fact that 
it departs more from the" -3/2 law" than does the other curve. But secular 
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changes in radiative properties are avoided and all sources are regarded as 
similar to NGC 1275. All the 311 sources are relatively close to our GalaxYr 
even those of category (a) being less remote than is the Bootes cluster of galaxies. 
If they are all indeed NGC 1275 type galaxies it is strange that so few of them 
have been identified with optical objects. 

(b) Cygnu8 A (IA U 19N4A) a8 8tandard (Mill8 and 8Zee) 

Alternatively let it be assumed that the radio sources of Table 1 have, 
on the average, the same C(!3) and p(!3) as the pair of colliding galaxies called 
Cygnus A, for which (McVittie 1957; Pawsey, personal communication 1957} 

8 s =19,000 X 10-26 W m-2 (c/s)-I, 
as=o '056, 

and that we again use a first-order log N model. We adopt (4.01) again and 
this assumes that (3.18) is still a valid approximation for h1y/c. Then Tables 2: 
and 3 are replaced by Tables 4' and 5 respectively_ 

! 

Category S 

-.---
(a) 7 X 10-26 

(b) 10 
(e) 20 
(d) 40 
(e) 80 

TABLE 4 
CYGNUS A AS STANDARD (MILLS AND SLEE) 

I N 

I 31I 
269 

92 
24 

I 5 
I 

log N (S)S)li 

I 2·49 52·10 
I 

I 
2·43 43·59 
1·96 30·82 

I 1·38 21·79 
I 0·70 15·41 

I 

TABLE 5 
EQUATIONS FOR A AND b, 

I 
3 log (SsIS)li 

5·15 
4·92 
4·47 
4·01 
3·56 

3 1 li'6s(S)S) 2 

3·80 
3·18 
2·25 
1·59 

I 
1·12 

__ ca_t_e_go_r_y_I ____ E_q_U_a._ti_Ol_l ___ 1 A for b,=-O·l Aforb,=-1·07 

A-3·801b,=+1·143 +0·76 -2,92 (a) 

(b) 
(e) 

(d) 
(e) 

A-3·180b,=+0·692 +0·37 -2·71 
A-2·248b,=-0·2.55 -0,48 -2·66 
A-l·590b,=-1·045 -1·20 -2·75 
A-I' 124b,=-1' 740 -1·85 -2·94 

A least squares solution gives A=-2'8, b1 =-1'07 and therefore (4.01) 
becomes 

. 3 
log N = -2 ·8- 2" log (S/8s ) +0 ·005(8s /8)'2. . ... (4.07) 

If we choose b1 =-0·1 and make logN=0'75 at log (8/8s )=-2·375 (point X 
on Fig. 2), then (4.01) reads 

log N = -1'75- ~log (8/8,}-0 ·066(8s18)t. (4.08) 
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It is clear from Figure 2 that curve I, which represents' (4.07), fits the data, but 
that curve II (formula (4.08)) is quite unacceptable. Thus secular changes 
,cannot now be avoided. Adopting the method that led up to (4.06) through 
(4.05), we now find that . 

0 1 =1'94, b2=-1·98, ............ (4.09) 

from which it is easy to verify that (3.28) is satisfied for all positive qo· From 
(3.25) we obtain 

o2k/~= -5h~(0 ·07qo+0 ,10), 

a result which, again with very low weight, suggests that k is negative and that 
;space is hyperbolic. The values of (8s /8)1 in Table 4 are now so large that the 

z 

9 

~L3'-75--~~--~----~----~----~2~5~--~--~-2'O 

Fig. 2.-Plot of log N against log (SISs ): Sydney catalogue with 
Cygnus A as standard source. 

red-shifts can no longer be calculated from (3.20); higher order terms would 
have to be taken into account. However, if in this formula we set ~s=O '056, 
b1 =-1'07, qo=2'3, and (8s/8)!=5, we find ~=0'36, which almost equals the 
greatest red-shift (~=O ,4) detected by Baum (1957) by photoelectric means. 
But even for the strongest sources (e) of Table 4, (8s /8)i is over three times as 
large as that needed to give ~=O ·36. Thus one may speculate that the red-shift 
for these sources would be of the order of unity. With this interpretation of 
the data it is not to be expected that optical identifications of the radio sources 
would have been made. Since, by (4.09), 

O(~)=Oo(l +1'94~), 

it follows that for ~=1'0, 0/00 is nearly equal to three. Thus it would seem 
that even the strongest sources of Table 4 must be assumed to have been radiating, 
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at the time of emission of the radiation by which they are now observed, nearly 
three times as strongly as is Cygnus A. Hence we have in an acuter form the 
situation that, confronted us when NGC 1275 was taken as standard source and 
Curve I of Figure 1 was taken as representing the data. 

(0) NGC 1275 (IA U 03N 4A) as 8tandard (8hakcshaft et al.) 

In the Cambridge catalogue (Shakeshaft ct al. 1955) the radio sources that 
are reckoned to be extragalactic are also not individually indicated. But it is 
possible to identify them by the prescription given, viz. they are the radio 
sources less than 20' in angular diameter and lying outside the band of ±12° 
in galactic latitude. The present writer's analysis of the catalogue leads to 
the results displayed in Table 6 for the indicated limits of 8 and with the flux 

TABLE 6 

NGC 1275 AS STANDARD (SHAKESHAFT ET AL.) 

I 

Category 8 N I logN (8sI8) 1;. 3 log (8sI8)1;. 
3 -a (818)" E S S 

-. 

(a) 7 X 10-26 1601 3·20 4·80 2·043 0·116 
(b) 20 ll08 3·04 2·84 1·359 0·069 
(c) 40 257 2·41 2·01 0·907 0·049 
(d) 80 29 I 1·46 1·42 0·456 0·034 
(e) 160 5 

I 
0·70 1·00 0·004 0·024 

I 

density 8 s =161 X 10-26 W m-2(cjs)-1 obtained with the Cambridge instrument 
for NGC 1275. The red-shift of this standard source is still, of course, 
as=o ·018. The equations of condition for A and bl) assuming that the data in 
Table 6 can be represented by (4.01), are 

(a) A-0'1162b1=1'2780, 
(b) A-0·0687b1=1·7545, 
(0) A -0 '0486b1 =1·5514, 
(d) A -0 ·0344b1 =1'0412, 
(c) A-0·0243b1=0·7192. 

A least squares solution gives 

A=0'97, b1=-5'06, 

and therefore (4.01) becomes 

............ (4.10) 

log N=0'97-~log (8/8s)+0·098(8s/8)1;., ...... (4.11) 

the graph of which is curve I in Figure 3. The observational points for the five 
categories of Table 6 are also shown on this figure. Curve II of Figure 3 was 
obtained by inspection, ignoring the observational point for category (a); 
it has 

A=0·62, b1 = -12'46, ......... , .. (4.12) 
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and its equation is 

log N=O ,62- ~ log (S/Ss) +0 ·277(SsfS)i. . ..... (4.13) 

The enormous negative values of bl in (4.10) and· (4.12) show that the 
Cambridge data imply, on the present interpretation, that the strength of the 
radio sources at emission greatly exceeds that of NGC 1275. If it is permissible 
to use (3.20) to calculate the red shift with 

b l =-5'06, qo=2'3, as =0'018, 

then a for category (a) again turns out to be of the order of 0·1 and we thus have 
even more rapid secular variations in radiative properties than were found in 

z 

" 9 

3'0 

2'0 

1'0 

0~~'7~5--~_~I~'5~---L--~_~I'~O~---L----_~O'~5-----L----~O 
LOG (s/ss) 

Fig. 3.-Plot of log N against log (SIS,.): Cambridge catalogue with 
NGC 1275 as standard source. 

Section IV (a) above. It hardly seems necessary to discuss the Cambridge 
data with Cygnus A as standard source, since still smaller values of bl would 
be expected to arise. 

The upshot of this discussion of the Sydney and the Cambridge data is 
that, . if a first-order log N model is used together with the hypothesis that the 
radio sources were radiating more powerfully in the past than they are now 
doing, the former can be made to fit the" -3/2 law". If the standard source 
is no more powerful than is NGC 1275 at present, the hypothesis of intensified 
radiation in the past can perhaps be discarded (curve II, Fig. 1). But the 
hypothesis must be retained in an acute form for the Cambridge data, even i£ 
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NGC 1275 is the standard source. Indeed it is better to conclude that the 
present theory is hardly applicable to the Cambridge results at all. 

It is also worth remarking that, when bl < -1, equation (3.30) indicates 
. that the slope of the log N versus log S curve decreases from the value -3/2 

as soon as (Ss/S)i becomes sufficiently large. This effect is barely noticeable 
for the curves in Figure 3 and is much less pronounced than for the curve drawn 
by Ryle and Scheuer (1955) through the observational points of Figure 3. This 
·curve has a slope of about -1,5 for the strongest, and of -2·5 for the weakest, 
.sources. 

V.ALTERNATIVE TREATMENTS 

In the present paper the observational fact that the counts of radio sources 
follow a " -3/2 law" has been interpreted by assuming that the space-density 
parameter IX of (2.08) is constant but that secular changes in the radiative 
properties of the sources are taking place. The following variations on the 
treatment suggest themselves. 

(a) The space-density of radio sources is determined by the parameter IX 

in (2.08). This must be distinguished from the gravitational density.of matter 
which, for a model universe (2.01), is given by the quantity p of (2.02) .. The 
latter is a function of the time t; the former has been assumed to be a constant. 
But it would be possible to suppose that IX also was a function of t and to include 
lX(t) under the sign of integration in (2.08). If this were done, each value of t 
in the integrand of (2.08) would be related to a corresponding r by the null
geodesic equation (2.04). Using the method of expansions for the function 
lX(t) in the same way as has been done for R(t) (GRC Section 9.1), and then 
integrating the right-hand side of (2.08), a series expansion for N analogous to 
(3.17) would be obtained. The functions C and pin (3.01) could be regarded 
either as constant or as variable with time. A time-varying IX would thus 
include the possibility that collisions between galaxies-assuming that the radio 
sources are indeed colliding galaxies-were more frequent in the past than they 
are at present. 

(b) Assuming again that IX is independent of t, it would be desirable to 
take into account the dispersion in absolute flux density between the radio 
sources. The analogy here is with the dispersion in the absolute magnitudes, 
M, of galaxies. Since the absolute flux density of a sufficient number of radio 
sources is at present unknown, the analogue of the optical luminosity function 
is not available. However, some idea of what would happen if it were might 
be reached in the following way. Equation (3.15) can also be written in the 
form 

where 

A' =log (47t1X/3QR~), 

~and y is given by (3.11 ). Now suppose that the number of radio sources is not 
very large, as in the Mills and Slee catalogue, for example, in which there are 
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311. Assignfug the numbers 1 Mp11 to the sources it"would be possible with 
the aid of a table of random numbers to. arrange them in a randoIri sequence, 
e.g. 123, 233, 32, 111, 301,,7,9, 302, 221, 17, ... As an illustration,' suppose 
we assert arbitrarily that there are three tim!'lS as many NGO 1275 SOl;lI'CeS as 
there are Oygnus A sources. Then we could regard sources 123, 301, 17, . • . 
as the Oygnus A sources whilst sources 233, 32, 111, 79, 302, 221,. . . would 
be NGO 1275 sources. In each clasl;1, the y for each source could be calculated 
by (3.lt) assumfug that Is and fls for the standard source of the class were known, 
and that its' as were small enough to be neglected fu (3.11): OouI;ltfugcu:mulative' 
totals of sources of both classes to suitable limits of y, the resultfug data could be 
interpreted fu terms of (5.01). The process could be repeated for various pro
portions of types of sources and with more than two standard sources. 

A weakness in a treatment of this kfud lies in the fact that the lumfuosity
distancesDs of the standard sources must be known. Whereas positive state
ments regardfug the distances of, for instance, NGO 1275 and Oygnus A are to 
be found fu the literature (e.g. Shakeshaft 1954), these values do not stand up 
to critical analysis (McVittie 1957). We may regard ourselves as fortunate if 
the uncertafuty in the distances is less than a factor of two. The same objection 
applies to the determfuation of the proportions of standard sources of different 
types by estimates depending on the number of such sources per cubic parsec. 
Not only are the distances uncertafu but the nature of space is also unknown, 
a spherical space containfug a lesser volume for a given luminosity-distance 
than does a hyperbolic. 

Though methods (a) and (b) could be applied to the present data if the 
labour of the algebraic and numerical computations involved was thought to 
be worth while, such extensive work seems to be premature. .An overridfug 
preliminary is the harmonizfug of the Sydney and Oambridge catalogues which, 
as the results of Section IV have shown, contain discrepancies so important 
that the two catalogues cannot be used together. Until this question is settled 
it seems profitless to embark on further elaborations of the theory given in the 
present paper. 
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