COUPLING OF NUCLEAR SPINS IN MOLECULES
By D. W. POSENER*
[Manuscript received June 19, 1957]

Summary

The theory of quadrupole, magnetic dipole, and dipole-dipole interactions of nuclear
spins with molecular rotation is generalized for any number of nuclear spins in any free
molecule which has no resultant electronic angular momentum.

Calculation of the matrix elements of the Hamiltonian is discussed in detail, and
the cases of one and two nuclear spins are dealt with explicitly.

I. INTRODUCTION

First-order matrix elements for the coupling of two similar quadrupolar
nuclei in a molecule have been derived by Foley (1947) for the diatomic case,
and subsequently by Myers and Gwinn (1952) and Robinson and Cornwell
(1953) for more general molecules. Cases of grossly unequal coupling have been
considered by Bardeen and Townes (1948a, 1948b) and by Townes and Schawlow
(1955, Section 6-6), although the appropriate matrix elements have not been
given explicitly. '

Bersohn (1950) has given the matrix elements for the quadrupolar coupling
of three nuclei, and his methods, which are applicable to any number of nuclei,
are described in his thesis (Bersohn 1949).

Recent advances in high-resolution microwave spectroscopy have drawn
more attention to the small magnetic interactions of nuclei (White 1955). Gunther-
Mohr, Townes, and Van Vleck (1954) and Gordon (1955) have described the
coupling of three hydrogen spins and a quadrupolar nucleus (nitrogen) in
ammonia ; Okaya (1956) has considered Cz, molecules with two 7% off-axis
spins and one axial quadrupolar nucleus; and Herrmann (1956) has treated
the experimental problems of ND, using some theorefical results derived by
Hadley (1955), whose work has not been accessible to the present writer.
Although these cases are of increasing complexity, symmetry properties of the
particular molecular types so far considered help to provide some simplification
of the problems, and the works quoted cannot be easily generalized.

In the following account we will deal with an arbitrary free molecule with
no resultant electronic angular momentum, but containing » nuclei each possessing
spin, and we will give the complete matrix elements of the major interactions.
The results are derived for quadrupolar spins, but can be easily specialized to
cases where some of the spins are 37 or zero.

In most problems of practical interest only a very few of the terms given
need to be considered because some terms contribute to the energy only in
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higher order of approximation, while in many cases some of the matrix elements
vanish identically because of symmetry properties of the molecule. Because
of their wide variety symmetry considerations peculiar to particular types of
molecules will not be specially discussed here, although they will usually be of
great importance in further simplifying the calculations in a given problem.
We refer to some of the papers already quoted for discussions of this kind.

The results for one and for two nuclei will be given explicitly as simple
applications of the general theory.

II. THE HAMILTONIAN

We assume the molecule to be subject to no external fields and to have no
resultant electronic orbital or spin angular momentum, so that electron spins
are paired and their effects may usually be neglected (as demonstrated, for
instance, by Gunther-Mohr, Townes, and Van Vleck (1954)). In the rigid
rotor approximation the Hamiltonian for rotation and for the major spin hyperfine
interactions is then (Van Vleck 1951 ; Gunther-Mohr, Townes, and Van Vleck
1954) :

H=3%G,J,—L,)> —|—(—3‘-;’1"22']1*503(r,.-rk) X [vi—(l +Z"%’°) vk] 9.1,
g ki g g

4 &

— My
~ Py, 2Z177d3(rk—‘rl) [(1+_—)Vk ] "9l
1#k 9 M

—I—p.%,z Zrlc_lg{gklk‘gzll*?”'ﬁ (91 (xp—1)][g,1," (r,—1))]}

RV, BV, &V,
= 12( ka N %;25 - 'ay—k)fpk(%,c —a2—y2)dv,. ... (1)

where J is the total angular momentum exclusive of nuclear spin, L is the
electronic orbital angular momentum, and we measure angular momentum in
units of 7#. The G are rotation constants, with g referring to principal inertial
axes z, y, and 2 ﬁxed in the molecule. The sum over % is over the electrons,
whose charges are —e¢ and whose positions and velocities are given by r; and v,
respectively, referred to the molecular centre of mass. Indices k and [ are used
similarly for the # nuclei, which have magnetic moments g,u,, masses M,,
charges Z,, spins I;, and nuclear charge densities p,. The proton mass is M,
uy is the nuclear magneton, ¢ is the velocity of light, and r;, is an abbreviation
for | r;—r,|. The electrostatic potential at the kth nucleus due to all molecular
charges outside the nuclear region is V,, and xz, 9%, and 2} are coordinates fixed
in the kth nucleus with the 2; direction along the nuclear axis of symmetry.

The first term in the Hamiltonian is the energy of rigid rotation, the second
term represents the energy of interaction of nuclear magnetic dipoles with
currents due to electron motion, the third term is the energy of interaction of
nuclear dipoles with currents due to nuclear motion (molecular rotation), the
fourth term is the magnetic dipole-dipole interaction of the nuclei with one
another, and the last term is the energy of nuclear quadrupolar interaction
with the molecular electrostatic fields.
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Although the non-rotating molecule possesses zero total electron orbital
angular momentum, rotational interactions excite higher electronic states.
When perturbation theory is used to take the more important interactions of
these states into account (see, for example, Gunther-Mohr, Townes, and Van Vleck
1954), the effective Hamiltonian for the nuclear spin.interactions can be written
in the form :

H =§[a';0(jkx‘]x +I—kny +jkz']z) +ak(2l-szz '-'jkax _I-kny)
+bk(jkax _jkny) +0k(jkay +jkny) +dk(I_kaz +I—kz']x)
+ek(jksz +I—szy)] +§' lgk[ag'd)(zlkz‘llz - klex _jkyIly)
+Bgd)(jkxilx _jkyjly) +‘Yg'd)(ikxily +I_k1filx)
_{_Sgd)(jkxllz +Iklex) -l_egd)(lkyllz +Ikzlly)]
Lo 2Tk — T — Ty + Bl Tie —Tiy) velDel iy + 1 )
A8 LA L) oD LT D)) e (2)
For convenience in calculation everything in equation (2) is referred to the

molecule-fixed system of axes, and for consistent commutation relations the

spin angular momenta I, have been replaced by their reverses I, = —I, (Van Vleck
1951). The coefficients in equation (2) are: - ‘
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—i—lEkZ,rk“,S{Sgg'(rk—r,) ' [(1 +%§y%:) r,c—r,}
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in which J,,- is the Kronecker delta, p specifies an excited electronic state of
energy F,, and the last sum indicated in M,(,’;? is to be taken over all values of p
except p=0. (ry), is short for (r,—r,),. The functions of (r,,), and of Vf,ﬁ?,
together with the other averages shown explicitly here and later, are to be
averaged over the ground electronic and vibrational state of the molecule.

In most practical cases a large number of these coefficients vanish because
-of molecular symmetry, or can be neglected since they contribute to the energy
only in higher order.

ITI. ADDITION OF ANGULAR MOMENTA

‘Bersohn (1949), using the tensor procedure of Racah (1942), has discussed
a general method for calculating the matrix elements for the quadrupole coupling
of a number of nuclei in a molecule. Condon and Shortley (1953) (hereafter
referred to as TAS), following Guttinger and Pauli (1931), have derived the
matrix elements of two commuting angular momenta. This section will show
that the extension of the methods of TAS to any number of commuting angular
momenta is not as formidable as it might first appear, and the results are in some
cages rather simpler to use than those of Bersohn.

Since the problem of addition of a number of commuting angular momenta
is rather general the notation of TAS will be followed as far as possible, with
suitable generalizations and with some of the functions introduced by Van Vleck
(1951), and as a basis for our subsequent discussion we shall start by reviewing
the appropriate results given in TAS.

(a) Review of TAS Results
In a representation which diagonalizes the square of the total angular
momentum J and its component J, along some space-fixed Z-axis, the matrix
elements of the components of J are off-diagonal in the quantum number m
only, and are given by TAS, Section 23:

(ojm | Iy , oj m+1)=3%f(j, +m),

(ajm | Iy | of m4-1)=4%if(4,4m), + ... .... 4)
. (“Jm l JZ' d']m) =m,
where

fGym)=+/A{(G—m)(j+m+1)},  ..oooiil.n. (5)
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i=+/(—1), and we have used « to represent the totality of unspecified quantum
numbers.

If T is a vector operator which obeys the commutation rule TAS 81, the
dependence on m of the components of T is given by TAS 9311 : '

(ajm | Ty | o j+1m£1)=T HejiTie’ j+1)g(j, Fm—2), )
(ajm | Ty | o jm£1)=}(a: Tie’ )f(j, £m),
(ajm | Ty | o« j—1m 1) = £3(ojiTic’ j—1)g(j, £m),
(ajm | Ty | o j'm')= Li(ojm | Ty | o’ j'm’), roe (6)
(ojm | Ty | o’ j+1m)=(ajiTia’ j+1)/{(j +1)2—m?},
(ajm | Ty | o jm)=(aj:Tic’ j)m,
(ajm | T | &' j—1 m)=(ajiTie’ j—1)4/(j2—m?),

where
906, m)=+/{(—m)(j—m—1)}, ............ (7)

and (ajiTia’ §’) is independent of m. The equations (6) show that the matrix

of T can be factored into submatrices, one of which contains the whole dependence

on the quantum number m. 4
It Joddo=d, (8)

and J; and J, commute, TAS 103 shows that the depéndence onm of J; and J,

is given by the equations (6), and the submatrices (jiJ;ij’) and (jiJ,j’) are as

shown in Table 1, in which

PGy )@y 1))
eUn i) == S A —n@j 11}’

.o R(jy])

and
P(jy, )= —Ja i) +ia+j1+1),
QU )=z +j1 = +i.—j1+1), e (10)
E(31, ) =j(5+1) —jalJa+1) +2(j2 +1)-

Functions of (j,, j) are obtained by interchanging j, and j, throughout. Also,

oy )=y J)e e eerae e (11)

Here and subsequently we show only two variables (quantum numbers) explicitly
since the third is always defined by the coupling scheme (such as equations (8)
and (15)) ; we will use s and ¢ to denote a general pair of such quantum numbers.

For brevity we frequently omit diagonal quantum numbers from the matrix
elements.

If P is any vector operator which commutes with J,, but obeys TAS 8%1
with respect to J, then by TAS 113 the dependence of the components of P on m
is given by the equations (6), and the dependence of (ajiPia’j') on j may also
be factored out :

(wfafiPio’ foj') = (o5 Pia 2)(Go | Joi')y < vn e (12)
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where the submatrix (j,j | jzj’) is gwen by Table 2 with s and ¢ replaced by 32
and j. Tt will be noticed that (st | s ') is a Hermitian matrix, and this property
of the matrices will be used later in other results when for conciseness not all

TABLE 1
THE MATRICES (jiJ1;j") AND (jiJ414")

i j+1 j —1
(G:39) —o(jp i +1) 001, 9) —dolin )
(5:2:5") 30(js j+1) 0(42- ) 30(J2 1)

TaBLE 2
THE MATRIX (st | 8" t')
t/
t+1 12 t—1
8’

s+1 1E(s+1,¢+1) n(s+1, 1)/26(+1) H(s+1, t—1)

s 3o(s, t+1) 0(s, t) $o(s, t)
s—1 %C(s’ t) 7](8? t)lzt(t_l'l) %5(8’ t)

possible matrix elements will be written down explicitly. In Table 2 the new
funetions are :
E(s t)_'\/{P(S, t)P(87 t_l)}
T AR Y
)=+/{P(s,)Q(s, )}, |+ ...... (13)

es, )= — Y15 DO, t+1)}
’ t+1)v/{(2t+1)(2t+3)}

(b) Matriz Elements of Jx where ZJx=J
k

- We now consider the addition of »-+1 commuting angular momenta :

and .llet us add .them together one at a time, deﬁning n—1 ‘ intermediate ”’
quantum numbers according to :

A Jn ‘I"Jn—l:Jn—l,m
T, e o S (15)

Jl’n+J0=J, J
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~where J can be considered to be short for J,,. Then, since all the J, commute,
we can put into equation (12)

J I IPT Jirtndindi (k) ovvennnn.. (16)

and it follows that the matrix elements of the components of J, are given by
the equations (6) together with

(Jr,n Jb—1,m - ~jl,nj§Jk§j;c,njl'c—1,n° . JI,MJ')
=(jk:n§f]k§jl;,n)(jk,njk—l,nIj;c,nj}c—l,n)- - (Jrad [J1,ad)s - (X7)
where diagonal quantum numbers (such a8 ji+1, jx) jt+1,2, - - -) have been omitted,
and the elements (j,njx—1,x | ji njt—1,») are given in Table 2.
The factors (jx,aiyji,») are obtained from Table 1 on putting

J I T Jer1,0dk,n (B#£ER), oo, (18)
~which is consistent with equation (16), and are :

(G, mid Gk, n +1) = — 3Gy Jit,n +1), ‘
(jk,n?Jkgjk,n)ze(jm Jem)y (k#m) ceee (19)
(9, i ki 96, n—1) = — 3 (fgs Jit,n)y
while for k=mn,
(jn—l,niJnijn—l,n‘l‘l):%@(jm Jn—1,n-+1),
(jn——l,nanijn—l,n)=e(jmjn—1,n)y (k=n) oo (20)
(Jn—1, 0 ijn—1,0—1) =3 (f s fn—1,)-

(¢) Matriz Elements of 2J12<,Z—J12{,X—J12;,Y ete.
If we use the equations (6) to express the dependence on m, it turns out that
the matrices of 2J,2G,Z—J%, X—J%, y ete. can also be factored into submatrices :

(ogm | 207, z—J% x =Tk ¥ | &' j'm')=(o || TE|| o« §)jm || §' ") Smms
(ogm | Tt x—Th v | & §'m)=(aj || I3 || & 5)(jm || § m") 8t mac2,
(ajm | Ji, xTu, v +Tk, ¥e,x | & §'m')= Hi(ag || Tz || & ) (Gm || ' m)Sm m2,
(ojm | Tk, xTn,z+Tk, 2Tk, x | & §'m')=(of || I3 || o’ §')(jm || §’ M) 3w m 1,
(ogjm | Ja, ¥ e,z 4Tk, 2Tk, % | o' §'m')= Lo || Ji || o §)m || 5 m0') 3 ma,
i (21)
where j'=j, j+1, j+2, m'=m, m 41, m+2, and (jm || j'm’) is given in Table 3,
from which the elements (jm || j+1m’) and (jm || j42m’') may be obtained by
use of the Hermitian property of the matrix.
In conventional notation the matrix elements of the product of two operators

are given by
(| TU| & )=2(a|T|a") (" | U] o). ..ovnnns (22)
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In the submatrices (aj || J% || o j’) the double bar is used as an abbreviation
for a special kind of summation which we define by :

2B | T | BB | U | o/B)—(of | TU | w'B),
(aB || TU ||« B')= it B¢,
(@B | TU | ' B), if BB,

The double bar is also used in (jm || j' m’) because it results from a summation
very similar to (23).

TABLE 3

THE MATRIX (jm || j*m’)

m m-+1 m-4-2
J 3m?—j(j+1) 32m L 1)f (5, £m) 110G, £m)f(j, m-+1)
Jj—1 3my/(j*—m?) 3G £2m—+1)g(4, £m) 5705, £m)g(j—1, £m)
Jj—2 3g9(j, m)g(j, —m) +9(j, Tm+1)v/ (52—m?) 39(J, £m)g(j, +m+-2)

With this notation we can write generally :

(Gendt—tn - - - Ju,njm | 2052 —Jk x =T, v | foundi—1,n - - - Gi,nd" M)
=(tnde—t,n -« Jund | Je |l Geondi—tin -« - J10d)Gm || 5 ) Smm
:(jk,njlc——l,n .. .jl,n Il J% ” .71’0, nj;c—l,n .. -j'l,n)(jl,"j H ]i, n],)(Jm “ j, ml)gm’m
=(tn || T2 11 it ) Gt ne—1,n || Gindio—t,n) + -+« (G 1] 31,05") (G0 1] 57 0 Swimy
.............. (24)
-and similarly, from the equations (21), for the other functions of the components
of J,. The elements of the matrices (ji,njk—1,x || jk njk—1,») €bc. are given in
Table 4, in which
9(87 t)={3R(S, t)[R(S’ 1) —1] —4s(s +1)8(¢ +1)}(D(t)a
x(8, ) =[00(s, 1) +0(s, t—1)] (s, ?),
d(s, t)=4o(s, t)cp(s, t—1),
[t(t+2)]_17 if t’=t+1a
Ot')=A [28 +1)(2t —1)(2t +3)] 7Y, if t'=t,
[E—1)(+1)]7Y, if ¢'=t—1.

.. (25)

Using equations (19), (20), and (23),

Gan || I3 1| dt,n) =0 (s Gt m),
(jk,ﬂ ” lec “ jk,n_1)= ‘%X(jky jk,n)’ (k¢”) .. (26)
(oo || TE || Jt,n—2) =3 G, ),
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and
(Jn-1,n ” J72t ” In=1,2)=p(Jns Jn-1,n),
(jn—l,n ” Jfr2z ” jn—l,n*1)=%X(jm jn—l,n)y (k:”) .. (27)
(Jn—1,n ” Jrzb ” jn—l,n—2):%‘-p(jm Ju—1,n)-

The simplification of some of the algebra occurring in the calculations leading
to equation (24) is assisted by use of the identity (11) together with :

P(s+q, t)=P(s, t+q),
Q(S‘ +4,1)=0Q(s, t—q),
p(s, 1)=0%(s, t) —1*(s, t+1) —1¢3(s, ?)
= —72(s+1, ¢)/4¢3(¢+1)2 +1E2(s +1, ¢ +1) +-1C3(s +1, ¢ —1)

= —n%(s, 1)/48%(t +1)* +-1E3(s, 1) +4C%(s, 1)-

TABLE 4

THE MATRIX (st || s t')

v
t t—1 t—2
s :

s+2 3n(8+1,t)n(s;|—2,t)(l)(t) (s +2,t— (s +1,HPE—1) (s +1,t-1)¢(s +2,1—2)

s+1 3n(s+1,8)[R(s, ) +s1D@) 3(s+1,t—1)[R(s, 1) +s¢+1)1DE—1) 1o(s, (s +1,t—2)
s o(s,t) 3x(s, 8) (s, t)

s—1 3n(s, D[ R(s—1,5)+(s—1)1D()|  1&(s, HIR(s, ) — (s + 1) +1)IDE—1) 1o(s, HE(s, t—1)

5—2 3n(s, tyn(s —1,)D(?) (s, ms—1,t—1)DE-1) - 1E(s, E(s—1,—1)

(d) Maitrie Elements Of 2Jk’ ZJZ —Jk, XJX —Jk’ YJY ete.
Using the matrix elements (4) and (17), it follows easily that

(JrnJb—1,m - « - Jr,njm | 2Jx, 20z —Tk, xd x — Tk, ¥J¥ | Jo,nft—1.n - - JL,nj’ M)
=(r,nfo—1,0 - - «Jrnd gk nfk—1,m -« - 31 ad )M || § M) Smm
=(]k,an]k, n)(jk,njk—l,n | ];c, nﬁc—l,n) LA (jl,nj |Ji,n71)(3m ” j’ ml)sm’ma

............ (29)
with the factors already defined, and with ji, ,=jk, n, j&,»n+1, ete.

The other functions of the components of J, have matrix elements differing
only in their dependence on j and m, as in equation (21).

(6) Matriz Elements Of 2Jk, ZJI, VA —Jk’ XJI, X —Jk, YJI, v ete. (1> k)
These cross-product terms have matrix elements of the form

(jz,n. . ]k,n . jml 2Jk,le,z——Jk,XJl,x—Jk,YJz,f[jl’,n. . j;;,n . .j"m')
=0tn- o Jene o GHTI M dine o o - 5)0Gm ]| J M) Swm
=(]l,ng];, n)(jl,njl—l,n |jl’,njl,—1,n) L (]k,an.?;c,n) X

Gttt || Foondit.n) -+« Gityod || GrndYim || 5 m)Suim. - (30)
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In the particular case k=n—1 and l=n we get

(jn—l,n .. JJ1,ajm I 2Jn-1,2 Jn,Z—Jn—l,XJn,X—Jn—l,YJn,Y Ij;r,—l,n .. ]i, nj' m’)
=(jn—1,n ” Jn—lJ,, ” j;c—l, n)(jn—l, njn—Z,n H j;z—l,n]‘;@—-z, n) e . X
G nd 1190 md )G ] G700 )ty « v e eeee e (31)
‘with
(Jn—1,n “ Ju-1d, ” jn—l,n)za(jn—lajn—l,n)—P(jn—lajn—-l,n)y
(jn—l,n ” Jn—lJ,. || jn-l,n—l)z _%cp(jn—b jn—l,n) "l‘%'X(j%—la jn—-l, n),
(jn—l,n ” Jn-—lJ,, || jﬂ—1,n—2)= *%@(jn—l,jn—l,n)~

When I=Fk-+1#n there also results

(Je+1,m . « Jm | 2dg,2dk41,2— Ik, xT6+1, x —I b, ¥Jb+1,7 | Jott,m - - -§' M)
=(Jr+1, 0 k+1: k41, 0) [Jo+1, 258, || Jo+1, 0k, ] X
(e nJk—1,n || Jondk—1,0) -+« (Gr,ad [| J1, 03 )(Gm || §' M) Smmy . (33)
With [Je+1,nJkn || Jo+1,nJk ] given in Table 5.

TABLE 5

THE MATRIX [ 11, nJk, n || Sk +1, nik, n]

T .
< Jk.m . . .
Jig,n Jie,n—1 Jk,n—2

j;c+1, n \

—N(Jk+1,n+ 15 Jg,n) X

[BR(jk+1,n Ik, n) $(k+1,n+1 Jp, n—1) X
Je+1,n+1 +3(k+1,2+1) {1—[R(jk +1,n: Ik, %) —30k+1,n+ 1 Jp,n—2) X
—4j, n(Jk,n+1)1X +k+1,n0k, n +1)1X Pk +1, 15 Ik, n)
D(jx,n) O(jg,n—1)}
JE+1,n 00k 41, s Ik, n) © 300k 41, 0 JE, 1) —3(ix 41, 05 Jk, )
—0(k+1, ns Jk, n) — Uk +1,n Jk, n)

—N(Jk+1, ns Jk, n) X

[BR(jx+1,2n—1s &, n) 380k 41, 0 T, ) X
Je+1,n—1 +3k+1,n {1—[R(Jk+1,n Jk,n) —2E(k+1, 00 Tk, n) X
—4jg, n(Jk,n+1)1X —(r+1, 0+ D0k, n+1)] Pk +1,n—1s Jg, n—1)
D(j, ) X O(jg, n—1)}

(f) Matriz Elements of Jix xJx+Jx, vIv +Jx, zJz
This function is the scalar product J, -J, and its matrix elements are diagonal
in j - (TAS Sec. 8%). Also,
Iy J=38Jg,2dz— (2%, 2J 7 —J, xJ x —J&, ¥vJ¥),
and it follows from previous results that
(Jeyn -+ < Jr,ajm | Je, xd x +JIr, vdv +Ju,2Jz | Jioyn -« - J1,0j’ M)

=(]k,an];c, n)jk, njk—l,n I ];c, %jl;—l, n) L (jl,nj ' ji, n]l) X .7(.7 +1)8]"j8m’m-
S (34)
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IV. MATRIX ELEMENTS FOR ONE NUCLEAR SPIN
When only one nuclear spin I=1I, is present in the molecule we have the

coupling scheme
J+I=F, ... .. i (35)

or, using the reversed spin angular momentum I,
F4+I=J, .. ... (36)

in which the components of F and I commute (Van Vleck 1951).

The Hamiltonian (2) is referred to the moleeular axis system, and thus (as
shown, for example, by Van Vleck (1951)) the results of Section III apply if we
change the sign of i and replace m by the quantum number K. Thus our
representation may be labelled by the quantum numbers IJFK.

We can now use the results of Section ITI, putting n =1 and (cf. equation (18))
JJratnden>IFT, oo (37)
with k=0. Then the matrix elements of the Hamiltonian (2) can be written

(JE|H|J E)={E ||| E)J || I2|| J)+E | V| E)J:LJ}JEK || J K,
............ (38)

where K'=K, K+1, K42, and J'=J,J+1,J+2. We have introduced the
symbols | and I’ in equation (38) to distinguish between the various kinds of
terms contributing to the Hamiltonian. (JK || J’' K’) is given by Table 6,

TABLE 6
THE MATRIX (JK || J' K')

K K+1 K42
J 8K*—J(J+1) 12K L1)f(J, £K) Y, £E)fT, £K+1)
J—1 3K/ (J*—K?) HJ£2K+1)g(J, £K) |+3f(J, £K)g(J—1, £K)
J—2 3g(J, K)g(J, —K) +9(J; LE+1)V/(J2—K?) | 39(J, £K)9(J, £K+2)

which is just Table 3 with j and m replaced by J and K. The elements of Table 6
agree with the phase convention of TAS ; if it is required that the matrix elements
of this paper be consistent with those of Cross, Hainer, and King (1944), then
the column K +1 would have to be multiplied by +i, and the column K 42 by —1.
(J || I2|| J') and (J:I:J’) come from equations (26) and (19) respectively, with
jijr,n—>IJ, and we get the results of Tables 7 and 8. The quantities in Table 7
are the coefficients of the operators in the Hamiltonian, and, since there is only
one spin, the subscripts etc. have been dropped. These coefficients are defined
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in equation (3). The functions occurring in Table 8- -have been defined in
equations (9) and (25); explicitly, they are:
e, J)={3R(I, J)[B(I,J) —1] —4I(I +1)J (J +1)}®(J),
x, J)=[0(I, J)+6(I, J —1)]o(I, J),
“I)(I’ J)=1o(l, J)o(, J —1),
O(J)=[2J(J +1)(2J —1)(2J +3)]*

= .. (39)
1, J)=— YIPL T, J —1)}
P ET SRl DRIy
R, J)
O(I,J)=2JT—+1), |

with
P(I, J)=(] —F +I)(J +F+I1+1),
QU, J)=(F +I—J)(J +F —I+1), e (40)
R(I,J)=J(J +1) —F(F +1) +I(I+1). '

The above results have already been given by Van Vleck (1951) except:
that here we have a negative sign in the (J | J +1) matrix elements ; this arises

TaBLE 7
THE FACTORS (K | 1| K’) axp (K| I’ | K)
K K I K+1 ‘ K42
(K| 1] K o dFie BFiy
JJ+ 1)’

K|V|K T i i
(K| V|K) a+3K2—J(J—|—1) T dFie bFic

TABLE 8
THE MATRICES (] || b [| J’) axp (JILJ’)

J’ J J—1 J—2
N2 ) olT, J) —y(L,J) L, )
(JiLJ") (I, J) —3o(I, J) 0

from our association of I with j, rather than with j, as in Van Vleck’s paper,
for we have had to be consistent in our notation (cf equations (16) and (18))
in order to deal with the cross-product terms (Section ITI (e)) correctly.

It will be observed that ;
R(I,J)=2T-J=—-21-J=—C, ............ (41)

where C is common notation. Then,
o, J )=ﬂ .................... (42)

J(J+1)
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Also,

o, J)=%E§I—_|:—ll))f(1, T F), oo (43)

where f(I, J, F'), sometimes called ‘ Casimir’s function ”, is tabulated by Townes
and Schawlow (1955, Appendix I).

For symmetric top molecules the only non-vanishing matrix elements are
those diagonal in K, and are:

JEK | H|JE)=[3K2—J(J +1)]ap(I, J)
+{@' T (J +1) +a[3K>—J (T +1)}0(I, J),

(JE | H|J—1K)=—3KV T2 —K*[ay(I, J)+ap(L, )],
(JEK | H | J—2K)=%(J, K)g(J, —E)a(I, J).

In an asymmetric top molecule if only a’, @, b, «, and £ need be considered
(because of molecular symmeétry or otherwise), the first-order matrix elements
diagonal in J and t become (Bragg 1948):

v | H|Jv)=ay,<p(L, I)+es,HI, ), ooovnnns (45)
‘where
g, » =20 <o [21 (2] —1),
g

¢r, =2 M (T3,

=RV 2,
(Ta>=34[J(J +1)+E —(x+1)0E/dx],
(T3> =0E|ox,
(Te>=34JJ +1)—E+(x—1)0B[dx], |

L .. (46)

in -which a, b, and ¢ refer to the principal inertial axes, E is the reduced rigid
rotor energy, and x is the asymmetry parameter.

Usually Laplace’s equation X902V /dg2=0 is applied to eliminate one of the
[
Xee

V. MATRIX ELEMENTS FOR TWwo NUCLEAR SPINS
(@) Matriz Elements for Similar Coupling : L,LIJFK Representation
When the energy of interaction with the rest of the molecule is about the
same for each nucleus, the most appropriate coupling scheme is (Foley 1947)

L+L=L 0 (47)
I+J =F,

where I is the total spin angular momentum. The intermediate and total
angular momentum quantum numbers cover the ranges

I=I,+1,, L +I,—1,. . ., |I1_Izly 2
F=J+I, J+I—1,. .., |J—I|. )

In general I is not a good quantum number.
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By using the reversed spin angular momenta to give

T3+i1:i’ } .............. ‘. .. (49)
I+F=J, 4

in the molecular representation I,I,IJFK, and putting n=2 and
Jo J 0 J J-LLIFY o (50)
in equation (16), we can write, similarly to equation (38),

(LJE | H|T'J K =80, 5(K | ;| E)T|| T || I)aT || ')
Syne(E | G| BN | T J)JK || I K),
............ (51)

in which I'=1,141,142, J'=J,J+1,J42, and K'=K, K+1, K+2. The
matrix (JK || J' K') has been given in Table 6, and (K | I;| K') and (K | I; | K)

TABLE 9
THE FACTORS (K | I; | K’) anp (K | I;| K)

K’ K K41 K42
(K| 1| K 251 3 Figy BiFiy,
(K| 1| K oy 8, Fie, BaFiy,
(K] Ig] K g dsFieg BsFivg
ke I 1 Ny |
(K| ]| K) ar"msﬂl d,Fiey b, Fic,
I J(J +ag . .
(K| lg| K az+m)8J'J dyTie, b, Fic,
TasLE 10
THE MATRICES ([ || }3 || I’) axD (I:ZI;.::I’)
r I I—1 I—2
FaF AP pd, 1) —3y (L, 1) (I, I)
( [2 ) p(d 1) (L 1) (L, I)
o H] 1) 0(1y, I)—p(Iy, I) —3¢y, 1) +3x (15, 1) —34(15, I)
(I1:1) 67, I) - oL, 1) 0
(LI 0(Z,, I) 1o(1,, 1) 0

are shown in Table 9, where we have omitted a superscnpt on the o s ete. since
there is only one dipole-dipole term. The factors (I || I5 || I') (with I2=1,I,) and
(II;I') are obtained from equations (26), (27), (32), (19), and (20), using (50),

and are shown in Table 10.



COUPLING OF NUCLEAR SPINS IN MOLECULES 15

It should be noted that, from equations (11) and (25),

Uy D= I vvrennnnnnnn. (52)

(IJ || I' ') and (IJ | I' J') are obtained by putting st—IJ in Tables 4 and 2
respectively, and need not be rewritten here.

For an asymmetric top molecule the first-order matrix elements diagonal
in J and 7 become (cf. equation (45)):

(I | H | IJ7)={ai) oIy, I) +-aP oLy, 1)+ [0(Iy, I) —p(Lyy D)} e(I, J) ]
+IeP 0Ly, I) +cP 0Ly, 1)L, J),
(I~ | H | I—1J7)= {odl) ALy I) — o oy (Lo, 1)
o) [o(Lyy 1) —x (I, D3I, J)[R(, J)—(I+1)]<D(J)
—(cffl) 05]2)1) Ly, DI, J)[4J (J +-1),

(I7x | H | T—2J7%)=(oa, +o®, — o )20 (Iy, )T, Iyn(I —1, YD),

e

............ (53)
where
s =Zi T [21,21—1),
o= GURINER TS — KT (T 1),
g (54)

P =Z M Ty,
g
7B =60,V /g,

the (J>> being defined in equation (46) and r standing for ry,.

When I,=1I, the quadrupolar parts of equation (53) reduce to the matrix
elements of the special cases discussed by Robinson and Cornwell (1953) and by
Ramsey (1956, pp. 63, 83).

If the two spins are equal and have equal couplings «,, the matrix elements
of the quadrupole coupling off-diagonal by 1 in I will vanish. If also the spins
are symmetrically placed in the molecule, as, for example, in C;, molecules,
energy levels with total spin I differing by one unit cannot exist simultaneously
for a given symmetry of J and 7, hence the off-diagonal matrix elements (I | I4-1)
can connect only states which also differ in J and/or K. In general, then, if
this spin symmetry exists, these (I | I +1) contributions to the hyperfine energies
will be off-diagonal in the rotation energy and may usually be neglected. However,
in a symmetric top molecule levels of different K are degenerate, and the coupling
between such states will be first-order, so the splitting may be appreciable, as.
in the case of ammonia (Gunther-Mohr, Townes, and Van Vleck 1954).

The relative intensities of transitions between hyperfine components
described by this coupling scheme can be computed by the method described
by Robinson and Cornwell (1953).

The effects of matrix elements off-diagonal in J may be calculated by
perturbation theory ; in many cases the comparatively large spacings of rotational
energies will enable these effects to be neglected.

|
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To first order, only the diagonal elements of the tensor y®) contribute to
the energy (Bragg 1948). If the principal axes of this tensor do not coincide
with the inertial principal axes x, y, and 2, then, in higher order, the off-diagonal
elements may have to be taken into account.

(b) Matriz Elements for Non-similar Coupling : 1, JF,I,FK Representation

‘When one spin (I,) is more strongly coupled to the rotation than is the other
it is usually more convenient to use the coupling scheme (Bardeen and Townes

1948a)
J L=, % .................. (55)
F,+I,=F,
with
F1=J+I1’J+Il_1’-—-’IJ“1[a } ... (56)
F=F,+I,, F,+1,—1,. .., |F,—I,|.

In such a representation the general matrix elements of the Hamiltonian become
rather more complicated than the previous example, because of the lack of
symmetry between I, and I,:

(FJK | H|FJ K')=
{1, | KO || I Il VR |1y | KO(F, || I || F)(E || Fid)
H(E | Vg | K'Y FLLFDFT || i1 +(K | 1y | KT T |
+(H | 1o | K')(Fy: L F)(FJ | ' WIK || Ky e (57)
with (K | I; | K'), (K| I;| K'), and (JK || J* K') already given in Tables 9 and 6,
respectlvely, (J H E [| ) and (Fy | g || F1) given in equation (26), (J:I;:J’) and

(F,:1,:F1) given by equation (19), and (¥,J | F1J'), (FyJ || F1J'), and [F,J || F1J']
obtained from Tables 2, 4, and 5 respectively.

- The matrix elements diagonal in J and t are (cf. equation (53)):

(FyJv | H | FyJt)=op oIy, J)+oP o(Is, Fy)p(Fy, J) N
+a§‘?)19(12, F)[0(Fy, J)—p(Fy, J)]
+e) 0Ly, J) +P) O(Iy, F1)O(Fy, J),
(FyJ 7| H | Fy—1d7)=—3aD y (I, Fy)n(Fy, J)[R(Fy—1,J) +(F; —1)]D(J) L
+3aP oLy, Fy)n(Fy, J)[BE(F;,—1, J) +3F; —4J (J +-1)] D(J)
—P oLy, Fi)n(Fy, J)[4J (I +1),
(FyJ 7| H| Fy—2J7)=3aP {5, F1)n(Fy, J)n(F,—1, J)D(J).

When the coupling of nucleus 2 is much less than that of nucleus 1 it is
frequently a good approximation to ignore the matrix elements off-diagonal in
F,, when also the relative intensities of transitions are readily obtained from
tables such as in TAS.
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VI. CONCLUSION
It will be apparent that for any number of nuclear spins the matrix elements
of the Hamiltonian can be written down from the above results and converted
to numerical form for particular values of the quantum numbers. However,
it is another matter to determine in advance which' of these matrix elements
vanish because of the symmetry of the molecule.

The choice of a suitable representation which will simplify diagonalization
of the resultant matrices depends on the specific problem, and has been discussed
for some examples by Bersohn (1949).
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