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Summary 

The theory of quadrupole, magnetic dipole, and dipole-dipole interactions of nuclear 
spins with molecular rotation is generalized for any number of nuclear spins in any free 
molecule which has no ,resultant electronic angular momentum. 

Calculation of the matrix elements of the Hamiltonian is discussed in detail, and 
the cases of one and two nuclear spins are dealt with explicitly. 

1. INTRODUCTION 

First-order matrix elements for the coupling of two similar quadrupolar 
nuclei in a molecule have been deriv~d by Foley (1947) for the diatomic case, 
and subsequently by Myers and Gwinn (1952) and Robinson and Cornwell 
(1953) for more general molecules. Cases of grossly unequal coupling have been 
considered by Bardeen and Townes (1948a, 1948b) and by Townes and Schawlow 
(1955, Section 6-6), although the appropriate matrix elements have not been 
given explicitly. 

Bersohn (1950) has given the matrix elements for the quadrupolar coupling 
of three nuclei, and his methods, which are applicable to any number of nuclei, 
are described in his thesis (Bersohn 1949). 

Recent advances in high-resolution microwave spectroscopy have drawn 
more attention to the small magnetic interactions of nuclei (White 1955). Gunther­
Mohr, Townes, and Van Vleck (1954) and Gordon (1955) have described the 
coupling of three hydrogen spins and a quadrupolar nucleus (nitrogen) in 
ammonia; Okaya (1956) has considered C2v molecules with two fn off-axis 
spins and one axial quadrupolar nucleus; and Herrmann (1956) has treated 
the experimental problems of NDa using some theoretical results derived by 
Hadley (1955), whose work has not been accessible to the present writer. 
Although these cases are of increasing complexity, symmetry properties of the 
particular molecular types so far considered help to provide some simplification 
of the problems, and the works quoted cannot be easily generalized. 

In the following account we will deal with an arbitrary free molecule with 
no resultant electronic angular momentum, but containing n nuclei each possessing 
spin, and we will give the complete matrix elements of the major interactions. 
The results are derived for quadrupolar spins, but can be easily specialized to 
cases where some of the spins are in or zero. 

In most problems of practical interest only a very few of the terms given 
need to be considered because some terms contribute to the energy only in 
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higher O'rder Qf apprQximatiQn, while in many cases SQme Qf the matrix elements 
vanish identically because Qf symmetry prQperties Qf the mQlecule. Because 
Qf their wide variety symmetry cQnsideratiQns peculiar to' particular types Qf 
mQlecules will nQt be specially discussed here, althQugh they will usually be Qf 
great impQrtance in further simplifying the calculatiQns in a given prQblem. 
We refer to' SQme Qf the papers already quO' ted fQr discussiQns Qf this kind. 

The results fQr Qne and fQr twO' nuclei will be given explicitly as simple 
applicatiQns Qf the general theQry. 

II. THE HAMILTONIAN 

We assume the mQlecule to' be subject to' nO' external fields and to' have no 
resultant electrQnic O'rbital Qr spin angular mQmentum, SO' that electrQn spins 
are paired and their effects may usually be neglected (as demO'nstrated, fQr­
instance, by Gunther-MQhr, TQwnes, and Van Vleck (1954)). In the rigid 
rQtQr apprQximatiQn the HamiltQnian fQr rQtatiQn and fQr the majO'r spin hyperfine 
interactiQns is then (Van Vleck 1951; Gunther-MQhr, TQwnes, and Van Vleck 
1954) : 

"G- J L 2 C[J.N"" -3 ' [ ( ZkMp) ] H=.:.... g( g- g) +- .:.....:..:rik (ri-rk ) X v i - l+-M V k 'gkIk 
g C k t gk k 

(1) 

where J is the tQtal angular mQmentum exclusive Qf nuclear spin, L is the 
electrQnic Qrbital angular mQmentum, and we measure angular mQmentum in 
units Qf Ii. The ~ are rQtatiQn cQnstants, with g referring to' principal inertial 
axes x, y, and z fixed in the mQlecule. The sum Qver i is Qver the electrQns, 
whQse charges are -c and whQse PQsitiQns and velQcities are given by r i and Vi 

respectively, referred to' -the mQlecular centre O'f mass. Indices k and l are used 
similarly fQr the n nuclei, which have magnetic mQments gk[J.m masses M k, 
charges Zk' spins Ik , and nuclear charge densities Pk' The prQtQn mass is Mp) 
[J.N is the nuclear magnetQn, c is the velQcity Qf light, and r ik is an abbreviatiO'n 
fQr , r i - r k ,. The electrQstatic PQtential at the kth nucleus due to' all mQlecular­
charges O'utside the nuclear regiQn is V k , and xi." yi." and zi., are cQQrdinates fixed 
in the kth nucleus with the zi., directiQn alQng the nuclear axis Qf symmetry. 

The first term in the HamiltQnian is the energy Qf rigid rQtatiQn, the secQnd 
term represents the energy Qf interactiQn Qf nuclear magnetic dipO'les with 
currents due to' electrQn mQtiQn, the third term is the energy Qf interactiQn Qf 
nuclear dipQles with currents due to' nuclear mQtiQn (mQlecular rQtatiQn), the 
fQurth term is the magnetic dipQle-dipQle interactiQn Qf the nU0lei with Qne 
anQther, and the last term is the energy Qf nuclear quadruPQlar interactiQn 
with the mQlecular electrQstatic fields. 
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Although the non -rotating molecule possesses zero total electron orbital 
angular momentum, rotational interactions excite higher electronic states. 
When perturbation theory is used to take the more important interactions of 
these states into account (see, for example, Gunther-Mohr, Townes, and Van Vleck 
1954), the effective Hamiltonian for the nuclear spin. interactions can be written 
in the form: 

H =2:. [a" (lkxJx+lkyJy +lkzJ z) +ak(21kzJ z-lkxJx-lkyJy) 
k 

+bk(lkxJx-1kJy) +ck(lkxJ y +lkyJxl +dk(lkxJ z+lkzJx) 

+ek(lkyJ z +lkzJ y)] +2:. 2:. [rf..lfl)(21k:ilz-1kJlx-1k/ly) 
k l>k 

+~lfl)(lkJlx -lk/ly) +ylfl) (lkJly +lk/lx) 

+'Olfl)(lkJlz +lkz1lx) +elfll(lk/lz +lkiiy)] 

+2:. [rf..k(21Zz -JZ,." -ff;y) +~k(ff;x -ff;y) +Yk(lkJky+lk/kx) 
k 

+'Ok(lkJkz+1kikxl +ek(lk/kz+1kikY)]' •••••••••••• (2) 

For convenience in calculation everything in equation (2) is referred to the 
molecule-fixed system of axes, and for consistent commutation relations the 

spin angular momenta Ik have been replaced by their reverses i k= -Ik (Van Vleck 
1951). The coefficients in equation (2) are: 

'-l.(M(k)+M· (k)+M(k» 
ak-3 xx yy zz, 

- 1 (2M(k) M(k) M(k» ak - S zz - xx- yy, 
b - 1 (M(k) M(k» 
k-]l xx- yy, 

- 1 (M(k) +M(k» 
Ck-:]l XII yx , 
d - 1 (M(k) +M(k» 
k-]l xz zx , 

ek=t(M~~) +M~V), 
rf..lfl)= -tfL~gkgl[2(rkt)~ -(rk1 ); -(rkl);]/r~l~ 

~lfl) = -:fL~gkgl[(rkl); -(rkl );] /r~l' 

ylfl)= -3fL~gkgl(rkl)Arkl)y/r~1' 

'Olfl) = -3 fL~gkg l(rkt)x(rk1 ) z/r~l' 

elfl) = -3 fL~gkg l(rkl)y(r kl) z/r~l' 

eQ k (k) (k) (k) 
rf..k=12Ik(2Ik_1)(2Vzz - V xx- V yy ), 

eQk (k) (k) 
~k= 4Ik(2Ik-1)(V xx-V yy ), 

eQk (k) 
Yk=2Ik(2Ik-1) V XII' 

eQk (I/:) 
'Ok=2Ik (2Ik-1) V xz , 

eQk V(k) 
ek=2Ik(2Ik-1) yz, 

eQk=j Pk(2z2-x2-y2)d'Vk' 

(k) B2Vk 

Vgg'=BgBg" 
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Ek) 2eIlNg/').g«l+ ZkMp) -3 
gg'= lie gkMk ~rik [agg'(r;-rk) ·rk-(r;-rk)g(rk)g'] 

+1~kzlrkz3l agg'(rk-rZ)· [(1+ ~:~) rk-rZ] 

-(rk-rZ)g[ (1 + ::::)rk-rZ]g'}) 

+ 2eIlNgijg~, (0 I Lg I p)(p I m~) I 0) +(0 I rr~~) I p)(p I Lg I 0), 
C 11 Eo-Ep 

(1:) -3 IIu =~rik [(ri-rk) X V;]g, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .. (3) 
• 

in which agg, is the Kronecker delta, p specifies an excited electronic state of 
energy E p' and the last sum indicated in M~~! is to be taken over all values of p 
except p=O. (rkZ)g is short for (rk-r/)g. The functions of hZ)g and of V~~!, 
together with the other averages shown explicitly here and later, are to be 
:averaged over the ground electronic and vibrational state of the molecule. 

In most practical cases a large number of these coefficients vanish because 
,of molecular symmetry, or can be neglected since they contribute to the energy 
-only in higher order. 

III. ADDITION OF ANGULAR MOMENTA 

Bersohn (1949), using the tensor procedure of Racah (1942), has discussed 
a general method for calculating the matrix elements for the quadrupole coupling 
of a number of nuclei in a molecule. Oondon and Shortley (1953) (hereafter 
referred to as TAS), following Guttinger and Pauli (1931), have derived the 
matrix elements of two commuting angular momenta. This section will show 
that the extension of the methods of T.AS to any number of commuting angular 
momenta is not as formidable as it might first appear, and the results are in some 
cases rather simpler to use than those of Bersohn. 

Since the problem of addition of a number of commuting angular momenta 
is rather general the notation of T.AS will be followed as far as possible,. with 
suitable generalizations and with some of the functions introduced by Van Vleck 
(1951), and as a basis for our subsequent discussion we shall start by reviewing 
the appropriate results given in TAS. 

(a) Review of TAB Results 
In a representation which diagonalizes the square of the total angular 

momentum .J and its component Jz al.ong some space-fixed Z-axis, the matrix 
elements of the components of J are off-diagonal in the quantum number m 
only, and are given by TAS, Section 23 : 

where 

(oc:jml Jxl oc:jm±l)=H(j, ±m), } 
(oc:jm I J y I oc:j m±l)= ±iif(j,±m), 

(oc:jm I Jz I oc:jm)=m, 

•.•..... (4) 

f(j, m) = v{ (j -m)(j +m + I)}, ............ (5) 
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i= V( -1), and we have used oe to represent the totality of unspecified quantum 
numbers. 

If T is a vector operator which obeys the commutation rule TAS 831, the 
dependence on m of the components of T is given by TAB 9311 : 

where 

(oejm I Tx loe' j +1 m±I)==f i(oeJT~oe' j +I)g(j, =fm-2), 1 
(oejm I Tx loe' j m±I)=i(oeJT~oe' j)j(j, ±m), 

(oejml Txloe'j-Im±I)=±i(oeJT~oe'j-I)g(j, ±m), 

(oejm I Ty loe' j' m')= ±i(oejm I Tx loe' j' m'), 

(oejm I T z loe' j +1 m)=(oeJT~oe' j +nVw +I)2-m2}, 

(oejm I T z loe' jm)=(oeJT~oe' jim, 

(oejm I T z loe' j -1 m)=(oeJT~oe' j -Ih/(j2-m2), ) 

g(j,m)=YW-m)(j-m-I)}, ............ (7) 

and (oeJT~IX' j') is independent of m. The equations (6) show that the matrix 
of T can be factored into submatrices, one of which contains the whole dependence 
on the quantum number m. 

If . . . . . . . . . . . . . . . . . . .. (8) 

and J 1 and J 2 commute, TAB 103 shows that the dependence on m of J 1 and J 2 

is given by the equations (6), and the submatrices (JJ1f) and (j~Jd') are as 
shown in Table 1, in which 

rp(j j)=_ y{P(jl)j)QUI,j-I)} 
1) jy{(2j -I)(2j +I)} , 

} . .. ... (9) 

and 

P(jI,j)=(j-j2+jl)(j+j2+jl+I), } 

Q(jl)j)=(j2+jl-j)(j +j2-jl +1), 

R(jl) j)=j(j +1) --j2(j2+I ) +jl(ji +1). 

.. . . .. (10) 

Functions of (j2' j) are obtained by interchanging ji and j2 throughout. Also, 

rp(j2' j)=rp(jl) j). . ........................... (11) 

Here and subsequently we show only two variables (quantum numbers) explicitly 
since the third is always defined by the coupling scheme (such as equations (8) 
and (15»; we will use 8 and t to denote a general pair of such quantum numbers. 

For brevity we frequently omit diagonal quantum numbers from the matrix 
elements. 

If P is any vector operator which commutes with Jl) but obeys TAB 831 
with respect to J, then by TAB 113 the dependence of the components of P on m­
is given by the equations (6), and the dependence of (oeJP~oe' j') on j may also 
be factored out: 
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where the submatrix (j2j I j2j') is given by Table 2 with sand t replaced by j2 
and j. It will be noticed that (st I s' t') is a Hermitian matrix, and this property 
of the matrices will be used later in other results when for conciseness not all 

TABLE 1 

THE MATRICES (/J1:j') AND (/J.:j') 

j' HI j .1-1 

(j;J1;j') -!cp(j1,j+l) 6(j1' .1) -!CP(j1,j) 

(/J.;j') 

I 
!cp(j •• j+l) 6(j.,j) tCP(j2'.i) 

TABLE 2 

THE MATRIX (st I S' tf) 

~ t+l t t-l 
8' 

8+1 !~(8+ 1, t+ 1) 1)(8+ 1, t)f2t(t+ 1) !~(8+ 1, (---I) 
8 tCP(8, t+ 1) 6(s, t) !cp(8, t) 

8-1 !~(s, t) 1)(s, t)f2t(t+l) !~(8, t) 

possible matrix elements will be written down explicitly. In Table 2 the new 
functions are: 

-v'{P(s, t)P(s, t-l)} 
~(s, t)= t-v'{(2t-l)(2t+l)}' 

'f)(s, t) = -v'{P(s, t)Q(s, t)}, 

-v'{Q(s, t)Q(s, t+l)} 
~(s, t)= - (t+l)-v'{(2t+l)(2t+3)}, 

(b) Matrix Elements of J k where ~Jk=J 
k 

...... (13) 

We now consider the addition of n+l commuting angular momenta: 

n 
~ Jk=J, .................... (14) 
k~O 

and let us add them together one at a time, defining n-l "intermediate" 
quantum numbers according to 

t .. . . . . . . . . . . . . .. (15) 

J 
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,where J can be considered to be short for JO,n' Then, since all the Jk commute, 
we can put into equation (12) 

JIJ2JP_JkJk+l,nJk,nJl (l>k), .......... (16) 

and it follows that the matrix elements of the components of J k are given by 
the equations (6) together with 

(jk,njk-I,n . . . jl,nJJk~jk,njk-l.n' .. ji,J') 

=(jk,n~JkUk,n)(jk,njk-I,n I jk,njk-l,n)' .. (jI,nj I ji,nj'), .. (17) 

where diagonal quantum numbers (such asjk+1,jk,jk+1,n, .. .. ) have been omitted, 
and the elements (jk,njk-I,n lik, njk-I, n) are given in Table 2. 

The factors (hn~Jk~jk,n) are obtained from Table 1 on putting 

J1J2J_JkJk+I,nJk,n (k:f:n), 

. which is consistent with equation (16), and are : 

(18) 

(jk,n~Jk~jk,n +1)= -irp(jk' jk,n+1), 

(jk,n~ JkUk,n) =6(jk' jk,n),' 

(jk,n~Jak,n -1)= -irp(jk' jk,n), 

.... (19) 

while for k=n, 

(jn-I,n~Jn~jn-I,n +1) =irp(jn, jn-I,n +1), } 

(jn-I,n~JnUn-I,n)=6(jn,jn-I,n), (k=n) .... (20) 

(jn-I,n~Jn;jn-I,n -1) =irp(jn, jn-I,n). 

(c) Matrix Elements of 2Ji, z -Ji, x -Ji, y etc. 

n we use the equations (6) to express the dependence on m, it turns out that 
. the matrices of 2Jt z -J~, x -J~, y etc. can also be factored into submatrices : 

(rxjm 12Jtz-J~,x-J~,y I rx' j' m')=(rxj II J~ II rx' j')(jm II j' m')~m'm, 
(rxjm I Jtx-J~, y I rx' j' m')=(rxj II J~ II rx' j')(jm II j' m')~m'm±2, 

(rxjm I Jk,XJk,y+Jk,yJk,X I rx' j' m')= ±i(rxj II J~ II rx' j')(jm II j' m')~m'm±2, 
(rxjm I Jk,XJk,Z+Jk,ZJk,X I rx' j' m')=(rxj II J~ II rx' j')(jm /I j' m')~m'm±1' 
(rxjm I Jk,yJk,Z+Jk,zJk,y I rx' j' m')= ±i(rxj 1/ J~ 1/ rx' j')(jm 1/ j' m')~m'm±1' 

................ (21) 

wherej' j,j±1,j±2, m'=m,m±1,m±2, and (jml/j'm') is given in Table 3, 
from which the elements (jm II j +lm') and (jmll j +2m') may be obtained by 
use of t~e Hermitian property of the matrix. 

In conventional notation the matrix elements of the product of two operators 
are given by 

(rx I TU I rx')=~(rx I T I rx")(rx" I U I (X'). .. .. .... (22) 
a." 
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In the submatrices (ocj II J% II oc' j') the double bar is used as an abbreviation 
for a special kind of summation which we define by : 

{~2(OC~ I T I oc"~)(oc"~ I U I oc'~)-(oc~ I TU I oc'~), } 

(oc~ II TU II oc' W)= if W=~, 

(oc~ I TU I oc' W), if W#~· 
............. (23) 

The double bar is also used in (jm II j' m') because it results from a summation 
very similar to (23). 

TABLE 3 

THE MATRIX (jm II i'm' ) 

~ I 
m m±1 m±2 

j' 

j 3m2-j(j+I) t(2m±l)j(j, ±m) H(j, ±m)j(j, ±m+l) 
j-I 3my'(j2-m2) t(j±2m+l)g(j. ±m) ±H(j. ±m)g(j-I. ±m) 
j-2 3g(j,m)g(j, -m) ±g(j, ±m+ 1)y'(j2-m2) tg(j, ±m)g(j. ±m+2) 

With this notation we can write generally: 

(jk,njk-l.n . .. jl. njm I 2J%,z -J%. x-J%, y Jjic, nji.,-l, n' .. ji, nj' m') 

= (jk,njk-l, n· .. jl,nj II J% I Jji." njic-l, n' .. ji, nf)(jm II f m')am'm 

= (jk, njk-l, n· .. jl, n 'I J% II jic, njic-l, n· .. ji, n)(jl,nj I Jji, nj')(jm II j'm')am'm 

=(jk,n II J% II jic,n)(jk,njk-l,n II jic,njic-l,n)' .. (jl,nj II ji,nj')(jm II f m')am'm, 

.............. (24) 

and similarly, from the equations (21), for the other functions of the components 
of J k. The elements of the matrices (jk,njk-l,n II jic, njic-l, n) etc. are given in 
Table 4, in which 

p(s, t)={3R(s, t)[R(s, t)-I] -4s(s+l)t(t+l)}<I>(t), 

X (s, t) = [8(s, t) +8(s, t -1)] rp(s, t), 

~(s, t)=irp(s, t)rp(s, t-1), 

{
[t(t+2)]-r, if t'=t+l, 

<I>(t')= [2t(t+l)(2t-l)(2t+3)]-r, if t'=t, 

[(t-l)(t+l)]-r, if t'=t-l. 

Using equations (19), (20), and (23), 

(jk,n II J% II jk,n)=p(jk,jk,n), } 

(jk,n II J% II jk,n-1 )= -ix(jk,jk,n), (k#n) 

(jk,n II J% II jk,n-2)=H(jk,jk,n), 

.. (25) 

.. (26) 
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(jn-I,n II J~" jn-I,n)=p(jn,jn--I,n), } 

(jn-I,n" J~" jn-I,n-1)=!X(jn,jn-I,n), (k=n) 

(jn-I,n" J~" jn-I,n-2)=i<}(jn,jn-I,n). 

.. (27) 

The simplification of some of the algebra occurring in the calculations leading 
to equation (24) is assisted by use of the identity (11) together with: 

P(s+q, t)=P(s, t+q), 

Q(s+q, t)=Q(s, t-q), 

p(s, t) =82(s, t) _!cp2(S, t +1) _!cp2(S, t) 

= -1)2(s+1, t)/4t2(t+1)2+!~2(s+1, t+1) +g2(s+1, t-1) 

= _1)2(S, t)/4t2(t+1)2+!~2(s, t) +g2(S, t). 

(28) 

TABLE 4 

THE MATRIX (st lis' t') 

~ t t-I t-2 

s+2 31)(s+ 1, t)1)(s+2, t)W(t) t~(s+2, t-I)1)(s +1, t)W(t-I) !~(s+I, t-I)1;(s+2, t-2) 
s+I 31)(s+ 1, t)[R(s, t) +s]W(t) t1;(s+I, t-I)[R(s, tHs(t+I)]W(t-I) irI>(s, t)1;(s+I, t-2) 

s p(s, t) h(s,t) t<lJ(s, t) 
s-I 31)(8, t)[R(s-I, t)+(s-I) ]W(t) t~(s, t)[R(s, t)-(s+I)(t+I)]W(t-I) 1cp(s, t)~(s, t-l) 
s-2 ~1)(s, t)1)(s-I,t)W(t) t~(s, 1)1)(s -1, t-I)W(t-I) !~(s, t)~(s -1, t -1) 

( d) Matrix Elements of 2J k, zJ z -J k, xJ x -J k, yJ y etc. 

Using the matrix elements (4) and (17), it follows easily that 

(jk,njk-I,n . .. jI,njm I 2Jk,ZJZ-Jk,XJX-Jk,yJy I jk, nj~-I,n . .. ji, nf m') 

=(jk,njk-I,n . .. jI,nf Jkjk, njk-I, n' .. ji, nf)(jm " f m')am'm 

=(jk,n~Jk;jk,n)(jk,njk-I,n I jk,njk-I,n)' .. (jI,nj I ji,nf)(jm" f m')am'm, 

............ (29) 

with the factors already defined, and with jk, n =jk, n, jk, n ±1, etc. 

The other functions of the components of J k have matrix elements differing 
only in their dependence on j and m, as in equation (21). 

(e ) Matrix Elements of 2J k, zJ1, z -J k, xh x -J k, yJ1, y etc. (1) k) 

These cross-product terms have matrix elements of the form 

(jl,n . . . jk,n . . . jm 1 2J k,zhz-Jk,xhx-Jk,yJI,Y I ji,n' . . jk,n' .. f m') 

= (jl,n .. . jk,n . . . j" JkJ1 " ji,n . . . jk,n' . ·f)(jm" f m')am'm 

=(jI,n~Jlj;,n)(jl,njl-I,n I ji,nji-I,n) . .. (jk,n;Jkji"n) X 

(jk,njk-I,n" ji"nji,-I,n)' .. (jl,nj" ji,nf)(jm" f m')am'm. .. (30) 
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In the particular case k=n-1 and l=n we get 

(jn-I,n . . . jl,njm I 2Jn- l ,z In,Z-Jn-I,XJn,X-Jn-l,yJn,y I j~-I,n. .ji.nj'm/) 

=(jn-I,n" In-IJn " j~-I. n)(jn-I. njn-2. n " j~-I. nj~-2. n) . .. X 

with 

ij,. nj " ji. nj')(jm " j'm/)am'm, .............................. (31) 

(jn-I,n" In-IJn ,, jn-l,n)=6(jn-l,jn-l,n)-p(jn-l,jn-l,n), 

(jn-I,n II In-IJn II jn-I,n -1)= -irp(jn-I, jn-I,n) +h(jn-I, jn-I,n), 

(jn-I,n" In-IJn "jn-l,n-2 )= -H(jn-I, jn-I,n). 
} 

.. .......... (32) 
When l = k + 1 ')t':n there also results 

(jk+I,n • • . jm 12Jk,ZJk+I,z-Jk,XJk+I,x-Jk,yJ,c+1,y I jle+1.n. .j'm/) 

=(jk+1,n~Jk+dle+l, n)[jk+l, njk, n " jle+l, njle, n] X 

(jk,njk-I,n "jle.njle-I,n)' .. (j1,nj "ji.nj')(jm" j'm/)am'm, .. (33) 

with [jk+I, njk, n " jle+l, njle. n] given in Table 5. 

TABLE 5 

THE MATRIX [jk+l,njk, nil jle+1. njle, n] 
I i 

"'~ -, jk. n 
jlC,n jk,n-1 jk,n-2 

jle+1,n ~ i 
-riUk+1,n+1,j""n) x 

I [3R(jk+I, n, jk, n) t~(jk+1, n + 1, jk, n-1) x 
jk+1,n+ 1 +3(jk+1,n+ 1) 

I 
{l-[R(jk+I,n,jk,n) -!~(jk+1, n + l,jk,n-2) X 

-4jk,n(jk,n+1)] X I +jk+I,n(jk,n+1)] x '{J(jk+1, n, jk, n) 
<P(jk.n) <P(jk,n-1)} 

jk+l,n 6(jk+1, n, jk, n) t'{J(jk+1,n,jk,n) -H(jk+1,n,jk,n) 
-p(jk+I, n, jk, n) -ix(jk +] ,n, jk, n) 

-1](jk+l,n, jk,n) X 

[3R(jk+I, n-1, jk, n) i i~(jk+], n, jk,n) X 

jkH,n-1 +3jk+1,n {1-[R(jk+1, n, jk, n) -!~(jk + 1, n' jk, n) x 
-4jk,n(jk,n+1)] X -(jk+1, n + 1)(jk,n + 1)] '{J(jk+1,n-1, jk, n-1) 

<P(jk,n) X <P(jk, n-1)} 

(j) Matrix Elements of J k. xJ x +J k, yJ y +J k, zJ z 
This function is the scalar product J k • J, and its matrix elements are diagonal 

in j . (T.AS Sec. 83). .Also, 

J k' J =3Jk,zJ Z-(2Jk,ZJZ -Jk, xJ x -Jk, yJ y), 

.and it follows from previous results that 

(jk,n . . . jl,njm I Jk,XJX+Jk,yJy+Jk,ZJz I jle.n . . . ji,nj'm/) 

=(jk,n~Jkjle,n)jk,njk-l,n I jle,njle-I,n) . .. (jl,nj I ji,nj') X j(j+1)aj'jam'm' 
.............. (34) 
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IV. MATRIX ELEMENTS FOR ONE NUCLEAR SPIN 

When only one nuclear spin 1=11 is present in the molecule we have the 
coupling scheme 

J+I=F, (35) 

or, using the reversed spin angular momentum i, 

(36) 

in which the components of F and I commute (Van Vleck 1951). 

The Hamiltonian (2) is referred to the moleeular axis system, and thus (as 
.shown, for example, by Van Vleck (1951)) the results of Section III apply if we 
{lhange the sign of i and replace m by the quantum number K. Thus our 
representation may be labelled by the quantum numbers IJFK. 

We can now use the results of Section III, putting n=l and (cf. equation (18)) 

JkJk+l,nJk,n-+iFJ, ................ (37) 

with k=O. Then the matrix elements of the Hamiltonian (2) can be written 

(JK / H / J' K')={(K /1/ K')(J" 12 " J')+(K /1' / K')(J;I:J')}(JK" I' K'), 

............ (38) 

where K'=K, K±l, K±2, and J'=J, J ±1, J ±2. We have introduced the 
.symbols I and I' in equation (38) to distinguish between the various kinds of 
terms contributing to the Hamiltonian. (JK /I J' K') is given by Table 6, 

TABLE 6 

THE MATRIX {JK " J' K') 

X K K±l K±2 

I 
J 3K1-J(J+l) t(2K±1)f(J, ±K) tJ(J, ±K)f(J, ±K+l) 

J-l 3Ky'(J2_K2) t(J ±2K+l)g(J, ±K) ±tJ(J, ±K)g(J-l, ±K) 
J-2 3g(J, K)g(J, -K) ±g(J; ±K+l)y'(J2-K2) !g(J, ±K)g(J, ±K+2) 

which is just Table 3 withj and m replaced by J and K. The elements of Table 6 
agree with the phase convention of TAS; if it is required that the matrix elements 
of this paper be consistent with those of Cross, Hainer, and King (1944), then 
the column K ±1 would have to be multiplied by ±i, and the column K +2 by -1. 
(J" 12 " J') and (J}~J') come from equations (26) and (19) respectively, with 
;dk,n-+IJ, an'd we get the results of Tables 7 and 8. The quantities in Table 7 
are the coefficients of the operators in the Hamiltonian, and, since there is only 
one spin, the subscripts etc. have been dropped. These coefficients are defined 
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in equation (3). The functions occurring in Table 8 -have been defined in. 
equations (9) and (25); explicitly, they are: 

with 

p(I, J)={3R(I, J)[R(I,J) -1] -41(1 +1)J(J +1)}<I>(J)'1 

XCI, J)=[8(I, J)+8(I, J -1)]cp(I, J), 

!.Ji(I, J)=icp(I, J)cp(I, J -1), 
<I>(J) = [2J(J +1)(2J -1)(2J +3)]-1 

v{P(I, J)Q(I, J -I)} 
cp(I, J)= - J v{(2J -1)(2J +1)}' 

R(I, J) 
8(1, J)=2J(J +1)'-

.• (39) 

Q(I, J)=(F+I -J)(J +F-I +1), 

P(I, J)=(J -F+I)(J +F+I +1), } 

. ~ . . . . . . . . .. (40) 

R(I, J) =J(J +1) -F(F +1) +1(1 +1). 

The ~bove results have already been given by Van Vleck (1951) except; 
that here we have a negative sign in the (J I J ±1) matrix elements; this arises. 

. 
K' 

(Kl I 1K ') 

(Kl l'IK') 

J' 

(Jlli211 J') 

(JlJ') 

TABLE 7 

THE FACTORS (K 1 11K') AND (K 1 I' 1 K') 

K K±l 

ex 8'fie: 
J(J+l)a' 

a+3K2_J(J+l)8J'J d'fie 

TABLE 8 

THE MATRICES (J 11 i"11 J') AND (J;lj') 

J 

p(I,J) 

6(I,J) 

J-l 

-h(I,J) 

-!q>(l, J) 

K±2 

~'fiy 

b=j=ic 

J-2 

H(I,J) 

o 

from our association of I with jl rather than with j2 as in Van Vleck's paper, 
for we have- had to be consistent in our notation (cf equations (16 ) and- (18» 
in order to deal with the cross-product terms (Section III (e» correctly. 

It will be observed that 

R(I, J)=2I·J = -21·J = -0, ............ (41) 

where 0 is common notation. Then, 

2I·J 
8(1, J)=2J(J +1)' . .... .... .. .... ..... (42) 
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.Also, 
41(21 -1) 

p(l, J) = J(J +1) '1(1, J, F), .. . . . . .. . . . . .. (43) 

where f(l, J, F), sometimes called" Casimir's function ';, is tabulated by Townes 
.and Schawlow (1955, Appendix I). 

For symmetric top molecules'the only non-vanishing matrix elements are 
those diagonal in K, and are: 

(JK 1 HI JK)=[3K2-J(J +l)]exp(l, J) 

+{a'J(J +1) +a[3K2-J(J +1)]}6(1, J), 

(JK 1 HI J -lK)=-~KVJ2-K2[exX(I, J)+aql(l, J)], 

(JK 1 HI J -2K)=£g(J, K)g(.J, -K)exljJ(l, J). 
} 
(44) 

In an asymmetric top molecule if only a', a, b, ex, and ~ need be considered 
(because of molecular symmetry or otherwise), the first-order matrix elements 
diagonal in J and l' become (Bragg 1948) : 

(J1'1 H I h)=CXJ,-rp(l, J)+cJ,-r6(1, J), (45) 
where 

CXJ,-r=z,Xgg<J;)/21(21 -1), 1 
CJ,-r=~MgiJ;), II 

Xgg=eQ<o2V/og2), 

<J;)=HJ(J +l)+E-(x+l)oE/ox], I 
<Jb=oE/ox, 

<J~)=HJ(J +l)-E+(x-l)oE/ox], 

.. (46) 

in .which a, b, and c refer to the principal inertial axes, E is the reduced rigid 
rotor energy, and x is the asymmetry parameter. 

Ng· 

Usually Laplace's equation z,02V/og2=O is applied to eliminate one of the 
g 

V. MATRIX ELEMENTS FOR Two NUCLEAR SPINS 

(a) Matrix Elements for Similar Ooupling: I 2I1IJFK Representation 
When the energy of interaction with the rest of the molecule is about the 

same for each nucleus, the most appropriate coupling scheme is (Foley 1947) 

12 +11 =1, } 
I+J =F, 

.................. (47) 

where I is the total spin angular momentum. The intermediate and total 
angular momentum quantum numbers cover the ranges 

1=11+12,11+12-1, ... , 111-121, I 
~ ...... (48) 

F=J +1, J +1 -1, ... , I J -I'. ) 
In general I is not a good quantum number. 
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By using the reversed spin angular momenta to give 

(49) 

in the molecular representation I 2J1IJFK, ana putting n=2 and 

J 2Jl J1,2JOJ --+ i 2i1 iF J (50) 

in equation (16), we can write~ similarly to equation (38), 

(IJK I.H I I' j, KT=[~j=1,2,S(K II) I K')(I 111111 I')(IJ II I' J') 

+~j=1,2(K I I} I K')(IJ/I')(IJ I I' J')](JK II J' K'), ' 

............ (51) 

in which I' =1, I ±1, I ±2, J' =J, J ±1, J ±2, and K' =K, K ±1, K ±2. The 
matrix (JK II J' K') has been given in Table 6, and (K I Ij IK') and (K I I) I K') 

TABLE 9 

THE FACTORS (K I ~ I K') AND (K I I) I K') 

K' K K±I K±2 

(KilliK') (Xl 31 =t= ie:l [31 =t= iYl 
(KII.IK') (X. 

I 

3,=t= ie:, [3,=t= iy. 
(KllsIK') (xs 3s=t=ie:s [3s=t=iys 

(KII~IK') J(J+I)ai 3 
al + 3K'_J(J+I) J'J 

dl =t= iel bl =t= iCl 

(K! 12 I K') 
J(J+I)a2 3 

a'+3K'_J(J+I) J'J 
d,=t= ie, b,=t= ie, 

TABLE 10 
-2 . -. 

THE MATRICES (111/ j 111') AND (1/;/') 

I' I I-I 1-2 

(I II ii 111') p(Il ,!) -!x(Il,I) N(Il,I) 

(T II i~ 111') p(I.,I) tX(I.,I) N(I.,!) 

(I II i~ 111') 6(11' I)-p(Il , I) -i<p(IH I) +!x(IH I) -H(IHI) 

(I/l~I') 6(Il,!) -t<p(Il,I) 0 

(I~I~/') 6(1,,1) t<p(I" I) 0 

are shown in Table 9, where we have omitted a superscript on the IXs etc. since 
there is only one dipole-dipole term. The factors (11111111') (with I~=Ii2) and 
(1;1/1') are obtained from equations (26), (27), (32), (19), and (20), using (50), 
and are shown in Table 10. 
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It should be noted that, from equations (11) and (25), 

(52) 

(IJ II l' J') and (IJ I I' J') are obtained by putting st--+IJ in Tables 4 and 2: 
respectively, and need not be rewritten here. 

For an asymmetric top molecule the first-order matrix elements diagonal 
in J and 7 become (cf. equation (45)): 

(Ih I H I Ih)={a;}~)"p(Il,1) + a;:J,)"p (12,1) +a;;;;),,[8(I1 ,1) -p(Il' I)]}p(I1 J) l 
+[c}~),,8(Il' I) +c:J,),,8(I2, 1)]8(1, J), 

(Ih I H I I -lh)= -{a;<J\x(IB I) -a;:J,)"x(I2, I) 

+a;}~),,[ cp(IB I) -X(IB I)]}~"I)(I, J)[R(I, J) -(I +1)] <P(J) 

-(c<J,\-c:J,),,)cp(IB 1)"1)(1, J)/4J(J +1), 

(Ih I H I I -2h)=(a;<J,)T+a;}~),,-a;}~)T)N(Il' 1)"1)(1, J)"I)(I -1, J)<P(J), 

(53) 
where 

(k) "M(k)<J2) cJ,,,='"'" Ug g, 
u 

x~~)=eQk< 2)2Vk /og 2), 

the <J~) being defined in equation (46) and r standing for r12. 

When II =12 the quadrupolar parts of equation (53) reduce to the matrix 
elements of the special cases discussed by Robinson and Cornwell (1953) and by 
Ramsey (1956, pp. 63, 83). 

If the two spins are equal and have equal couplings a;k' the matrix elements. 
of the quadrupole coupling off-diagonal by 1 in I will vanish. If also the ~pins. 
are symmetrically placed in the molecule, as, for example, in C2v molecules, 
energy levels with total spin I differing by one unit cannot exist simultaneously 
for a given symmetry of J and 7, hence the off-diagonal matrix elements (I I I ±1) 
can connect only states which also differ in J and/or K. In general, then, if 
this spin symmetry exists, these (I I I ±1) contributions to the hyperfine energies 
will be off-diagonal in the rotation energy and may usually be neglected. However, 
in a symmetric top molecule levels of different K are degenerate, and the coupling 
between such states will be first-order, so the splitting may be appreciable, as 
in the case of ammonia (Gunther-Mohr, Townes, and Van Vleck 1954). 

The relative intensities of transitions between hyperfine components. 
described by this coupling scheme can be computed by the method described 
by Robinson and Cornwell (1953). 

The effects of matrix elements off-diagonal in J may be calculated by 
perturbation theory; in many cases the comparatively large spacings of rotational 
energies will enable these effects to be neglected. 
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To first order, only the diagonal elements of the tensor "4~~ contribute to 
the energy (Bragg 1948). If the principal axes of this tensor do not coincide 
with the inertial principal axes x, y, and z, then, in higher order, the off-diagonal 
·elements may have to be taken into account. 

(b) Matrix Elements for Non-similar Ooupling: IIJFIIJj'K Representation 
When one spin (11) is more strongly coupled to the rotation than is the other 

it is usually more convenient to use the coupling scheme (Bardeen and Townes 
1948a) 

.................. (55) 

with 
FI =J +IH J +11 -1, ... , I J -II I, 
F=FI +12, FI +12 -1, . .. , I F I-I2 1· } .... (56) 

In such a representation the general matrix elements of the Hamiltonian become 
rather more complicated than the previous example, because of the lack of 
;symmetry between 11 and 12 : 

(FIJK I H I FIJ' K')= 

{(K 111 I K')(J " !f " JI) +(K 112 I K')(FI " 1~ " FI)(FIJ " FIJ') 
+(K I Is I K')(FI:I2~FI)[FIJ "FIJ'] +(K I 111 K')(J:II~J') 
+(K 1121 K')(FI:I2~FI)(FIJ I FIJ')}(JK" J' K ' ), ........ (57) 

with (K Ilj I K ' ), (K Ilj I K'), and (JK " J' K') already given in Tables 9 and 6, 
respectively, (J " !f " JI) and (FI " ~ "FI) given in equation (26), (J:II~J') and 
(FI:I2~FI) given by equation (19), and (FIJ I FIJ'), (FIJ" FIJ'), and [FIJ" FIJ'] 
()btained from Tables 2, 4, and 5 respectively . 

. The matrix elements diagonal in J and -r are (cf. equation (53)) : 

(FIJ't" I HI FIJ't")=rxY;\p(IH J) +rx~) .. p(I2' FI)p(FH J) 

+rxj~) .. 6(I2' F I) [6(FH J) -P(FH J)] 

+cY;)'r6(IH J)+c~) .. 6(I2' F I)6(FH J), 

(FIJ't" I HIFI -1J-r)=-!!rx(;'-) X(I2, FI)Yj(FH J)[R(FI-1, J)+(FI-1 )]<I>(J) 
2 ~,'t' 

+!rx1;) .. cp(I2' FI)Yj(FH J)[3R(FI -1, J) +3FI -4J(J +1)] <I>(J) 

-c~) .. cp(I2' FI)Yj(FH J)/4J(J +1), 

(FIJ't" I HI F I -2J-r) =l!rxJ(2) ~(I2' FI)Yj(FH J)Yj(Fi -1, J)<I>(J). 
. 2 ,'t' 

(58) 

When the coupling of nucleus 2 is much less than that of nucleus 1 it is 
frequently a good approximation to ignore the matrix elements off-diagonal in 
lJ"I, when also the relative intensities of transitions are readily obtained from 
tables such as in TAS. 
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VI. CONCLUSION 

It will be apparent that for any number of nuclear spins the matrix elements 
of the Hamiltonian can be written down from the above results and converted 
to numerical form for particular values of the quantum numbers. However, 
it is another matter to determine in advance which' of these matrix elements 
vanish because of the symmetry of the molecule. 

The choice of a suitable representation which will simplify diagonalization 
of the resultant matrices depends on the specific problem, and has been discussed 
for some examples by Bersohn (1949). 
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