A CATALOGUE OF RADIO SOURCES BETWEEN DECLINATIONS $+10^{\circ}$ AND -20°

By B. Y. MILLS,* O. B. SLEE,* and E. R. HILL*

[Manuscript received March 3, 1958]

Summary

A catalogue has been prepared of the radio sources observed between declinations $+10^{\circ}$ and -20° , using the Sydney cross-type radio telescope at a wavelength of $3 \cdot 5 \text{ m}$: a total of 1159 sources is listed in the area of $3 \cdot 24$ storadians. This supersedes an earlier catalogue of Mills and Slee in portion of the area, but the differences between the two are small. A number of new identifications with galaxies are suggested, and an analysis made of the statistics of the source distribution. It is concluded that cosmological effects displayed by the distribution, if present, are small. Possibilities are discussed of separating from this distribution the effects of the instrument, the finite angular sizes, and/or the physical clustering of the sources.

I. INTRODUCTION

A preliminary catalogue of radio sources has been published in the declination interval $+10^{\circ}$ to -20° and between Right Ascensions 00^{h} and 08^{h} (Mills and Slee 1957). The observations were made with the Sydney cross-type radio telescope at a wavelength of $3 \cdot 5$ m. This catalogue was preliminary in the sense that adequate checking had not been possible in some places, but was published at that time to draw attention to the large discrepancies between it and the catalogue of Shakeshaft *et al.* (1955) of Cambridge.

The area concerned has now been checked thoroughly and extended between the same declination limits over the whole 24 hr of Right Ascension; in the additional area a great deal more observational data have been used than previously. Other catalogues of more southerly regions are in preparation and will be published in due course.

Very few drastic changes have been needed in the preliminary catalogue, but a large number of minor improvements were possible as the result of accumulating more observations. Accordingly, it has been found desirable to repeat in full the list of sources in the original area. A total of 1159 sources is now listed between $+10^{\circ}$ and -20° ; the area involved is 3.24 steradians.

These more extensive data strengthen the conclusions reached in the earlier paper. There is again extremely poor detailed agreement with the Cambridge catalogue; moreover, the new statistics agree closely with our earlier more limited results but disagree grossly with the Cambridge statistics. It is concluded, as before, that the source count ogive is not significantly different from that expected with a uniform spatial distribution of sources. However, there is

^{*} Division of Radiophysics, C.S.I.R.O., University Grounds, Chippendale, N.S.W.

COSMIC RADIO SOURCES BETWEEN DECLINATIONS $+10^{\circ}$ and -20° 361

evidence for a slightly excessive slope which could be due to a *small* excess of faint sources, physical clustering of the sources, or simply a statistical deficiency of stronger sources in our immediate neighbourhood. These possibilities are considered in Section IV. The catalogue has been examined for identifications with various celestial bodies using the Skalnate Pleso Catalogue (Becvar 1951) and some parts of the Palomar Sky Atlas that are now available. There are a number of possible new identifications with extragalactic nebulae, including the Hydra II and Pegasus I and II clusters of galaxies: these are very briefly discussed.

II. THE CATALOGUE

The preparation of the catalogue, given in Tables 1, 2, and 3, follows the methods outlined by Mills and Slee (1957); that paper will henceforth be referred to as paper I. Over most of the area, at least two normal "scanning" type records were available (i.e. quasi-simultaneous recordings on five declinations); in addition, "non-scanning" records had been taken in a large number of areas. In general, sources were systematically picked out using the best of the available scanning records and checked against all other records of the same region. During the checking process, a few additional weak sources were noted which had been obscured on the original records by noise fluctuations or interference; these were also included. There remain a few areas where checking was not possible, either because of the absence of a second record or because of interference. Sources in these areas are indicated in the catalogue and must generally be regarded as less reliable than the others; experience indicates that the main effects of using a single record are to miss some of the weaker sources and to introduce rather large errors in the flux densities. In estimating the positions and flux densities of the remaining sources the best possible use of all the data has been made by taking averages or, where indicated, weighted averages of the measurements available. This procedure has resulted in slight modifications to at least one of the three listed measurements of a substantial proportion of the sources in paper I. Flux densities, in general, are given to two significant figures, but for the weaker sources the second figure has no significance and has been retained only for consistency in the statistics. Regions where possible confusion arises with bright sources in the side lobes have been indicated by Mills et al. (1958).

The same general method of cataloguing has been adopted as in paper I, and, for convenience, a reference number has been attached to each source which is defined in a similar way. The first two digits of the reference number denote the hour of the Right Ascension; these are followed by the sign and tens digit of the declination in degrees and an italicized serial number arranged in order of increasing Right Ascension within the 1-hr period. To save space, however, only the italicized serial numbers are given in the catalogue as the others are immediately evident; for example in Table 1, the second source listed would be referred to in the text as 00+02.

As before, the probable errors in the final digit of a position measurement have been estimated and are indicated by superscripts. Some comparisons

B. Y. MILLS, O. B. SLEE, AND E. R. HILL

TABLE 1

sources between declinations $+10^{\circ}$ and 0°

Sources observed on one record only are indicated by an asterisk. Sources which may be "extended", that is, resolvable, are indicated by a dagger. A colon has been placed beside uncertain flux densities

D	Position	(1950)	Flux	D-f	Position	u (1950)	Flux
Ref. No.	R.A.	Dec. N.	Density (10 ⁻²⁶	Ref. No.	R.À.	Dec. N.	Density (10 ⁻²⁶
	h m	۰ <i>۲</i>	W m ⁻² (c/s) ⁻¹)		h m	· /	W m ⁻² (c/s) ⁻¹
	00		·····		02		-
1	$04 \cdot 9^{3}$	$06 \ 05^{8}$	35 (20)(1)	4	$12 \cdot 5^{5}$	$06 \ 11^8$	14
2	$10 \cdot 2^2$	$00 \ 37^{5}$	20	5	$19 \cdot 4^{2}$	08 086	24
3	$14 \cdot 2^{3}$	$06 \ 48^{7}$	18	6	$26 \cdot 2^{3}$	02 357	9.0
4	$16 \cdot 0^4$	08 208	11	7	35.73	07 018	10
5	$24 \cdot 8^{4}$	07 286	11	8	$50 \cdot 4^4$	01 196	10
6	30.0_{6}	01 4010	68 (20) ⁽²⁾	9	$53 \cdot 4^{3}$	06 487	11
7	$30 \cdot 8^{3}$	$05 \ 53^{5}$	25	10	$55 \cdot 1^{1}$	$05 \ 53^{4}$	51
8	$32 \cdot 1^4$	04 286	16 ⁽³⁾	11	58·9 ³	$01 \ 35^{5}$	27
$\boldsymbol{9}$	$34 \cdot 2^{3}$	00 126	15				
10	$36 \cdot 7^4$	03 356	14	1.00	03		
11	$37 \cdot 4^{2}$	$09 \ 30^{5}$	37	1	00.23	07 206	18
12	40·1 ³	06 537	14	2	00.93	09 376	13
13	40.6^{4}	02 208	7:	3	$05 \cdot 4^2$	$03 \ 50^{5}$	34
14	$42 \cdot 6^4$	05 267	19	4	$09 \cdot 2^4$	05 118	10
15	$55 \cdot 3^{3}$	01 146	16	5	$25 \cdot 2^3$	$02 \ 25^{5}$	41
16	$55 \cdot 5^{4}$	08 47 ⁸	14	6	$34 \cdot 1^4$	$09 \ 51^{7}$	24
17	$59 \cdot 8^{3}$	04 326	19	7	$35 \cdot 8^{4}$	07 407	13
				8	40 · 53	$04 \ 55^{5}$	35
	01			9	$45 \cdot 6^{3}$	$00 \ 41^{5}$	15
1	. 14·9 ³	06 056	11	10	$46 \cdot 6^{3}$	05 426	15
2	16.3^{2}	08 116	14	11	$51 \cdot 4^4$	03 586	16
3	17.3^{4}	03 205	33 (16)(4)	12	$58 \cdot 2^2$	$00 \ 27^{5}$	19
4	23.13	$01 \ 22^{5}$	20(5)				
5	$24 \cdot 4^{3}$	$09 \ 13^{7}$	16		04		
6	$28 \cdot 7^2$	03 526	18	1	$00 \cdot 0^{3}$	$05 \ 35^{8}$	13
7	$29 \cdot 2^2$	06 075	23	2	00.13	$02 \ 21^{5}$	11
8	$33 \cdot 5^{4}$	07 536	15	3	$04 \cdot 7^{2}$	$03 \ 45^4$	37
9	$34 \cdot 9^4$	06 34 ⁸	7.4	4	$11 \cdot 9^{4}$	05 437	8.6
10	43.03	02 016	$9 \cdot 4$	5	$21 \cdot 9^4$	00 248	14
11	46 · 2 ³	06 10 ⁸	19†	6	$23 \cdot 2^4$	04 266	13
12	47.23	07 076	19†	7	$28 \cdot 6^2$	01 025	20†
13	$52 \cdot 1^4$	03 326	49 (27)(6)	8	$32 \cdot 8^2$	$03 \ 57^{5}$	25†
14	$57 \cdot 4^{3}$	01 106	16	9	$38 \cdot 2^5$	07 058	8:(7)
				10	$41 \cdot 8^{3}$	$02 \ 15^{5}$	30†
	02			11	$51 \cdot 5^4$	02 336	10
1	$02 \cdot 3^4$	04 208	10	12	$54 \cdot 9^{5}$	06 43 ⁸	13
$\frac{1}{2}$	$02 \ 0$ $07 \cdot 4^2$	09 358	23	13	$56 \cdot 3^{3}$	05 208	10
$\tilde{3}$	$11 \cdot 0^2$	03 50 $02 58^{5}$	23	14	$58 \cdot 5^{4}$	01 246	15

⁽¹⁾ Perhaps two sources.

⁽²⁾ Complex brightness distribution; may be several sources.

⁽³⁾ Perhaps a background irregularity. ⁽⁴⁾ (NGC 470/474). ⁽⁵⁾ (NGC 533).

⁽⁶⁾ Perhaps two sources or interference from 05N2A.

⁽⁷⁾ Doubtful, not visible on all records.

			IABLE I (· · · · ,		· · · · · · · · · · · · · · · · · · ·
Ref.	Positior	ı (1950)	Flux	Ref.	Positior	ı (1950)	Flux
	R.A.	Dec.	Density	No.	R.A.	Dec.	Density
No.	п.н.	N.	(10-26	110.	10.11.	N.	(10-26
• • • •	h m	• · ·	W m ⁻² (c/s) ⁻¹)		h m	• •	W m ⁻² (c/s) ⁻¹)
	05				09		-
1	$04 \cdot 5^{3}$	07 207	16	1	$09 \cdot 2^{3}$	08 237	13
2	10·9 ³	01 026	38	2	$15 \cdot 2^2$	09 356	40(13)
3	$16 \cdot 4^4$	09 588	20	3	· 34·1 ²	$04 \ 50^{5}$	24 .
4	16.5^{2}	03 598	17	4	$34 \cdot 4^4$	02 136	14†
5	28·9 ³	06 356	30	5	41·8 ³	09 577	32
6	$38 \cdot 8^4$	05 438	$9 \cdot 2$	6	43 · 0 ³	$02 \ 21^{5}$	7.1
7	$41 \cdot 5^{3}$	02 466	22†(8)	7	44·9 ²	$07 \ 39^{4}$	89
	·			8	49.7^{2}	00 065	36
	06			9	50.5^{3}	09 007	16
1	00.5^{4}	02 237	11	10	$55 \cdot 3^{2}$	$03 \ 35^{5}$	18
2	02.33	00 545	12				
3	$05 \cdot 4^{5}$	08 0810	109 (28)		10		
4	$14 \cdot 2^4$	05 438	18†	1	$05 \cdot 7^{2}$	$07 54^{6}$	30
5	$15 \cdot 3^4$	03 368	8.8	2	08 · 63	06 326	39
6	20.3^{4}	09 0010	153 (45)	3	$09 \cdot 9^{4}$	04 5010	8.7
7	24 · 83	02 505	18*	4	10.9^{3}	03 116	9.4
8	$29 \cdot 6^{2}$	05 013	250 (87) ⁽⁹⁾	5	$22 \cdot 0^{3}$	09 36 ⁸	15
9	32.63	02 094	29	6	$24 \cdot 0^{3}$	06 416	35*
10	34 · 83	07 158	72 (40)	7	$38 \cdot 2^{3}$	02 36 ⁸	13
11	42.7^{4}	05 158	27	8	$47 \cdot 3^{3}$	04 257	13†
12	$42 \cdot 8^4$	00 1010	16	9	$48 \cdot 8^{2}$	00 005	21†
13	$52 \cdot 5^{4}$	03 00 ⁸	22	10	$54 \cdot 0^4$	02 096	24 (14)(14)
14	$54 \cdot 1^{3}$	08 3610	24†	11	56·84	09 157	19
	07				11		
1	$17 \cdot 9^4$	08 488	11	1	06.5^{5}	09 457	16†
2	$19 \cdot 4^{3}$	$01 \ 34^{5}$	17*(10)	2	$07 \cdot 1^4$	03 487	15
3	$29 \cdot 6^{3}$	03 068	21	3	$08 \cdot 0^{5}$	01 568	7.0
4	$41 \cdot 9^2$	02 055	36	4	$20 \cdot 2^4$	$07 \ 40^8$	8.2*
5	$44 \cdot 9^{4}$	09 578	13	5	$20 \cdot 9^{3}$	$05 \ 25^7$	19
6	$53 \cdot 7^{4}$	07 107	8.2(10)	6	$22 \cdot 5^{4}$	02 208	$8 \cdot 5$
				7	$26 \cdot 3^4$	00 428	$7 \cdot 1$
	08	1		8	$37 \cdot 4^{3}$	01 247	15
1	$03 \cdot 4^4$	04 488	8.7	9	$38 \cdot 4^4$	05 438	8.2*
2	$12 \cdot 4^{3}$	01 336	29 (22)	10	42.43	08 147	14
3	$19 \cdot 8^{2}$	06 074	125 (60)(11)	11	42.5^{5}	09 3010	$8 \cdot 6$
4	$33 \cdot 4^3$	00 427	17	12	$47 \cdot 0^{3}$	$05 \ 40^{7}$	11*
5	$34 \cdot 5^{3}$	09 307	13	13	$54 \cdot 1^{3}$	04 2610	12^{+}
	38.5^{5}	03 178	17†	14	$59 \cdot 6^{3}$	00 367	$8 \cdot 5$
6		$07 \ 28^{7}$	14				
6 7	$41 \cdot 0^4$	01 20	11				
	$41 \cdot 0^4 \\ 43 \cdot 3^4$	07 28 ⁴ 02 20 ⁸	9.4				
7							

TABLE 1 (Continued)

⁽⁸⁾ Could be associated with Barnard's ring. ⁽⁹⁾ (NGC 2237).

⁽¹⁰⁾ A doubtful source. ⁽¹¹⁾ Possibly interference from 08S4A.

⁽¹²⁾ (Hydra II cluster). ⁽¹³⁾ Possibly interference from 09S1A. ⁽¹⁴⁾ Perhaps two sources.

 \mathbf{F}

	Position	(1950)	Flux	Ref.	Position	(1950)	Flux
Ref. No.	R.A.	Dec.	Density	No.	R.A.	Dec.	Density
110.	10.21.	N.	(10^{-26})	1.01		N.	(10^{-26}) W m ⁻² (c/s) ⁻¹
	h m	0 /	W m ⁻² (c/s) ⁻¹)		h m	• •	w m - (c/s) -
	12				14		
1	$01 \cdot 7^{5}$	$07 \ 14^{8}$	13	11	$35 \cdot 5^{2}$	00 236	14
2	$04 \cdot 2^2$	$04 \ 19^{5}$	25	12	$37 \cdot 1^{5}$	$08 58^{8}$	12*
3	$07 \cdot 4^{3}$	08 3910	12	13	40.6^{2}	$05 \ 04^{6}$	15
4	$14 \cdot 8^{2}$	04 006	30(15)	14	$45 \cdot 0^2$	$07 54^{6}$	19*
5	16.7^{1}	$05 59^{5}$	100(16)	15	56.5^{3}	04 016	11
6	18.0^{3}	$09 \ 50^{10}$	24				
7	$19 \cdot 0^2$	02 466	12*		15		
8	$26 \cdot 6^2$	$02\ 17^4$	167	1	$00 \cdot 1^4$	$06 \ 15^{10}$	15*
$\boldsymbol{9}$	$35 \cdot 3^{3}$	$01 \ 42^{8}$	16	2	$08 \cdot 2^2$	08 097	42†
10	$46 \cdot 9^{5}$	$09 \ 23^{8}$	14(17)	3	$08 \cdot 6^2$	06 086	24*
11	$51 \cdot 5^{3}$	$08 \ 53^{6}$	17(18)	4	09.82	$01 \ 42^{8}$	20
				5	$14 \cdot 2^2$	07 116	140
	13	-		6	14.42	$00\ 18^{8}$	16
1	$02 \cdot 0^2$	09 027	22	7	$19 \cdot 3^2$	$07 55^{6}$	50*†
2	$04 \cdot 5^4$	07 027	18	8	33.35	09 298	13
3	$08 \cdot 0^{3}$	06 107	22*†	9	$34 \cdot 1^{2}$	02 386	17
4	09.7^{2}	04 007	7.5	10	$36 \cdot 1^4$	01 427	12
5	$12 \cdot 6^{5}$	07 41 ⁸	16	11	$37 \cdot 4^{3}$	06 08 ⁸	22*
6	18.7^{3}	01 008	50 (27)	12	$42 \cdot 1^{3}$	04 067	17*
7	30.33	02 188	19	13	$42 \cdot 4^2$	$02 \ 20^{5}$	16
8	$32 \cdot 8^{3}$	06 2210	8.0	14	$48 \cdot 9^2$	03 106	18*
\ddot{g}	40.3^{4}	02 209	13				
10	$45 \cdot 6^{3}$	00 426	8.3		16		
11	50.0^{5}	06 197	54 (22)*	1	$00 \cdot 0^2$	02 135	100(21)
$12^{}$	$55 \cdot 0^{2}$	01 246	19	2	$02 \cdot 8^4$	01 057	45
13	$55 \cdot 4^{3}$	$04 \ 50^{7}$	10	3	$03 \cdot 3^{2}$	00 066	35
				4	$07 \cdot 0^4$	$04 \ 25^{7}$	17
	14			5	$13 \cdot 3^{3}$	$04 \ 25^{6}$	27
1	01.03	$09 \ 22^{7}$	28	6	$22 \cdot 2^{3}$	J8 21 ⁶	14
$\frac{1}{2}$	$09 \cdot 4^{3}$	07 316	14	7	$29 \cdot 0^{5}$	09 0810	22*+(22)
3	13.0^{5}	$05 49^{8}$	17	8	$38 \cdot 1^{3}$	$03 \ 44^{10}$	23*
4	$15 \cdot 8^{3}$	01 067	13	9	44.7^{3}	01 438	33†
+ 5	$15 \ 8 \ 16 \cdot 7^{1}$	$01 \ 00 \ 00 \ 00$	114	10	$48 \cdot 8^{1}$	05 042	890(23)
6	10^{-7} $17 \cdot 0^{2}$	00 + 3 $04 - 00^{5}$	22(19)				
7	$24 \cdot 3^{3}$	04 197	13*		17		
8	$24 \cdot 3^{2}$ $25 \cdot 4^{4}$	04 13 00 36 ⁶	16	1	03.23	$09 \ 16^{10}$	78 (49)*(22)
9	$25 \cdot 4^{-3}$ $32 \cdot 5^{-3}$	06 387	17*(20)	$\frac{1}{2}$	22·33	$05 44^4$	36*†(24)
3	54.0-	03 366	47 (31)	3	$56 \cdot 1^4$	02 4610	48:*

TABLE 1 (Continued)

⁽¹⁵⁾ (NGC 4234). ⁽¹⁶⁾ (NGC 4261), (NGC 4270).

(17), (18) Perhaps one extended source. (19) (NGC 5566).

⁽²⁰⁾ Perhaps E.-W. side lobe of Virgo-A.

⁽²¹⁾ Perhaps slightly extended.

(22) A doubtful source.

(23) IAU 16N0A.

⁽²⁴⁾ Perhaps a galactic irregularity.

· · · · · · · · · · · · · · · · · · ·		TABLE 1	(Contin	ued)		
\mathbf{Positi}	on (1950)	Flux	Ref.	Positi	on (1950)	Flux
R.A.	Dec. N.	Density (10 ⁻²⁶	No.	R.A.	Dec. N.	Density (10 ⁻²⁶
h m	0 /	W m ⁻² (c/s) ⁻¹)		h m	• <i>·</i>	W m ⁻² (c/s) ⁻¹)
18				21		
$03 \cdot 9^{4}$	00 127	33†	4	$26 \cdot 4^2$	07 157	27
$04 \cdot 3^{4}$	03 4010	27	5	$27 \cdot 1^{5}$	01 068	67 (25)(28)
$15 \cdot 3^{4}$	00 0410	14	6	$36 \cdot 0^4$	03 476	12
$17 \cdot 4^{3}$	03 056	41	7	39.8^{4}	02 457	18†
$26 \cdot 5^{4}$	00 256	50 (24)	8	42·4 ³	$07 54^{8}$	15
$29 \cdot 6^4$	09 4010	45†	9	$42 \cdot 5^4$	04 00 ⁵	11
$34 \cdot 6^{3}$	03 376	20:†	10	$49 \cdot 6^4$	07 528	23
42.7^{7}	09 3010	54†	11	50.5^{4}	05 177	17
$43 \cdot 3^{4}$	07 15 ⁸	28:	12	$52 \cdot 2^4$	02 087	15
$44 \cdot 0^{5}$	05 078	25†	13	58·3 ⁵	05 167	8.3*
$53 \cdot 7^{1}$	01 295	550(25)	14	$59 \cdot 9^{3}$	$04 \ 25^{5}$	8.4
19				22		
$09 \cdot 0^{3}$	05 056	59 ⁺⁽²⁶⁾	1	06.5^{4}	01 547	26
$12 \cdot 7^{3}$	00 098	29†	2	10.0^{5}	07 416	14
$17 \cdot 5^{3}$	00 5410	20†	3	10.8^{5}	08 487	31*†
30.1_{3}	00 547	20	4	$21 \cdot 4^{5}$	02 177	8.1
$32 \cdot 4^4$	09 436	30:	5	$22 \cdot 4^4$	$05 55^{5}$	16
$33 \cdot 8^{3}$	05 558	18+(26)	6	26.63	08 277	19
$37 \cdot 4^{3}$	04 1312	34†	7	$34 \cdot 9^4$	05 438	12
$37 \cdot 7^{4}$	01 0610	8.3	8	39.94	04 288	12
$43 \cdot 8^{3}$	09 16 ⁸	13*	9	46·9 ³	07 008	15
$49 \cdot 8^{3}$	02 262	64	10	49.5^{5}	09 437	17
			11	$50 \cdot 4^2$	03 355	11
20			12	$51 \cdot 7^{3}$	00 547	13
$15 \cdot 2^{3}$	08 498	15*	13	$52 \cdot 3^{3}$	02 437	16
15.7^{3}	01 547	14	14	$55 \cdot 3^{4}$	08 086	16
10.00	04 007					

15

1

 $\boldsymbol{2}$

3

 $\mathbf{4}$

 $57 \cdot 2^{4}$

 $05 \cdot 1^{4}$

 $08 \cdot 2^{3}$

 $09 \cdot 6^{4}$

 10.5^{3}

 $\mathbf{23}$

09 438

03 236

07.286

09 168

04 506

15

9.4

22(29)

18

51 (29)(30)

TARTE 1 (Continued)

Ref. No.

1

 \mathcal{Z}

3

4

 $\mathbf{5}$

6 7

8

9

10

11

1 2

3

4

 $\mathbf{5}$ 6

7

8 9

10

1

 $\mathbf{2}$

3

4

 $\mathbf{5}$

6

7

8

9

 $16 \cdot 9^{3}$

 $25 \cdot 6^{6}$

 $35 \cdot 7^{5}$

 $37 \cdot 3^{5}$

 $39 \cdot 1^{3}$

 $42 \cdot 4^{5}$

 $45 \cdot 9^3$

04 007

06 228

04 1310

05 208

00 487

03 297

01 547

13

16

11

14

12

11

19

10 $45 \cdot 9^{3}$ 06 577 22^{+} $\mathbf{5}$ 14 · 01 03 533 5711 $47 \cdot 7^3$ $04 \ 00^{7}$ 10 6 $19 \cdot 0^4$ 09 167 $7 \cdot 8^*$ 12 $55 \cdot 4^{4}$ $00 \ 42^4$ 104 (23) 7 $24 \cdot 9^{4}$ 06 498 15 $55 \cdot 7^{4}$ 13 05 438 8 19 $25 \cdot 0^4$ 03 546 179 $31 \cdot 3^{4}$ 01 036 $8 \cdot 6$ $\mathbf{21}$ 10 $35 \cdot 5^{7}$ 05 397 13 12*(27) 1 $07 \cdot 6^4$ 06 1910 11 39.33 $04 \ 38^{5}$ 13^{+} \mathcal{L} $12 \cdot 7^{3}$ $04 \ 06^{5}$ 1212 $57 \cdot 1^{5}$ $09 \ 48^{5}$ 12* 3 $21 \cdot 9^{3}$ 02 456 17 ⁽²⁵⁾ Perhaps slightly extended. ⁽²⁶⁾ Perhaps a galactic irregularity.

⁽²⁷⁾ A doubtful source. ⁽²⁸⁾ May be several sources.

⁽²⁹⁾ (Pegasus I cluster). ⁽³⁰⁾ (Pegasus II cluster).

B. Y. MILLS, O. B. SLEE, AND E. R. HILL

TABLE 2

Sources between declinations 0° and -10°

Sources observed on one record only are indicated by an asterisk. Sources which may be "extended", that is, resolvable, are indicated by a dagger. A colon has been placed beside uncertain flux densities

	Position	n (1950)	Flux	Ref.	Position	(1950)	Flux
Ref. No.	R.A.	Dec.	Density	No.	R.A.	Dec.	Density
NO.	n.A.	S.	(10 ⁻²⁶	110.	10.111	S.	(10-26
	h m	0 /	W m ⁻² (c/s) ⁻¹)		h m	° '	W m ⁻² (c/s) ⁻¹)
	00				02		
1	03.33	00 564	35	1	$02 \cdot 6^4$	05 336	8.5
2	06.04	06 198	15	2	$08 \cdot 3^{4}$	03 386	12(4)
3	$17 \cdot 4^{3}$	05 016	$9 \cdot 5$	3	10.73	08 116	8.5
4	17.7^{3}	02 514	23	4	10.8^{4}	$04 54^{6}$	8.7
5	$18 \cdot 8^{3}$	01 426	$9 \cdot 8$	5	$12 \cdot 4^{3}$	02 466	7.5
6	$21 \cdot 5^4$	08 146	24†	6	$14 \cdot 2^{3}$	00 546	12
7	$32 \cdot 3^2$	$08\ 27^4$	13(1)	7	$18 \cdot 6^2$	02 11 ³	74(5)
8	$32 \cdot 6^{3}$	07 326	$9 \cdot 0$	8	18.64	$03 \ 45^{6}$	7.5
9	$36 \cdot 4^2$	$02 \ 50^{5}$	120 (67) ⁽²⁾	9	$29 \cdot 4^{3}$	$04 55^{5}$	12
10	39.0^{4}	$06 \ 23^{5}$	10	10	$29 \cdot 8^4$	00 186	14
11	$39 \cdot 2^{1}$	09 43 ³	56	11	29 · 83	$06 57^{5}$	15
$12^{}$	$42 \cdot 9^{3}$	00 055	12	12	30.84	$02 \ 40^{6}$	11
13	46.0^{3}	07 015	12	13	$39 \cdot 4^4$	02 306	15
14	46.7^{3}	02 486	18	14	40·0 ¹	$00 \ 09^{3}$	35(6)
$15^{}$	51.7^{3}	03 424	23	15	$42 \cdot 8^{3}$	$05\ 21^{5}$	25†
16	$52 \cdot 4^4$	05 066	$8 \cdot 5$	16	$43 \cdot 6^{3}$	09 507	8.7
17	$54 \cdot 5^{1}$	$01 \ 39^2$	90 (72)	17	$46 \cdot 3^4$	07 466	9.0
				- 18	$54 \cdot 1^4$	03 306	11
	01			19	56·8 ³	05 066	8.8
1	06.5^{3}	00 576	13	20	$57 \cdot 8^{3}$	$07 \ 30^{5}$	11
$\overline{2}$	10.5^{3}	05 076	15				
3	19.6^{3}	$00 \ 13^{5}$	19		03		
4	$21 \cdot 1^4$	03 506	18	1	12.63	03 374	20
$\overline{5}$	$23 \cdot 5^{1}$	$01 \ 35^2$	88	2	$29 \cdot 8^{3}$	$07 \ 40^{5}$	12
6	$28 \cdot 8^{3}$	07 036	19(3)	3	$31 \cdot 7^2$	$01 \ 25^4$	64
7	$30 \cdot 8^{3}$	00 265	10	4	39.0_{3}	$04 55^{5}$	8.8(7)
8	$35 \cdot 1^2$	$09 \ 25^4$	18	5	46.04	04 207	16
9	$35 \cdot 4^{3}$	02 065	13	6	$49 \cdot 6^{2}$	07 256	25
10	$43 \cdot 7^2$	02 275	12	7	$56 \cdot 5^{5}$	03 506	11
11	$45 \cdot 5^{4}$	00 026	12	8	$59 \cdot 2^{3}$	02 106	16(8)
12	$47 \cdot 6^{4}$	09 096	9.4				
13	$49 \cdot 9^2$	03 524	20				
14	$51 \cdot 6^4$	07 266	9.0				
15	52.23	05 177	6.8				
16	$55 \cdot 1^{3}$	00 396	8.0				
17	57.04	02 316	8.5				

⁽¹⁾ (NGC 157). ⁽²⁾ May be two sources.

⁽³⁾ (NGC 584). ⁽⁴⁾ Perhaps background irregularity.

(5) IAU 02S0A. (6) NGC 1068.

(7) (NGC 1417).

(8) Interpretation difficult, complex response.

367

Ref.	Position	n (1950)	Flux	Ref.	Position	n (1950)	Flux
No.	R.A.	Dec.	Density	No.	R.A.	Dec.	Density
		S.	(10^{-26})	110.	10.11.	S.	(10-26
	h m	• •	W m ⁻² (c/s) ⁻¹)		hm	° '	W m ⁻² (c/s) ⁻¹
	04			-	05		
1	00.13	09 566	10	14	$40 \cdot 1^4$	05 166	9.5(15)
2	00.93	08 546	19	15	$45 \cdot 6^4$	$04 \ 42^{8}$	$6 \cdot 1$
3	$05 \cdot 5^{3}$	05 375	12	16	$46 \cdot 6^4$	06 416	9.0
4	06.03	06 466	17	17	48·0 ⁴	08 086	15
5	09.5^{3}	$01 50^{5}$	15	18	$52 \cdot 0^{3}$	02 006	29(16)
6	$09 \cdot 6^{1}$	01 024	35	19	$53 \cdot 1^{5}$	01 006	19(17)
7	$15 \cdot 5^{3}$	05 357	36 (18) ⁽⁹⁾	20	54·83	03 276	18(18)
8	$15 \cdot 7^2$	03 214	28	21	$56 \cdot 8^{3}$	$08 \ 03^{5}$	14
9	20.34	09 286	8.5				· · · · · · · · · · · · · · · · · · ·
10	$26 \cdot 4^4$	01 156	$9 \cdot 7$		06		
11	$28 \cdot 2^{3}$	09 586	$7 \cdot 3$	1	$04 \cdot 5^{3}$	$04 \ 02^{5}$	9.0
12	$30 \cdot 9^{2}$	08 446	11	2	$06 \cdot 1^2$	$07 \ 21^4$	23†
13	$32 \cdot 9^{3}$	05 304	10	3	$12 \cdot 0^2$	$03 53^{5}$	15
14	39.0^{2}	$09 52^{5}$	17	4	25 · 01	$05 56^{3}$	120
15	39 · 6 ³	00 496	12	5	$27 \cdot 7^{4}$	02 256	8.7
16	$46 \cdot 8^{3}$	$09 55^{5}$	16	6	$38 \cdot 9^{5}$	06 40 ⁸	$9 \cdot 5$
17	$47 \cdot 3^4$	04 336	46 (23) ⁽⁹⁾	7	39·0 ⁵	08 016	50 (25)
18	$49 \cdot 3^{3}$	$06 \ 38^4$	$9 \cdot 6$	8	$45 \cdot 0^4$	02 066	33†
19	$49 \cdot 6^{4}$	$02 \ 31^{5}$	13	9	$45 \cdot 3^{4}$	08 106	17
20	$52 \cdot 4^4$	00 246	20 (12)	10	$45 \cdot 6^4$	09 166	11
21	58.74	03 396	18	11	$47 \cdot 2^{3}$	$05 \ 37^{5}$	25
22	59·6 ³	05 486	8.5	12	56·7 ²	02 125	24
	05				07		
. 1	00.04	08 376	$9 \cdot 1$	1	07.03	00 387	11†
2	10.0^{3}	07 366	16	2	$10 \cdot 4^{3}$	09 065	21
3	$12 \cdot 4^{3}$	$02 \ 19^{5}$	17†	3	$12 \cdot 7^{2}$	02 414	25
4	$13 \cdot 0^{2}$	01 156	18	4	$22 \cdot 3^{3}$	09 494	36
5	$13 \cdot 3^{3}$	09 416	8.8	5	23·1 ³	06 106	94 (47)
6	18.3^{3}	06 155	17(10)	6	24 · 4 ²	02 004	29
7	$22 \cdot 2^4$	02 466	16	7	$31 \cdot 4^4$	05 316	8.6
8	$22 \cdot 34$	07 226	15(11)	8	36 · 23	$02 \ 03^{5}$	19
9	$23 \cdot 6^{3}$	09 366	12	9	$38 \cdot 8^{3}$	01 016	15
10	$27 \cdot 9^{3}$	$00 \ 03^{5}$	15	10	$44 \cdot 2^2$	08 056	17
11	$32 \cdot 5^{2}$	05 243	83 (69) ⁽¹²⁾	11	$48 \cdot 6^{3}$	06 526	11
12	38·0 ⁵	02 2010	88 (24)(13)	12	$58 \cdot 9^{4}$	02 066	$7 \cdot 3$
13	39.14	01 256	23(14)	13	59·73	09 406	17

TABLE 2 (Continued)

⁽⁹⁾ May be two sources.

(10), (11) Perhaps one extended source.

(12) M 42.

(13) IC 434 etc.

(14) Possibly connected with source 05-012.

(15) (M 42—eastward extension).

(16), (17), (18) Perhaps part of Barnard's ring.

Ref.	Position	(1950)	Flux	Ref.	Position	(1950)	Flux
No.	R.A.	Dec.	Density	No.	R.A.	Dec.	Density
110.	10.21.	s.	(10^{-26})	110.	10.11.	S.	(10^{-26})
	h m	° '	W m ⁻² (c/s) ⁻¹)		hm ·	• •	$W m^{-2} (c/s)^{-1}$
	08				10		
1	$01 \cdot 0^2$	04 136	14	7	$23 \cdot 1^{3}$	08 106	11
2	$03 \cdot 1^{3}$	00 30 ⁶	15	8	$24 \cdot 1^{3}$	02 196	17
3	$03 \cdot 9^4$	$07 54^{7}$	9.7	9	24·33	04 477	$5 \cdot 3$
4	$09 \cdot 3^2$	$05 \ 40^{5}$	22	10	$25 \cdot 4^{3}$	$07 \ 20^{6}$	10
5	$13 \cdot 4^2$	$02 \ 53^{5}$	35(19)	11	$27 \cdot 3^2$	$05 57^{6}$	17†
6	$21 \cdot 5^2$	09 326	20†	12	30.14	$09 \ 10^{7}$	6.5^{+}
. 7	$22 \cdot 7^{4}$	04 387	8.8	13	$33 \cdot 4^{3}$	$02\ 29^{6}$	16
8	27·2 ³	$03 \ 15^{6}$	27 (19)	14	$33 \cdot 7^{4}$	$06\ 17^{7}$	$6 \cdot 5$
$\boldsymbol{9}$	$32 \cdot 0^{3}$	05 106	13	15	$36 \cdot 0^4$	$00 53^{6}$	$8 \cdot 2$
10	32.33	07 256	13	16	$41 \cdot 9^{5}$	08 127	17†
11	$34 \cdot 3^{3}$	01 047	13	17	` 44·7 ³	01 066	14
12	40.3^{4}	$09 \ 15^{7}$	7	18	$46 \cdot 3^{2}$	$02 \ 33^{5}$	20
13	$53 \cdot 5^{3}$	$06 \ 07^{6}$	12	19	$48 \cdot 5^{4}$	$09 \ 19^{7}$	8.5*
14	$57 \cdot 6^{4}$	$02 \ 05^{7}$	7.8	20	$59 \cdot 6^{4}$	09 396	6.5*
15	$59 \cdot 9^{3}$	05 076	18	21	$59 \cdot 8^{2}$	00 525	23
	09				11		
1	$01 \cdot 3^{3}$	$06 \ 46^{6}$	13	1	00·3 ³	06 186	15
2	$06 \cdot 5^{3}$	$09 \ 38^{6}$	17(20)	2	$03 \cdot 0^4$	08 227	8.5
3	$06 \cdot 9^4$	03 157	7.6	3	$05 \cdot 4^4$	$03 55^7$	$5 \cdot 0$
4	07 · 0 ³	01 227	7.3	4	$09 \cdot 0^{3}$	06 106	12
5	$21 \cdot 6^4$	04 227	9.5	5	11·8 ³	$01 54^{6}$	18
6	$34 \cdot 9^{3}$	04 006	15	6	$13 \cdot 3^{3}$	07 106	16
7	38.83	01 176	12	7	$16 \cdot 1^{3}$	08 436	15
8	$41 \cdot 4^4$	$07 \ 14^{7}$	8.4	8	$16 \cdot 9^{2}$	$02 \ 46^{5}$	31
g	$42 \cdot 0^{5}$	$09 \ 39^{8}$	100 (28)*(21)	9	$25 \cdot 4^{4}$	$06\ 52^7$	14†
10	48.7^{3}	$04 57^{6}$	9.3	10	$28 \cdot 1^{3}$	$03 \ 15^{6}$	10
11	$48 \cdot 9^{3}$	08 316	12	11	$31 \cdot 4^4$	07 437	6.0
	-			- 12	$34 \cdot 2^4$	00 307	8.2
	10			13	39.3^{4}	01 287	6.3
1	$05 \cdot 3^2$	$09 \ 45^{5}$	17	14	$41 \cdot 6^{3}$	$03 \ 45^{5}$	8.4*
2	07.33	03 446	10	15	42.7^{5}	06 067	6.0
3	$08 \cdot 1^{3}$	07 256	17	16	$42 \cdot 9^{2}$	$00\ 12^{5}$	24†
4	11.8^{4}	09 306	$9 \cdot 4$	17	$46 \cdot 4^{3}$	06 596	16†
5	$16 \cdot 9^{3}$	02 346	16	18	$56 \cdot 2^{3}$	00 306	16
6	17.7^{4}	03 007	$7 \cdot 3$				

TABLE 2 (Continued)

(19) IAU 0880A.

 $^{(20)}$ Perhaps together with 09—13 makes an extended source.

⁽²¹⁾ Complex distribution, may be several sources.

369

	Position	u (1950)	Flux		Positio	on (1950)	Flux
Ref.			Density	Ref.		D	Density
No.	R.A.	Dec.	(10-26	No.	R.A.	Dec.	(10-26
	h m	° S.	W m ⁻² (c/s) ⁻¹)		h m	。 、 。 、	W m ⁻² (c/s) ⁻¹
	12				14		
1	01.83	04 366	11.8	1	$04 \cdot 2^2$	02 098	12^{+}
2	03.73	$07 \ 37^7$	18	2	$05 \cdot 5^{2}$	06 19 ⁵	18
3	04.42	$07 \ 27^{5}$	9.9	3	06 · 1 ²	09 498	10
4	$05 \cdot 0^{3}$	08 426	-11	4	06·5 ³	$08 59^{8}$	27 (17)
$\boldsymbol{5}$	$08 \cdot 6^4$	09 387	11	5	$09 \cdot 0^2$	$02 \ 58^{8}$	7
6	$11 \cdot 2^{3}$	04 3610	$9 \cdot 9$	6	$09 \cdot 6^{2}$	$06 52^{7}$	14
7	$11 \cdot 9^{3}$	00 36 ⁸	15	7	$14 \cdot 7^{3}$	03 507	$24 \cdot 4^{+}$
8	$15 \cdot 9^{3}$	04 477	$15 \cdot 7$	8	19.7^{3}	05 206	$5 \cdot 0$
9	$15 \cdot 9^2$	$09 54^{7}$	23	9	20·13	09 097 -	16
10	$16 \cdot 1^2$	07 035	$9 \cdot 2$	10	23.46	08 007	7.5
11	$35 \cdot 9^{3}$	00 316	8.0(22)	11	$26 \cdot 6^4$	$01 \ 18^{5}$	25
12	37.15	$07 \ 19^{6}$	52 (24)	12	29·1 ³	$03 \ 38^{5}$	16
13	37.7^{3}	04 246	25	13	$34 \cdot 7^{2}$	08 216	14
14	$39 \cdot 2^2$	08 337	20	14	$37 \cdot 4^{3}$	$06 \ 56^{5}$	22†
15	40.5^{4}	06 078	12	15	$42 \cdot 4^4$	08 447	20†
16	$43 \cdot 1^4$	03 066	10	16	$43 \cdot 0^{3}$	03 457	7.6
17	$44 \cdot 8^{3}$	05 218	14	17	$52 \cdot 7^{2}$	04 106	22
18	$45 \cdot 5^{4}$	06 128	17	18	$53 \cdot 5^{2}$	$05 \ 44^{5}$	16
19	$48 \cdot 0^2$	01 366	14	19	-55·5 ³	00 547	19(24)
20	$53 \cdot 7^{1}$	$05 \ 38^{5}$	37				
21	$57 \cdot 3^{2}$	00 246	7.5		15		
		a		1	$02 \cdot 6^{3}$	00 1813	18
_	13			2	$04 \cdot 3^{2}$	06 416	17
1	$04 \cdot 2^{3}$	05 428	$8 \cdot 5$	3	08·3 ³	00 426	19
2	06·04	09 497	19	4	$09 \cdot 0^2$	09 175	18
3	$07 \cdot 3^{2}$	00 295	25	5	$09 \cdot 0^4$	05 266	8
4	$09 \cdot 6^2$	02 297	11	6	$09 \cdot 2^{3}$	08 157	7.5
5	12.84	08 058	45 (23)	7	$20 \cdot 4^{3}$	05 127	14†
6	13·0 ³	06 176	$7 \cdot 0$	8	$21 \cdot 8^{3}$	06 527	12^{+}
7	$13 \cdot 1^{3}$	01 258	16	9	$21 \cdot 9^4$	03 136	$7 \cdot 0$
8	16.84	00 307	13	10	$22 \cdot 1^{3}$	07 287	18
9	$28 \cdot 4^{4}$	06 076	13	11	$22 \cdot 9^{3}$	08 176	12
10	33 · 83	07 547	$8\cdot7$	12	$38 \cdot 1^{5}$	01 546	37 (21)
11	$35 \cdot 7^{2}$	06 216	35	13	$39 \cdot 0^3$	$04 59^{7}$	12
12	$41 \cdot 8^{2}$	03 047	16	14	$42 \cdot 5^{3}$	03 419	23
13	$43 \cdot 0^3$	07 487	53 (23)	15	$45 \cdot 3^{5}$	07 209	$14 \cdot 8^*$
14	$48 \cdot 1^{3}$	09 557	8.0	16	$46 \cdot 0^{2}$	$07 55^{8}$	12
15	$48 \cdot 3^{3}$	05 366	12	17	$51 \cdot 8^{5}$	$02 \ 52^{5}$	9.7
16	$50 \cdot 0^{3}$	06 077	7.8(23)	18	$52 \cdot 4^{2}$	$06 57^{8}$	19
17	$53 \cdot 4^{2}$	08 1010	8.7	19	$53 \cdot 4^{4}$	$09 \ 05^{7}$	10
18	$56 \cdot 7^{4}$	09.578	8.5	20	$57 \cdot 3^{3}$	$04, 38^7$	7.0*

TABLE 2 (Continued)

⁽²²⁾ (NGC 4592).

⁽²³⁾ (NGC 5324).

(24) (NGC 5792).

Ref.	Positio	n (1950)	Flux	Ref.	Position	n (1950)	Flux
No.	R.A.	Dec.	$\begin{array}{c} \text{Density} \\ (10^{-26} \end{array}$	No.	R.A.	Dec.	$\begin{array}{c} \text{Density} \\ (10^{-26}) \end{array}$
		s.	$W m^{-2} (c/s)^{-1}$			s.	$W m^{-2} (c/s)^{-1}$
	hm	o /			hm	• /	(0,5)
	16				18		
1	$02 \cdot 7^{3}$	$09 \ 15^{6}$	20	8	$31 \cdot 6^2$	08 4210	160
2	$05 \cdot 8^{3}$	06 366	9.5	9	$38 \cdot 5^2$	05 106	20:
3	$12 \cdot 3^2$	$02 \ 30^4$	$9 \cdot 1$	10	41.7^{4}	$03 \ 51^{5}$	180 (100)
4	$12 \cdot 4^2$	$00\ 35^{5}$	15	11	$41 \cdot 8^{5}$	01 4810	25:
5	14·0 ³	05 447	9.5	12	$46 \cdot 3^4$	00 538	20:
6	$16 \cdot 0^{3}$	08 427	8.0	13	$50 \cdot 3^{4}$	07 488	17
7	$26 \cdot 4^4$	06 206	9.0	14	$53 \cdot 0^4$	02 427	150 (40) ⁽²⁸⁾
8	$26 \cdot 6^4$	$03 \ 24^{6}$	17	15	$57 \cdot 9^{3}$	$04 \ 13^{5}$	34
9	$34 \cdot 1^{3}$	03 338	12				
10	$36 \cdot 9^{5}$	$00 \ 30^{6}$	26	1	19		
11	42.7^{2}	07 147	21	1	$04 \cdot 2^4$	03 067	53 (34)
12	$49 \cdot 3^{4}$	$00\ 18^{6}$	80 (50)	2	$08 \cdot 9^{3}$	06 417	16
13	$52 \cdot 0^4$	$05 \ 09^{6}$	11	3	$11 \cdot 3^{3}$	09 417	15†
14	$52 \cdot 6^2$	02 179	60 (26)	4	$14 \cdot 1^{5}$	$02\ 17^{7}$	28
15	$54 \cdot 6^{3}$	09 086	11	5	18.5^{3}	05 338	9.8*(29)
16	56.0^{3}	01 117	15:	6	20.06	03 387	16
			-	- 7	$26 \cdot 2^{5}$	$02 \ 05^{5}$	23
	17			8	$28 \cdot 1^{3}$	06 416	12
1	$05 \cdot 8^{4}$	01 366	17	9	$32 \cdot 6^{3}$	$09 \ 46^8$	23
2	06.23	$04 \ 41^{5}$	12†(25)	10	$39 \cdot 8^{3}$	04 36 ⁸	12
3	09.7^{4}	00 267	15:(26)	11	40·8 ⁵	07 296	33 (24)
4	$12 \cdot 5^4$	03 167	21	12	$42 \cdot 9^4$	$04 55^8$	20
5	$16 \cdot 9^{3}$	04 258	31	13	$43 \cdot 5^{2}$	02 456	22
6	18·11	00 55 ³	475(27)	14	$44 \cdot 8^4$	00 137	22
7	22·13	03 50%	16	15	$45 \cdot 8^{3}$	$08 54^{8}$	9.5
8	$24 \cdot 6^4$	08 217	15†	16	$53 \cdot 3^{3}$	$05\ 22^{8}$	10
$\boldsymbol{9}$	$30 \cdot 9^2$	05 107	16*		-		
10	$33 \cdot 7^{3}$	06 528	19	1	20		
11	37.7^{4}	01 188	39	1	$06 \cdot 4^{3}$	$04 \ 25^{7}$	19
12	$48 \cdot 1^{3}$	02 068	53	2	09.7^{3}	09 007	9.5
13	$53 \cdot 8^{3}$	08 108	21*	3	18.74	09 387	9.0
14	$54 \cdot 4^{3}$	05 346	55*	4	$23 \cdot 2^4$	01 187	14
15	$55 \cdot 7^{2}$	01 246	50†	5	$27 \cdot 0^4$	00 477	8.7
	-			- 6	$28 \cdot 6^2$	08 097	14
	18			7	$33 \cdot 5^{2}$	09 278	14
1	$02 \cdot 4^{3}$	05 197	25	8	$37 \cdot 5^{3}$	02 547	$9\cdot 7$
2	$05 \cdot 2^{3}$	00 598	62†	9	$44 \cdot 1^{3}$	02 177	18
3	$12 \cdot 4^{3}$	05 597	82 (48)	10	$45 \cdot 0^{3}$	07 598	9.0
4	14·9 ³	07 038	30:(28)	11	$45 \cdot 1^{3}$	03 157	27 (19)
5	17.64	09 325	50 (25) ⁽²⁸⁾	12	$53 \cdot 2^4$	06 528	15
6	20.62	01 346	76 (55)	13	$58 \cdot 8^4$	08 497	17†
7	$25 \cdot 3^{3}$	04 388	40:†	1			

TABLE 2 (Continued)

⁽²⁵⁾ May be two sources. ⁽²⁶⁾ Possibly side lobe of source 17-06.

(27) Perhaps superimposed on extended source.

⁽²⁸⁾ Perhaps a galactic irregularity. ⁽²⁹⁾ A doubtful source.

Ref.	Position	1 (1950)	Flux	Ref.	Position	n (1950)	Flux
No.	R.A.	Dec.	Density (10 ⁻²⁶	No.	R.A.	Dec.	Density (10 ⁻²⁶
		s.	$W m^{-2} (c/s)^{-1}$			s.	$W m^{-2} (c/s)^{-1}$
	h m	• •	w m • (c/s) •)		h m	o /	W III - (0/8) -)
	21				22		
1	$00 \cdot 2^{3}$	09 456	12	12	$29 \cdot 2^4$	08 336	15†
2	00 · 93	04 027	19†	13	33.33	07.03 ⁸	8.0
3	$02 \cdot 1^{3}$	00 307	11	14	36.93	04 136	16
4	$05 \cdot 4^{3}$	07 065	17	15	$43 \cdot 5^{4}$	02 107	14(32)
5	10.5^{3}	09 507	11	16	$45 \cdot 0^{3}$	$02 \ 52^{7}$	20(33)
6	13.7^{3}	02 4710	28 (15)	17	$49 \cdot 2^4$	03 258	9:
7	24 · 93	$05 \ 35^{8}$	19(30)	18	$53 \cdot 1^{5}$	06 37 ⁸	12
8	25.04	06 366	10(31)	19	$53 \cdot 9^{5}$	00 186	32 (19)
9	$25 \cdot 7^{5}$	00 597	15*	20	$54 \cdot 9^2$	01 166	6.6
10	$28 \cdot 1^{5}$	09 157	16†	21	$55 \cdot 3^{3}$	08 328	13
11	31.93	02 286	9.0				
12	31 · 6 ³	01 166	6		23		
13	38.04	07 028	12	1	01.7^{4}	02 178	7
14	40.6^{4}	09 147	$7 \cdot 0$	2	$02 \cdot 6^{3}$	05 276	10
15	41.7^{3}	04 028	12	3	$02 \cdot 8^4$	01 008	9.5
16	$43 \cdot 8^{3}$	08 107	13	4	03 · 6 ³	03 436	14
17	50.7^{3}	03 407	6.0	5	$05 \cdot 5^{3}$	07 597	6.7
18	$54 \cdot 2^{3}$	01 298	$15 \cdot 6$	6	$07 \cdot 5^4$	09 228	9.0
19	56·33	05 558	11	7	12·6 ³	05 576	6.7
20	$57 \cdot 7^{3}$	03 558	13	8	15·6 ³	02 297	9.8
			-	9	19.5^{2}	09 165	6.0
	22			10	24.33	05 156	35 (19)
1	$02 \cdot 2^{3}$	08 43 ⁸	11	11	$25 \cdot 1^{3}$	02 226	19
2	$04 \cdot 6^2$	09 165	10	12	$25 \cdot 2^4$	08 10 ⁸	9.0
3	$05 \cdot 4^{2}$	05 306	7	13	32.7^{3}	04 595	9.7
4	05 · 73	03 278	13	14	33.45	00 195 .	9.5(34)
5	10.8^{2}	$09 \ 29^{5}$	17	15	38 · 03	00 086	11
6	16·3 ³	03 466	33 (18)	16	$42 \cdot 5^{3}$	05 227	7.6
7	16·9 ³	00 429	13	17	46·1 ³	03 368	8.6
8	$19 \cdot 4^4$	08 4310	7.1	18	48·7 ³	04 218	13
9	21·5 ¹	02 18 ³	60	19	49·7 ³	08 107	10
10	23·1 ³	05 135	30	20	49.93	01 237	18
11	$24 \cdot 5^{3}$	03 398	9.6	21	51.33	05 307	9

TABLE 2 (Continued)

^{(30), (31)} Perhaps one extended source.

^{(32), (33)} Perhaps one extended source.

(34) (NGC 7716).

B. Y. MILLS, O. B. SLEE, AND E. R. HILL

TABLE 3

sources between declinations -10° and -20°

Sources observed on one record only are indicated by an asterisk. Sources which may be "extended", that is, resolvable, are indicated by a dagger. A colon has been placed beside uncertain flux densities

Ref.	Position	(1950)	Flux	Ref.	Position	(1950)	Flux
No.	R.A.	Dec.	Density	No.	R.A.	Dec.	Density
1.0.	10011	S.	(10^{-26})	1.0.	10111	S.	(10^{-26})
	h m	0 /	W m ⁻² (c/s) ⁻¹)		h m	• •	W m ⁻² (c/s) ⁻¹)
	00				01		
1	$00 \cdot 0^2$	$17 \ 32^{5}$	28	13	$36 \cdot 9^4$	$17 \ 49^{6}$	10(2)
2	00.33	$15 \ 28^{5}$	15	14	$38 \cdot 4^4$	18 257	8 · 0 ⁽³⁾
3	00.63	12 236	12	15	$40 \cdot 4^2$	$16 \ 51^4$	28
4	05 · 63	19 586	17	16	$45 \cdot 6^{3}$	18 447	16
5	$09 \cdot 2^2$	$19 \ 07^{5}$	13	17	$47 \cdot 6^{3}$	11 116	10
6	$12 \cdot 4^{3}$	15 078	34 (20)	18	$47 \cdot 9^{3}$	13 117	$8 \cdot 1$
7	$15 \cdot 9^{3}$	$13 \ 02^{5}$	52 (33) ⁽¹⁾	19	50.6^{4}	14 54 ⁶	12
8	$16 \cdot 2^2$	$10 \ 46^{5}$	23	20	$55 \cdot 1^{3}$	10 456	16
9	18.63	19 115	8.7	21	$59 \cdot 6^{3}$	$11 \ 47^{6}$	14
10	$25 \cdot 0^4$	16 486	$6 \cdot 0$				
11	$25 \cdot 3^4$	13 107	13		02		
12	$27 \cdot 6^2$	11 5010	14	1	$02 \cdot 0^4$	19 437	8.5
13	$29 \cdot 4^{3}$	15 336	8.8	2	, 03·5 ³	18 166	17
14	$32 \cdot 5^{3}$	$16 50^{6}$	12	3	$08 \cdot 0^2$	11 186	30 (19)
15	$32 \cdot 5^{3}$	$18 \ 14^{5}$	17	4	$11 \cdot 4^{3}$	16 026	8.2
16	$35 \cdot 0^{5}$	$12 \ 35^{8}$	$9 \cdot 6$	5	13·2 ¹	$13 \ 19^{3}$	42(4)
17	$38 \cdot 0^4$	$13 \ 13^7$	10	6	$14 \cdot 8^4$	$17 58^{8}$	8.5
18	39.0_{3}	$15 \ 44^{6}$	14†	7	$22 \cdot 9^{3}$	11 388	13
19	$43 \cdot 5^{4}$	$14 \ 49^{6}$	9.0	8	$26 \cdot 5^{3}$	17 316	19
20	$45 \cdot 8^{4}$	$17 58^{7}$	$8 \cdot 9$	9	$30 \cdot 8^{3}$	$10 \ 12^{5}$	17
21	$48 \cdot 6^{3}$	$12 \ 28^{5}$	18	10	$35 \cdot 4^{1}$	$19 \ 42^{3}$	44
22	50·1 ³	$19 \ 53^{7}$	11	11	$36 \cdot 0^4$	$14 \ 45^{7}$	14
23	$52 \cdot 3^{4}$	$16 19^{6}$	12	12	$36 \cdot 3^{4}$	18 206	9.5
24	$56 \cdot 9^{3}$	$13 \ 40^{6}$	13	13	$45 \cdot 8^{3}$	$16 \ 47^{6}$	$6 \cdot 2$
25	$57 \cdot 2^{3}$	15 226	17	14	$46 \cdot 2^4$	13 298	15
26	$57 \cdot 6^{3}$	$17 24^{5}$	29	15	$47 \cdot 5^{3}$	$18 \ 10^{5}$	$9 \cdot 3$
27	58 · 9 ³	14 306	9.8	16	56·2 ³	16 526	12
	01				03		
1	$01 \cdot 6^{2}$	$12 \ 27^{5}$	18	1	$03 \cdot 5^{3}$	$12 \ 21^{5}$	18
2	$05 \cdot 9^{1}$	$16 \ 15^2$	53	2	$05 \cdot 4^4$	16 446	17
\mathcal{S}	$07 \cdot 2^3$	$18 \ 51^{6}$	$9 \cdot 0$	3	07.53	$13 \ 33^{7}$	16
4	$08 \cdot 2^4$	14 336	16	4	$15 \cdot 1^{3}$	14 486	$9 \cdot 5$
5	11.7^{4}	$10 \ 07^{6}$	7.8	5	$27 \cdot 9^{3}$	$16\ 51^{5}$	16
6	14.5^{3}	$11 53^{6}$	11	6	$31 \cdot 1^4$	18 486	12
7	$16 \cdot 8^{5}$	$16 \ 45^{10}$	13†	7	$44 \cdot 1^2$	$11 \ 13^{4}$	34
8	16·8 ³	19 006	14	8	$46 \cdot 4^4$	13 086	10
$\boldsymbol{9}$	$18 \cdot 0^2$	$15 \ 34^{3}$	45	9	$49 \cdot 3^2$	14 38 ³	44
10	$24 \cdot 9^{3}$	12 106	$7 \cdot 0$	10	49.7^{2}	$10 \ 08^{5}$	21
11	$25 \cdot 1^2$	$14 \ 13^{3}$	30	11	$57 \cdot 5^{3}$	$16\ 20^{7}$	18
12	$27 \cdot 9^{3}$	$15 \ 38^{5}$	18†	1			

⁽¹⁾ Extended N.-S., may be two sources. ^{(2), (3)} May be one extended source. ⁽⁴⁾ IAU 02S1A.

Ref.	Position	ı (1950)	Flux	Ref.	Position	(1950)	Flux
No.	R.A.	Dec.	$\begin{array}{c c} & \text{Density} \\ & (10^{-26} \end{array} \end{array}$	No.	R.A.	Dec.	$\begin{array}{c c} Density \\ (10^{-26} \end{array}$
	h m	°,	W m ⁻² (c/s) ⁻¹)		hm	s. ° ′	W m ⁻² (c/s) ⁻¹
	04				05		
1	$05 \cdot 0^{3}$	13 208	14†	22	$49 \cdot 3^{2}$	$10 \ 32^{4}$	17
2	$05 \cdot 4^{1}$	12 26 ³	31	23	$51 \cdot 0^{3}$	16 596	8.5
3	$08 \cdot 9^4$	16 276	10	24	51.7^{5}	14 197	8.7
4	$11 \cdot 4^4$	19 367	$9 \cdot 4$	25	$51 \cdot 9^{3}$	12 296	9.5*
5	$11 \cdot 8^4$	11 266	18	26	$57 \cdot 6^{3}$	$16 50^{6}$	13
6	13·8 ³	15 228	15*				
7	16.33	18 135	13		06		
8	$23 \cdot 0^{3}$	$16 57^{6}$	14*	1	$03 \cdot 9^{3}$	10 456	$9 \cdot 2$
g	$23 \cdot 9^{3}$	$12 \ 07^{5}$	16	2	$04 \cdot 6^4$	$17 \ 49^{7}$	15
10	$25 \cdot 9^{3}$	11 387	11	3	$07 \cdot 3^{4}$	14 407	14†
11	$27 \cdot 2^{5}$	18 36 ⁸	$9 \cdot 0$	4	$14 \cdot 8^{5}$	15 007	19
12	$32 \cdot 0^2$	13 26 ⁵	38	5	17.8^{5}	$16 \ 36^{10}$	63 (21)
13	$32 \cdot 9^4$	16 386	15	6	20.3^{4}	13 398	9.5
14	$36 \cdot 9^4$	15 007	$7 \cdot 3$	7	$25 \cdot 8^{3}$	$12 52^{8}$	16†
15	$38 \cdot 3^{3}$	12 106	8.0	8	$34 \cdot 1^4$	15 467	16
16	$42 \cdot 8^{5}$	18 527	$7 \cdot 0$	9	$34 \cdot 9^{3}$	$13 \ 44^{8}$	9.3
17	$48 \cdot 0^{3}$	$17 \ 34^{6}$	14	10	36.33	$16 50^{6}$	18
18	$52 \cdot 1^4$	19 078	$7 \cdot 3$	11	$42 \cdot 2^4$	10 196	84 (27)(6)
19	$54 \cdot 2^{3}$	11 516	17	12	$44 \cdot 0^2$	15 336	18
20	$59 \cdot 9^2$	$12 \ 16^4$	14	13	49.7^{5}	12 4310	55 (11)(7)
				14	$53 \cdot 2^3$	19 157	7.6†
7	$ \begin{array}{c} 05 \\ 03 \cdot 0^3 \end{array} $	10 135	20		07		
1	03.0^{3} 06.5^{3}	10 13° 14 296	16	1		11 097	55 (95)(8)
2	1			1	$03 \cdot 2^2$	$11 \ 02^{7}$	55 (25) ⁽⁸⁾
3	$08 \cdot 5^2$	18 42 ³	41	2	$03 \cdot 6^4$	19 13 ⁷	10
4	$13 \cdot 0^3$	15 568	11	3	$12 \cdot 0^3$	14 30 ¹⁰	17†
5	$13 \cdot 6^2$	13 416	16	4	$13 \cdot 8^4$	$11 \ 20^{5}$	25†
6	$15 \cdot 5^2$	$16 \ 34^{5}$	16	5	$16 \cdot 2^4$	17 077	17†
7	$21 \cdot 2^4$	11 596	11	6	$21 \cdot 4^{3}$	$18 \ 38^{5}$	19
8	$23 \cdot 8^{3}$	18 246	14	7	$23 \cdot 8^{3}$	13 167	13†
9	$24 \cdot 2^3$	$13 \ 36^6$ 16 31^7	16	8	$26 \cdot 1^2$	14 516	17
10	$24 \cdot 9^{3}$		12	9	29.74	18 178	29 (17)
11	$24 \cdot 9^3$	17 356	$8 \cdot 2$	10	$32 \cdot 9^{3}$	15 596	12
12	$25 \cdot 4^3$	$10 \ 45^{6}$	16	11 10	$34 \cdot 2^3$	19 386	11
13	26.64	$14 \ 48^7$ $12 \ 01^6$	8·3	12	$34 \cdot 8^{3}$	15 007	$9 \cdot 2$
14	33.33		15	13	$38 \cdot 6^{3}$	13 586	12
15 10	$34 \cdot 6^4$	18 31 ⁸	12	14	$41 \cdot 5^4$	$17 \ 43^{7}$	9·8
16	$35 \cdot 0^4$	17 18 ⁸	15	15	$43 \cdot 4^5$	16 327	10
17	35.33	13 168	14(5)	16	$45 \cdot 6^4$	10 016	13
18	$37 \cdot 1^{3}$	16 048	9.7	17	$45 \cdot 5^2$	19 004	52
<i>19</i>	$42 \cdot 0^4$	12 338	8.0	18	$46 \cdot 2^4$	11 537	20
20	$43 \cdot 7^{3}$	17 337	17	19	$51 \cdot 3^{5}$	19 228	. 17
21	48.7^{3}	15 486	8.7				

TABLE 3 (Continued)

 $^{(5)}$ Rather doubtful because of a large side lobe of 05N2A at this declination.

(6), (7) Perhaps one extended object elongated parallel to the galactic circle.

⁽⁸⁾ Extended source with apparently complex brightness distribution. May be associated with the emission nebulae IC 2177 and NGC 2327.

373

Ref.	Position (1950)		Flux	Ref.	Position (1950)		Flux	
No.	R.A.	Dec.	Density	No.	R.A.	Dec.	Density	
1101	20020	S.	(10^{-26})	1101	10111	S.	(10^{-26})	
	h m	0 /	W m ⁻² (c/s) ⁻¹)		h m	0	W m ⁻² (c/s) ⁻¹	
	08				10			
1	00.3^{4}	14 407	33 (18)*	4	10.13	18 156	14	
2	$03 \cdot 4^{3}$	$17 \ 11^{5}$	18*	5	10.3^{4}	$15 \ 16^{7}$	9.2(17)	
3	05.33	12 376	14*	6	$18 \cdot 9^{3}$	19 436	7.5	
4	07.02	$10\ 27^{3}$	40	7	19·9 ³	10 257	6.5*	
5	$13 \cdot 1^4$	$11 \ 49^{7}$	$4 \cdot 2$	8	$22 \cdot 4^{3}$	$10 \ 43^{6}$	18	
6	$13 \cdot 8^{3}$	$15 57^{5}$	14*	9	$23 \cdot 0^4$	11 447	8.5	
7	17.6^{4}	11 007	8.9(9)	10	$23 \cdot 6^4$	18 106	10*	
8	$27 \cdot 3^{4}$	$17 \ 39^{6}$	14	11	$28 \cdot 0^{3}$	15 286	18	
$\boldsymbol{9}$	$33 \cdot 1^4$	16 047	8.8*	12	$30 \cdot 0^4$	13 367	7.5	
10	35.0^{3}	$11 \ 27^{6}$	18	13	$31 \cdot 0^4$	17 048	9.0	
11	$39 \cdot 6^{3}$	$17 \ 49^{6}$	10(10)	14	$32 \cdot 4^4$	19 157	11	
12	43·8 ³	11 286	12	15	$33 \cdot 5^{3}$	10 205	$9 \cdot 4$	
13	$44 \cdot 6^4$	17 447	9.4(11)	16	$34 \cdot 7^{3}$	18 246	14	
14	$45 \cdot 6^4$	15 337	6·6 ⁽⁹⁾	17	38.7^{4}	$\cdot 11 53^{7}$	6.5	
15	$48 \cdot 4^4$	10 157	7.6	18	$39 \cdot 4^4$	14 007	9.3	
16	$51 \cdot 3^2$	$14 \ 18^{5}$	24	19	44.84	17 087	7·5†	
17	$53 \cdot 2^{3}$	$12 \ 27^{6}$	13	20	$46 \cdot 6^{3}$	18 466	24†	
18	$54 \cdot 4^{5}$	15 388	9.4*	21	48.7^{3}	20 126	13	
19	$55 \cdot 6^{3}$	19 387	17	22	$54 \cdot 6^{4}$	16 007	$9 \cdot 2$	
	09				11			
1	$00 \cdot 0^{3}$	14 186	12	1	00.65	15 0110	56 (14)*	
2	$03 \cdot 5^{3}$	12 326	16	2	10.4^{3}	11 506	10	
3	$06 \cdot 4^4$	10 227	9.5(12)	3	11·2 ³	13 156	17*	
4	15.7^{1}	$11 \ 53^2$	690 ⁽¹³⁾	4	$19 \cdot 9^{3}$	12 006	12*	
5	30.0_{3}	$19 56^{6}$	11	5	$30 \cdot 4^4$	15 166	9.4*(18)	
6	31.43	16 476	13	6	$30 \cdot 9^2$	$19 \ 22^4$	32	
7	$38 \cdot 2^4$	17 186	15^{+}	7	$32 \cdot 6^{3}$	17 256	19	
8	39·3 ³	$16 \ 09^{7}$	10*	8	36·51	13 414	44(19)	
9	39.7^{3}	$11 \ 28^{5}$	50 (25)	9	39·8 ³	17 116	$7 \cdot 3$	
10	$42 \cdot 7^{3}$	19 336	12	10	40.0^{2}	$15 \ 08^{5}$	25	
11	$43 \cdot 5^{2}$	$13 \ 19^{5}$	25 (16)*	11	40.3^{3}	11 296	14	
12	$47 \cdot 0^4$	$18 \ 15^{7}$	12	12	$42 \cdot 6^{3}$	15 436	15	
13	$53 \cdot 3^4$	$12 \ 50^7$	9.7(14)	13	47·1 ³	11 476	17	
14	$54 \cdot 0^{3}$	13 366	14(15)	14	$50 \cdot 4^4$	10 107	7.7	
				15	$52 \cdot 0^4$	15 226	6.6	
	10			16	$53 \cdot 1^{3}$	17 396	9.5	
1	03.84	10 387	$7 \cdot 3$	17	56.64	11 427	7.3	
2	07.63	11 477	32 (16)	18	59.5^{2}	18 416	10(20)	
3	08.33	14 476	17(16)	19	$59 \cdot 9^{3}$	10 275	16	

TABLE 3 (Continued)

⁽⁹⁾ A doubtful source. ^{(10), (11)} Perhaps one extended source.

⁽¹²⁾ Perhaps one extended source with 09-02. ⁽¹³⁾ IAU 09S1A.

⁽¹⁴⁾, ⁽¹⁵⁾ Perhaps one extended source. ⁽¹⁶⁾, ⁽¹⁷⁾ Perhaps one extended source.

⁽¹⁸⁾ A rather doubtful source. ⁽¹⁹⁾ IAU 11S1A.

(20) NGC 4038/39.

D of	Position	sition (1950) Flux			Position	ı (1950)	Flux	
Ref. No.	R.A.	Dec.	Density	Ref. No.	R.A.	Dec.	Density	
.10,	10.21.	S.	(10^{-26})			S.	(10^{-26})	
	h m	。"	W m ⁻² (c/s) ⁻¹)		h m	0 /	W m ⁻² (c/s) ⁻¹	
	12		······································		14			
1	01.83	15 338	14	1	$01 \cdot 3^4$	19 237	14†	
2	$02 \cdot 4^{5}$	17 3910	48 (16) ⁽²¹⁾	2	09.84	18 417	15	
3	$04 \cdot 0^{3}$	12 5310	56 (20)	3	$15 \cdot 3^{4}$	$17 \ 15^{10}$	14†	
4	09 · 12	$10 55^{5}$	10	4	16·0 ²	15 478	34 (22)	
5	09.33	19 275	11†	5	17.7^{3}	$19 \ 14^{8}$	11	
6	$13 \cdot 7^{3}$	14 397	6·3*	6	$20 \cdot 4^2$	14 298	<i>26</i> (16)*	
7	$18 \cdot 2^2$	16 30 ⁵	12	7	20.5^{5}	13 148	12	
8	22 · 5 ³	19 326	$9 \cdot 0^*$	8	$20 \cdot 9^{3}$	18 2010	9.0	
9	$23 \cdot 4^2$	11 226	16	9	$23 \cdot 6^4$	17 288	11	
10	$28 \cdot 4^{1}$	$16\ 59^{4}$	38(22)	10	24 · 6 ²	$11 \ 44^4$	22	
11	$34 \cdot 0^{3}$	14 137	9.6	11	$31 \cdot 4^{5}$	19 138	8.9*	
12	$35 \cdot 2^{3}$	19 536	24 (12)*	12	$32 \cdot 0^4$	12 226	6.5	
13	37.3⁵	15 386	14†	13	$32 \cdot 8^{3}$	11 118	8.5*	
14	$41 \cdot 9^{2}$	$19 \ 36^{5}$	18*	14	$37 \cdot 2^2$	17 088	11	
15	$43 \cdot 3^{3}$	$17 50^{5}$	$7 \cdot 0$	15	41.7^{2}	18 008	11†	
16	$43 \cdot 6^2$	$11 \ 06^{5}$	18	16	$42 \cdot 9^2$	19 236	14	
17	$51 \cdot 6^2$	18 207	13	17	$44 \cdot 1^{3}$	11 367	17*	
18	52·31	$12 \ 19^4$	53 ⁽²³⁾	18	$46 \cdot 9^4$	15 536	42 (20)	
19	$57 \cdot 0^{4}$	17 166	27 (14)	19	$50 \cdot 2^{3}$	12 586	19	
20	$58 \cdot 1^{3}$	$11 \ 17^{5}$	19	20	51.7^{3}	18 307	$9 \cdot 3$	
				21	$53 \cdot 4^{2}$	11 025	41†	
	13			22	$59 \cdot 2^{5}$	19 533	16*(25)	
1	$00 \cdot 0^{3}$	18 038	18					
2	08.33	19 537	7.0*	l ·	15			
3	$12 \cdot 0^{3}$	12 077	8.7	1	00.3^{2}	14 417	13*	
4	$12 \cdot 8^2$	18 415	22	2	$02 \cdot 7^2$	12 0010	$9\cdot 3$	
5	31.76	14 18 ¹⁰	13	3	03.33	16 368	10	
6	$31 \cdot 9^{3}$	10 007	18	4	$04 \cdot 5^2$	13 527	13*	
7	$34 \cdot 4^{3}$	10 577	17	5	08·1 ³	18 058	15	
8	$34 \cdot 7^{3}$	17 556	11(24)	6	10.6^{5}	19 236	49 (30)	
9	$41 \cdot 4^4$	19 226	14	7	14·1 ³	13 587	19*	
10	41.74	12 216	18*	8	$16 \cdot 6^2$	12 326	13	
11	$45 \cdot 4^{3}$	11 077	15	9	$23 \cdot 5^2$	$13 \ 41^4$	16*	
12	46.8^{4}	12 58 ⁷	14	10	$27 \cdot 1^{3}$	12 216	$8 \cdot 2$	
13	$47 \cdot 2^4$	16 30 ⁵	12	11	$31 \cdot 5^{3}$	18 368	13	
14	$52 \cdot 1^{3}$	19 235	15	12	$37 \cdot 8^2$	17 237	16†	
15	$53 \cdot 9^2$	17 396	18†	13	40.9^{5}	16 02 ⁸	7.5*(25)	
16	$56 \cdot 8^3$	16 177	8.7	14	$41 \cdot 3^{3}$	13 36 ¹⁰	8.8*	
17	$59 \cdot 1^2$	11 355	13	15	$43 \cdot 9^2$	12 237	$9 \cdot 5$	
18	$59 \cdot 9^{2}$	14 509	15^{+}_{-}	16	$48 \cdot 6^2$	$19 51^{5}$	11	
				17	50.0^{3}	16 5710	21 (14)	
				18	$53 \cdot 3^{3}$	16 107	10†	

TABLE 3 (Continued)

⁽²¹⁾ Possibly several sources.

⁽²²⁾ Possibly a side lobe of IAU 12N1A, but appears genuine.

⁽²³⁾ (NGC 4783), (NGC 4782). ⁽²⁴⁾ (NGC 5247). ⁽²⁵⁾ A doubtful source.

Def	Position	(1950)	Flux	Ref.	Position (1950)		Flux
Ref. No.	R.A.	Dec.	Density	No.	R.A.	Dec.	Density
110.	10.211	S.	(10^{-26})	110.	10.111	S.	(10^{-26})
	h m	0 /	W m ⁻² (c/s) ⁻¹)		h m	• •	W m ⁻² (c/s) ⁻¹
	16				18		
1	03.23	17 196	16*	1	00.12	$17 \ 49^{7}$	40:
2	04.13	18 2010	$7 \cdot 6$	2	04.7^{5}	11 267	29†
3	05.53	16 188	8.5	3	$11 \cdot 6^2$	$17 \ 12^{3}$	160:
4	07.73	$12 \ 45^{7}$	15	4	$12 \cdot 0^4$	12 4010	20:
5	$08 \cdot 1^4$	10 447	11	5	$14 \cdot 9^{3}$	10 577	35:†
6	$16 \cdot 9^4$	10 057	17	6	$18 \cdot 9^{5}$	18 3810	15:
7	$17 \cdot 6^{3}$	13 366	12*	7	$21 \cdot 5^{3}$	$13 50^{5}$	40:
8	$21 \cdot 1^{3}$	$11 \ 28^4$	20	8	$21 \cdot 8^{3}$	$12 \ 24^4$	150
9	$22 \cdot 0^{3}$	$17 \ 34^{7}$	15*	9	$25 \cdot 0^{3}$	$11 \ 17^4$	50
10	$22 \cdot 8^{5}$	$19\ 23^{5}$	11	10	$26 \cdot 5^{3}$	$17 54^{7}$	15:
11	$30 \cdot 4^2$	12 486	15*	11	$27 \cdot 5^{3}$	12 466	40:
12	$32 \cdot 6^{5}$	15 189	14*	12	28.7^{3}	$14 \ 36^8$	30:
13	34 · 9 ³	14 187	16*	13	$30 \cdot 1^2$	10 014	230
14	$36 \cdot 9^{5}$	$12 53^{7}$	8.9*	14	$42 \cdot 1^4$	$19 \ 40^{8}$	56: (28)
15	$38 \cdot 0^2$	19 356	23*	15	$42 \cdot 9^{4}$	13 378	24†
16	38·1 ⁵	17 5010	19	16	$48 \cdot 9^{3}$	10 557	23
17	$40 \cdot 4^{3}$	$15 \ 19^{5}$	30:*	17	$51 \cdot 1^{3}$	17 087	15†
18	$43 \cdot 1^4$	18 206	18				
19	$45 \cdot 4^{2}$	10 486	37*		19		
20	$48 \cdot 1^{3}$	$12 53^{7}$	14*	1	$04 \cdot 9^{5}$	19 019	20
21	$55 \cdot 5^4$	$18 51^8$	17*	2	$05 \cdot 8^{3}$	$12 \ 37^{5}$	17(30)
22	$55 \cdot 7^{3}$	$14 \ 03^{5}$	22*	3	$11 \cdot 3^{3}$	$15 \ 11^{6}$	17
				4	14.7^{3}	16 30 ⁸	12
	17			5	$14 \cdot 9^{2}$	11 586	25
1	$05 \cdot 2^{3}$	10 026	15*	6	$24 \cdot 1^{5}$	14 189	28
2	$05 \cdot 4^{3}$	17 136	60 (35)*	7	$27 \cdot 1^2$	15 196	23
3	10.5^{5}	13 418	32*†	8	$29 \cdot 5^2$	19 447	22
4	$15 \cdot 0^{7}$	12 437	16*†	9	$31 \cdot 7^{3}$	17 188	12
5	$15 \cdot 9^{4}$	16 257	15*	10	$32 \cdot 2^4$	10 557	75 (34)
6	$19 \cdot 4^{5}$	18 457	$150 (50)^{*(26)}$	11	$37 \cdot 7^2$	15 364	38:
7	$22 \cdot 34$	$10 \ 49^{8}$	21*	12	39.7^{3}	13 267	13
8	$37 \cdot 1^{4}$	11 406	16*	13	$48 \cdot 9^{3}$	14 088	15
9	$47 \cdot 7^4$	13 049	18*	14	49.9^{3}	18 107	11
10	$48 \cdot 7^{4}$	17 288	30:*† ⁽²⁷⁾	15	50.64	19 437	18:†
11	$51 \cdot 1^{3}$	14 56%	19*	16	$53 \cdot 3^{4}$	12 307	19
12	$51 \cdot 3^{5}$	10 438	16*(28)	17	$54 \cdot 1^{3}$	16 306	$9 \cdot 2$
13	$53 \cdot 9^{3}$	11 396	12*(29)				
14	$55 \cdot 4^{3}$	16 077	24*				

TABLE 3 (Continued)

⁽²⁶⁾ Perhaps two sources.

⁽²⁷⁾ Measurements doubtful because of side lobe difficulties.

^{(28), (29)} Perhaps one extended source.

(30) A doubtful source.

Ref.	Positior	tion (1950) Flux Density			Position	n (1950)	Flux Density
No.	R.A.	Dec.	(10^{-26})	No.	R.A.	Dec.	(10 ⁻²⁶
	h m	°,	W m ⁻² (c/s) ⁻¹)		h m	°,	$W m^{-2} (c/s)^{-1}$
	20				21		
1	04·1 ³	19 328	15	16	$35 \cdot 2^{3}$	18 547	23
2	08.23	16 14 ⁸	$8 \cdot 3$	17	$38 \cdot 2^{3}$	16 356	16
3	21.33	$17 \ 38^{8}$	$8 \cdot 5$	18	$46 \cdot 2^{3}$	17 078	13†
4	21.93	13 569	6·7*	19	$46 \cdot 9^{4}$	13 367	25 (13)
5	$22 \cdot 4^4$	$19 \ 43^{7}$	8.84	20	48.7^{3}	15 547	8.8*
6	$25 \cdot 5^{2}$	$15 \ 41^4$	20	21	$48 \cdot 9^{3}$	19 537	18†
7	$33 \cdot 2^{3}$	$17 54^{6}$	15	22	$53 \cdot 7^{2}$	$12 \ 53^{7}$	8.8
8	$36 \cdot 5^{4}$	13 477	13	23	$54 \cdot 2^{3}$	18 256	25
9	$40 \cdot 9^4$	$15 \ 00^{8}$	$9 \cdot 0$	24	$58 \cdot 2^2$	$17 \ 04^{5}$	14
10	$43 \cdot 0^4$	10 1210	$8 \cdot 0$	25	$58 \cdot 5^{4}$	13 306	$12^{(31)}$
11	$45 \cdot 0^{3}$	18 207	15				
12	$48 \cdot 5^{3}$	14 457	13		22		
13	48 · 83	16 159	17	1	$03 \cdot 0^{2}$	$18 \ 40^{5}$	16:
14	$50 \cdot 2^{3}$	16 237	13	2	$03 \cdot 4^{3}$	15 3310	$6 \cdot 7$
15	50.3^{3}	18 417	9.0	3	$07 \cdot 6^{3}$	$14 \ 13^{5}$	10
16	$53 \cdot 5^{3}$	$12 \ 22^{7}$	$8 \cdot 5$	4	$08 \cdot 5^{3}$	10 126	9.5
17	$56 \cdot 8^{2}$	15 006	13	5	$08 \cdot 5^{3}$	12 587	14
18	$58 \cdot 2^{3}$	$17 \ 48^{6}$	24	6	10.3^{3}	11 586	16
19	59·7 ³	13 207	14	7	12·0 ¹	$17 \ 11^4$	$127^{(32)}$
				8	$21 \cdot 4^{3}$	15 436	10
	21			9	$22 \cdot 6^{3}$	14 086	15
1	$01 \cdot 4^2$	$10 \ 44^{5}$	14	10	$23 \cdot 0^{2}$	16 466	15
2	03·4 ²	11 286	12	11	$27 \cdot 1^{3}$	18 517	11†
3	$07 \cdot 3^{3}$	13 258	10	12	$28 \cdot 0^{3}$	10 238	6.5
4	$15 \cdot 3^{3}$	16 037	$9 \cdot 3$	13	$34 \cdot 9^{2}$	13 566	10
5	$15 \cdot 8^{4}$	14 087	14	14	$35 \cdot 4^2$	12 037	16
6	$17 \cdot 0^{3}$	12 026	$7 \cdot 1$	15	$35 \cdot 8^{2}$	17 366	17
7	17.7^{2}	15 167	17	16	36.7^{3}	19 337	17
8	19·1 ³	18 40 ⁸	$9 \cdot 7$	17	39.9^{4}	14 567	6.0
9	$20 \cdot 2^4$	16 497	30:†	· 18	40.6^{4}	16 367	8:
10	$24 \cdot 5^{4}$	19 278	$8 \cdot 2$	19	$43 \cdot 7^{2}$	19 025	8.0
11	$25 \cdot 9^{3}$	12 115	15	20	$56 \cdot 0^{2}$	12 116	8.6
12	$26 \cdot 0^{3}$	14 377	8.4	21	$56 \cdot 9^{3}$	15 128	12
13	$32 \cdot 7^{3}$	13 097	15	22	$57 \cdot 4^{3}$	13 358	6.7
14	$33 \cdot 3^{2}$	11 396	28	23	58.0^{5}	10 288	8.0
15	$34 \cdot 7^2$	$14 \ 39^{5}$	33				

TABLE 3 (Continued)

⁽³¹⁾ (NGC 7171).

⁽³²⁾ Perhaps slightly extended.

377

Ref. No.	Position (1950)		Flux	Dof	Position	Flux	
	R.A. h m	Dec. S. ° ′	${f Density}\ (10^{-26}\ {f W\ m^{-2}\ (c/s)^{-1}})$	Ref. No.	R.A. h m	Dec. S.	$\begin{array}{c c} & \text{Density} \\ & (10^{-26} \\ & \text{W m}^{-2} \text{ (c/s)}^{-1}) \end{array}$
	23				23		·
1	$04 \cdot 8^4$	12 017	8.6	14	$26 \cdot 7^{2}$	$19 \ 37^{5}$	19
2	06.53	19 537	11	15	$27 \cdot 3^2$	$17 56^{6}$	11
3	07.73	$10 \ 45^{7}$	7.6	16	$27 \cdot 6^2$	$18 \ 47^{6}$	13
4	$09 \cdot 6^{3}$	$12 54^{6}$	11	17	29.24	$16\ 51^{6}$	10
5	13·9 ³	14 187	9.6	18	$30 \cdot 0^{3}$	10 167	10
6	14·1 ³	12 106	8.6	19	$34 \cdot 9^{3}$	$14 52^{6}$	16
7	$15 \cdot 9^{5}$	11 077	6·9*	20	39.5^{4}	$12 \ 51^7$	6.9
8	$17 \cdot 6^{3}$	$16 \ 30^{5}$	23	21	39.7^{3}	$16 \ 46^{6}$	16
9	18·1 ³	19 326	15	22	$42 \cdot 9^{4}$	$15 \ 22^{8}$	13
10	$18 \cdot 5^{3}$	13 368	7.4	23	$48 \cdot 1^4$	16 256	13
11	$20 \cdot 1^4$	$15 \ 33^{8}$	10	24	$54 \cdot 5^{3}$	13 208	8.3
12	22.62	$12 \ 29^{5}$	30	25	$59 \cdot 6^{2}$	17 266	14
13	25 · 33	15 027	14				

TABLE 3 (Continued)

have been made between different sets of measurements on the same sources and it appears that our estimates do represent the probable errors reasonably well; they may indeed be rather pessimistic, but the effects of systematic error or confusion due to finite resolutions would not show up in such a comparison. The Right Ascensions have been given only to the nearest 0.1 min, since this is the highest accuracy justified in the great majority of cases. As shown by Mills *et al.* (1958), there is probably a collimation error of -4^{s} in Right Ascension, so for the most accurate positions, having a probable error of $\pm 0^{m} \cdot 1$, a correction of $+4^{s}$ has been applied before selecting the nearest 0.1 min. For some of the stronger sources the position accuracy is somewhat better than indicated in the catalogue; they will be discussed elsewhere.

Sources resolved by the aerial beam have been treated as before, both their peak flux density and their integrated flux density being given, the former in parentheses. Possible identifications with bright nebulae are also indicated and discussed in the next section.

Every effort has been made to produce a uniform treatment of the whole area, but this has not been possible for the weakest sources because of sensitivity variations. For instance, at the northern border of the catalogue zone, the sensitivity is only half that at the southern border. This has been compensated to some extent by taking more observations at the most northerly declinations, but simple inspection of the catalogue shows that there are many more faint sources listed in the southern zone. Similarly, close to the galactic circle at the crossing near the centre, the sensitivity is reduced by a magnitude or more, because of the very high brightness temperature of the galactic disk and the great complexity of the brightness distribution. However, it is considered that the catalogue of Class II sources (i.e. those for which $|b| > 12\frac{1}{2}^{\circ}$) is complete down to a flux density of 2×10^{-25} W m⁻² (c/s)⁻¹ over the whole area, and to a much lower level in regions of low sky temperature in southerly declinations.

III. IDENTIFICATIONS

A study of possible identifications of the radio sources with visible nebulae is in progress, using the Palomar Sky Atlas. This is a large undertaking which, to be really useful, requires the collection of information about any suspected nebula and, in addition, the measurement of the angular size of the associated radio source. As an interim measure we will therefore merely list some of the brighter sources which may possibly be identified with faint galaxies on the Palomar prints and, as in paper I, discuss in some detail possible identifications with objects listed in the Skalnate Pleso Catalogue (Becvar 1951) for which additional data are usually available.

Objects examined in the Skalnate Pleso Catalogue include emission nebulae, novae, planetary nebulae, globular clusters, and galaxies. The situation as regards emission nebulae is not different from that described in paper I and will not be enlarged upon. No additional identifications were obtained in the central galactic crossing now included in our catalogue, but this is not surprising in view of the high background brightness (e.g. Mills, Little, and Sheridan 1956). Of the novae, planetary nebulae, and globular clusters, the only coincidence in position is between the globular cluster NGC 7089 and the radio source 21–012. However, the position agreement is not at all close and, in view of the lack of radio emission from other globular clusters, it cannot be regarded as significant.

In the case of the galaxies the situation is different; two reasonably certain identifications have been made, and, on a statistical basis, it appears probable that there are several "radio galaxies" among a total of 20 coincidences noted in the catalogue. These coincidences are noted where source and galaxy have positions within 1^m in Right Ascension and 20' in declination, which correspond approximately to three times the mean probable errors in each coordinate. There are 315 galaxies listed in the area of the catalogue and it is easily shown that the number of coincidences expected is about 9 if galaxies and sources are completely uncorrelated. The number of actual coincidences, 20, is therefore significantly greater, but not enough to warrant further analysis. To reduce the chance coincidences we therefore restrict attention to those galaxies within $0^m \cdot 7$ in Right Ascension and 13' in declination, that is, within twice the mean probable error in each coordinate ; there are 14 such coincidences and less than 5 expected by chance. The coincidences are listed in Table 4 together with our estimate of the quality of position agreement and the difference between radio and optical magnitudes, $m_{1.9}-m_{b}$, on the assumption that the source may be identified with the galaxy. The radio magnitude is defined by

$$m_{\lambda} = -53 \cdot 4 - 2 \cdot 5 \log S_{\lambda},$$

and, for comparison with other data, it is converted to the scale of Brown and Hazard (1952) at 1.9 m by addition of the factor, 0.8 magnitude (Mills 1958, in press). The photographic magnitude used is the *total* magnitude as listed by de Vaucouleurs (1953).

G

B. Y. MILLS, O. B. SLEE, AND E. R. HILL

The number of good and very good coincidences is the same as the difference between the actual and chance coincidences, suggesting that most may be real. The galaxies NGC 1068 and NGC 4038/4039 are almost certainly associated with the coincident radio sources, as the radio emission in each case is only about 2 magnitudes greater than the mean of the "normal" galaxies for which $m_{1\cdot9}-m_p\simeq+1$ and in each case the extra emission is compatible with peculiarities in the galaxies; e.g. NGC 1068 is known to have strong and broad gaseous emission lines in the nucleus and the galaxies NGC 4038 and NGC 4039 appear to be undergoing a mild collision. No abnormalities are listed among the other galaxies, but this means little, for there seems no reason why an optically normal

Radio Source	Gala	axy	Agreement in Position	m1·9-mp	
	NGC	Туре	1 00101011	r	
0007	157	Sc	Very poor	$-1 \cdot 3$	
01 + 03	470	Sbc	Fair ,	$-3 \cdot 5$	
01 + 03	474	$\mathbf{E0}$	Good	$-4 \cdot 0$	
01 + 04	533	$\mathbf{E3}$	Very good	$-3 \cdot 6$	
01-06	584	$\mathbf{E3}$ -4	Very good	-1.9	
02-014	1068	Sb_p	Very good	$-1 \cdot 0$	
03-04	1417	S:	Good	$-2 \cdot 3$	
11-118	4038/39	Sc_p	Very good	-0.5	
12 + 04	4234	I	Good	$-3 \cdot 6$	
12 + 05	4261	E2-3	Very good	$-3 \cdot 8$	
12-118	4782	SO:	Very poor	-4.7	
12-118	4783	SO:	Poor	-4.7	
14-019	5792	S	Very good	-2.5	
21-125	7171	SBb	Very good	$-2 \cdot 3$	

 TABLE 4

 POSSIBLE IDENTIFICATIONS WITH BRIGHT GALAXIES

galaxy should not emit substantially more than normal at radio frequencies; an established example is NGC 1316. In one case, NGC 7171, for which a Palomar print is available, there is an adjacent cluster of faint galaxies with several close to the radio position, one or more of which could well be the radio source; angular size measurements would clearly be useful here.

If the coincidences are taken at their face value, the suggestion is clear that a substantial proportion of galaxies may have a slightly abnormal radio emission. On the figures quoted, out of the 315 galaxies in the catalogue area, about 1 in 30 emits between 2 and 5 magnitudes more than a normal galaxy. While not very much weight can be given to this conclusion, it in no way contradicts the observed lack of correspondence between the majority of the sources and the brighter galaxies. It is necessary to increase the statistical reliability of the identifications by extending the catalogue to a larger area and, if possible, by increasing the sensitivity.

Our prints of the Palomar Sky Atlas are, at present, very incomplete, so that a systematic examination of the catalogue area is not yet possible. However,

380

COSMIC RADIO SOURCES BETWEEN DECLINATIONS $+10^{\circ}$ AND -20° 381

it is worth noting a number of strong sources which correspond with the positions of galaxies on the Palomar prints down to a magnitude of about 18. These are the sources 02-15, 09+07, 12-110, 13-011, 16+02, 17-06, 21-125, and 23-112. Sources in an area between 00^{h} and 06^{h} near the celestial equator, which has been investigated by Minkowski, have not been included in this list. While positive identifications are not suggested for the above sources, they undoubtedly need further investigation.

We may also mention the IAU sources 09S1A (09-14) and 16N0A (16+010)for which Minkowski has suggested possible identifications. The former may possibly be identified with a faint double galaxy at position 09^h 15^m 42^s, -11° 53' (1950); our most accurate radio position, after allowing for a probable collimation error of 1' in the aerial, is $09^{h} 15^{m} 44^{s} \pm 3^{s}$, $-11^{\circ} 52' \cdot 5 \pm 2'$ (1950). The angular size of the galaxy is about $\frac{1}{2}$ compared with $1\frac{1}{2}$ for the radio source (Carter 1955). Minkowski (unpublished data) notes that the $\lambda 3727$ line of $[O \Pi]$ in emission is detectable in the galaxy, but is not unusually strong. The corrected position of the radio source 16N0A is 16^h 48^m 46^s+3^s, +5°04'+2' (1950) compared with the position of a faint galaxy at position 16^h 48^m 49^s, $+5^{\circ}$ 01' \cdot 8 (1950). Minkowski (1957) states that the galaxy displays a double nucleus and rather strong emission lines of [O II] and [O III], indicating that an active collision may be in progress. The angular size of the galaxy is about $\frac{1}{2}$ and that of the radio source about $2\frac{1}{2}$ (Carter, unpublished data).

Finally, the coincidences noted in the catalogue between the source 08 + 010and the Hydra II cluster of galaxies, and the source 23 + 02 and the Pegasus I cluster of galaxies are probably significant. The less good coincidence between the source 23 + 03 and the Pegasus II cluster may also be real. These and other observations of southern clusters will be discussed in a future paper.

IV. STATISTICS

Two properties of the distribution of radio sources in the catalogue areas have been investigated statistically; these are the two-dimensional distribution across the celestial sphere and the distribution in depth based on counts to different flux density levels. Because of the finite resolution of the aerial, spatial clustering may affect the source counts substantially; clustering is therefore dealt with first, principally by consideration of the two-dimensional distribution and some observations of source sizes and background irregularities.

(a) Clustering

In paper I it was suggested that the radio sources might display large-scale clustering. This conclusion was based essentially on applying the χ^2 test to areas measuring 10° by 10°; the distribution was found to be non-random at the 2 per cent. confidence level. We now have a much greater quantity of more homogeneous data, and similar tests which have been applied indicate that large-scale deviations from randomness are much less than before and perhaps not significant. The χ^2 test was applied to sources above various limiting intensity levels in areas of different sizes well away from the galactic circle. It is only with 30° by 30° squares that a significant non-randomness is indicated. This applies to all sources, and also to sources stronger than 10^{-25} W m⁻² (c/s)⁻¹; in both cases, however, the confidence level is only 5 per cent. It appears that large-scale clustering, if present, is small; with the accumulation of more data it may be possible to usefully apply more sophisticated tests.

In paper I it was also noted that the number of "extended" sources listed in the catalogue was significantly more than expected from chance blending effects in a universe of randomly distributed "point" sources. This conclusion is strengthened by analysis of the present catalogue.

We have considered areas from $21^{h}-00^{h}-05^{h}$ and from $09^{h}-15^{h}$, that is, areas well away from the galactic circle. Of the sources with flux densities greater than 40×10^{-26} W m⁻² (c/s)⁻¹, 20 are listed as "extended" and 2 as "perhaps extended": of sources stronger than 20×10^{-26} W m⁻² (c/s)⁻¹, 36 are listed as "extended" and 17 as "perhaps extended". The numbers of chance blends classified as a single source which is "extended" or "prehaps extended" may be estimated as in paper I. The expected number of such blends having flux densities greater than 40×10^{-26} W m⁻² (c/s)⁻¹ is 2, and the number greater than 20×10^{-26} W m⁻² (c/s)⁻¹ is 15. These numbers are very much smaller than those observed. We therefore conclude that a substantial proportion of the stronger sources have an angular size which is resolvable with our aerial (> $\frac{1}{4}^{\circ}$) and/or that small-scale clustering effects are significant.

Both these explanations are consistent with present astronomical knowledge. It is now commonly accepted, for instance, that the majority of galaxies are organized into clusters of various sizes, and in a large cluster the conditions would seem favourable for the production of radio sources by collision or interaction; thus the existence of several physically related radio sources very close together is quite conceivable. There is also evidence for clustering of a higher order into "supergalaxies" (for example, de Vaucouleurs 1956) to which the same arguments apply. Clusters of galaxies in general emit much more at radio frequencies than the integrated emission of their component normal galaxies (e.g. Brown and Hazard 1953). This may be attributable to associated "radio galaxies" or sometimes equally well to radiation from the cluster as a whole, that is, to intergalactic emission. The latter process has been discussed in some detail by Shklovsky (1954) in its application to radiation from the local super-Thus, on present evidence, it would seem quite possible that individual galaxy. radio galaxies should appear relatively frequently in physically related groups of two or more, and that close clusterings of galaxies can create vast radio sources of large angular size even at very great distances. These possibilities will be considered quantitatively in future papers. A further possibility which should not be ignored is that some, at least, of the Class II sources of large angular size may be located in our galaxy. Analysis of variations in brightness of the background radiation observed with the 3.5 m cross aerial shows that some bright regions at moderate distances from the plane are probably related to the galactic emission: obvious examples in the present catalogue (not, however, included in the area analysed for obvious reasons) are the large sources associated with the nebulosities in Orion. Such aspects of the galactic emission will also be considered

-382

COSMIC RADIO SOURCES BETWEEN DECLINATIONS $+10^{\circ}$ and -20° 383

in future papers. At the moment it is sufficient to note that a model comprising a random distribution of "point" sources is inadequate to explain all the observational data.

(b) Source Counts

In order to investigate the distribution of the radio sources in depth, source counts have been made to various limiting flux density levels. As in an earlier paper (Mills 1952) the sources have been divided into two classes, those within $12\frac{1}{2}^{\circ}$ of the galactic circle (Class I sources) and the remainder (Class II sources).

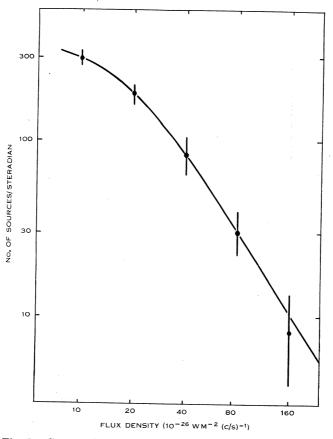


Fig. 1.—Counts of Class I sources, that is, sources within $12\frac{1}{2}^{\circ}$ of the galactic circle.

The counts are shown in Figures 1 and 2, where the logarithms of the number density of sources with flux densities S or higher are plotted against $\log S$; the standard errors in the plotted points due to chance effects in the distribution (\sqrt{N}) are shown as vertical wings in the figure. The actual numbers from which the diagrams were constructed are given in Tables 5 and 6.

There are clearly insufficient Class I sources for a detailed analysis. There are enough, however, to show that their statistics are greatly different from the Class II sources, which is consistent with the original results of Mills (1952); as

B. Y. MILLS, O. B. SLEE, AND E. R. HILL

before, the smaller slope suggests an origin in the galactic disk for the majority of the stronger sources. It is interesting that there are substantial differences shown in the catalogue for the sources near the centre and anticentre of the Galaxy, those near the centre being, on the average, much stronger and more numerous. This again suggests a relation with the galactic structure, and it is clear that these sources must be considered in relation to the general distribution of the galactic emission. This will be done in some papers dealing with the Galaxy which are now in preparation.

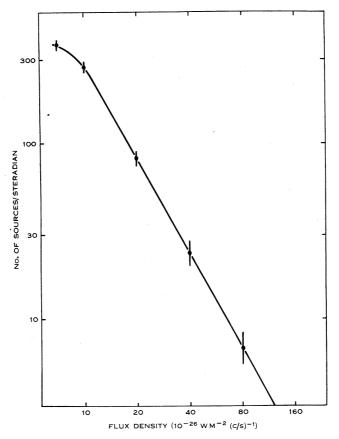


Fig. 2.—Counts of the Class II sources.

The Class II sources are sufficiently numerous for further analysis. The straight line shown in Figure 2 passing through the derived points has a slope of -1.8. As discussed in paper I, there are two instrumental factors which contribute to this slope, the finite resolution of the aerial and the uncertainties in the weaker flux densities due to noise. However, with randomly distributed sources neither of the effects is large; from the data in paper I a mean increase of slope of about -0.15 is estimated, leaving a net slope of -1.65. It is well known that, after all corrections, the slope should be -1.5 for a random distribution of " point " sources in a static Euclidean universe; thus there is, in addition

 $\mathbf{384}$

to the previous evidence of angular size and clustering, some evidence from the source counts that the above model is inadequate. However, the evidence is not conclusive, for inspection of Figure 2 shows that the standard errors due to statistical effects are large and the apparent small excess of faint sources could equally well be a statistical deficiency of close and strong sources.

It is interesting to compare the evidence from the angular size data and the source counts to see if (i) an excess of faint and distant sources, corresponding to a slope of -1.65 in the source counts ogive, can increase the number of blends sufficiently to account for the excessive number of "extended" sources, or (ii) a large number of "extended" sources can result in an increased apparent

THE NUMBERS OF CLASS I SOU	TABLE RCES ABOV		FLUX DENS	TY LEVELS	
Flux density $(10^{-26} \text{ W m}^{-2} (\text{c/s})^{-1})$.	10	20	40	80	160
No. of sources, N (Total=156)	142	88	40	15	4
		• • •			· · · · · · · · · · · · · · · · · · ·

THE NUMBERS OF CLASS II SO		le 6 bove def	INED FLU	X DENSIT	Y LEVELS	k	
Flux density $(10^{-26} \text{ W m}^{-2} \text{ (c/s)}^{-1})$.	7	10	20	40	80	160	
No. of sources, N (Total=1003)	982	754	218	63	19	4	

slope of the magnitude observed. It is easy to see from the earlier data that (i) is not possible; the increase in the number of blends would be negligible, as the parameters of the model source distribution were fixed largely by the numbers of faint sources. On the other hand it is evident that, if the clustering is greater than in a random distribution, the increased slope due to blending will be enhanced ; quantitatively the attribution of all extended sources to blends is adequate to explain the observed slope. It might appear that sources of finite angular size could have no effect on the slope, since integrated fluxes are used in the counts. However, the possibility arises because the catalogue is restricted to sources of angular size less than 2°, in order to eliminate background irregularities as far as possible; it seems likely that, at the same time, many large-scale extragalactic concentrations are excluded. One obvious example which comes in this category is the "Local Supergalaxy".

In principle we may investigate the importance of these factors by comparing the proportion of extended sources listed at different flux density levels. \mathbf{The} bottom end of the catalogue must be excluded from comparisons of this kind because of the difficulty of identifying an extended source : the lowest level at which consistent recognition seems possible is 40×10^{-26} W m⁻² (c/s)⁻¹. In Subsection (a) we gave the number of extended sources above this level as 20,

with 2 listed as "perhaps extended", in a defined area well away from the galactic circle. The total number of sources above the same level in the same area is 44; whence it would appear that about half the sources are either of large angular size or physical blends. For sources with flux densities greater than 160×10^{-26} W m⁻² (c/s)⁻¹, that is, sources which, on the average, are at half the distance, the number of extended Class II sources listed in the whole southern sky is 3 out of a total 10 sources (excluding the Magellanic Clouds as belonging to the class of "normal" galaxies with which we are at present not concerned). Unfortunately these numbers are too low to permit a firm conclusion, although they are consistent with some systematic omission of very large sources. The data are obviously inadequate to correct for such effects in order to derive counts which are dependent only on the large-scale distribution in depth, which is required before they may usefully be applied to a cosmological model. Further information on these questions might be expected to come from the Cambridge interferometer surveys which discriminate strongly against large sources.

In paper I it was shown that the Cambridge 2C catalogue (Shakeshaft et al. 1955) can be accorded little weight, principally on account of the poor primary resolution of the instrument. Ryle (1956) has criticized this conclusion on the basis of conjecture as to the assumptions made in paper I, which was at that time unpublished. However, comparisons of the assumptions and method of analysis used in the paper with Ryle's conjectures shows that the latter were unfounded. The assessment of the reliability of 2C appears to have received confirmation in a report by Hewish (1957) of greatly improved agreement between Sydney and a more recent Cambridge survey. This survey has been made using their original instrument at double the 2C survey frequency and hence four times the resolution of the earlier work.

However, he also reports that the source counts again have a very large slope, $-2 \cdot 2$ in one area and $-2 \cdot 7$ in another, although somewhat less than the slope of $-3 \cdot 0$ obtained in the original survey (Ryle and Scheuer 1955). We have no detailed information about these results but it would appear that the increased resolution has reduced the slope, and the question remains whether the excess slope is again the result of instrumental effects, or whether it is real. If the latter, it would suggest strongly, when taken in conjunction with our pencil-beam survey, that the effects of angular size or small-scale clustering are significant. Hewish also remarked that the statistics of the output envelope fluctuations are inconsistent with a uniform distribution of "point" sources. This has already been noted by Ryle and Scheuer in connexion with the 2C survey; but with the data supplied it was not possible to verify this, or to make use of their probability density distribution. It is to be hoped that some quantitative information will be published on this important point.

One of the regions discussed by Hewish is bounded by Right Ascensions 00^{h} and 08^{h} and declinations $+10^{\circ}$ and -10° ; that is, within our present catalogue. For this area he quotes a slope of -2.7 for the log N-log S relation. We have performed a source count in this region and find a slope of -1.7. It is interesting that if the *peak* values of the flux densities of our extended sources are used instead of the integrated fluxes, thus to some extent simulating the

386

COSMIC RADIO SOURCES BETWEEN DECLINATIONS $+10^{\circ}$ and -20° 387

results obtained with an interferometer, the slope is increased to $-2 \cdot 0$, making up at least some of the difference.

It is clear that the accumulation of data of this kind and intercomparisons between surveys carried out under different conditions will go a long way towards sorting out the complex picture. However, it is hoped that a more direct approach which is now being instituted will yield definite answers to the more important questions. Since the principal uncertainty is in the proportion of distant sources of small angular size, the most obvious procedure is to use an interferometer with sufficient spacing between aerials to respond to these alone. Such an instrument is now being put into operation at the Radiophysics Laboratory, in which the aerial spacing is 3000λ , yielding a lobe separation of $1 \cdot 2 \min$ of arc : the sensitivity is expected to be similar to that in our survey.

To conclude, it seems hardly necessary to point out the futility of attempting to analyse the cosmological implications of these source counts in detail until the above problems are sorted out. It would seem that, as in the optical case (although for different reasons), the straightforward counting of observed sources to various flux density levels is inadequate to define the form of the Universe. We have some hope that additional angular size data which we are planning to collect may make a significant contribution towards this end.

V. References

- BECVAR, A. (1951).----"Atlas Coeli Skalnate Pleso." (Prirodovedecke Vydavatelstvi : Prague.)
- BROWN, R. H., and HAZARD, C. (1952).-Phil. Mag. 43: 137.
- BROWN, R. H., and HAZARD, C. (1953).-Mon. Not. R. Astr. Soc. 113: 123.
- CARTER, A. W. L. (1955).-Aust. J. Phys. 8: 564.
- HEWISH, A. (1957).—The distribution of radio stars. A paper presented at the American Astronomical Society Meeting, Urbana, Illinois.

MILLS, B. Y. (1952).—Aust. J. Sci. Res. A 5: 266.

MILLS, B. Y. (1958).—Radio frequency radiation from external galaxies. "Handbuch der Physik." Vol. 53. (Springer-Verlag: Berlin.) (In press.)

MILLS, B. Y., LITTLE, A. G., and SHERIDAN, K. V. (1956).-Aust. J. Phys. 9: 218.

MILLS, B. Y., LITTLE, A. G., SHERIDAN, K. V., and SLEE, O. B. (1958).—Proc. Inst. Radio Engrs., N.Y. 46: 67.

MILLS, B. Y., and SLEE, O. B. (1957).-Aust. J. Phys. 10: 162.

- MINKOWSKI, R. (1957).—Radio Astronomy, Symposium No. IV of the International Astronomical Union, p. 107. (Cambridge Univ. Press.)
- Ryle, M. (1956).—Sci. Amer. 195 (6): 10.

Ryle, M., and Scheuer, P. A. G. (1955).-Proc. Roy. Soc. A 230: 448.

SHAKESHAFT, J. R., RYLE, M., BALDWIN, J. E., ELSMORE, B., and THOMPSON, J. H. (1955).— Mon. Not. R. Astr. Soc. 67: 106.

SHKLOVSKY, I. S. (1954).—Astr. J. Moscow 31: 533.

DE VAUCOULEURS, G. (1953).—A revision of the Harvard survey of bright galaxies. Aust. Nat. Univ. Mimeograph, Canberra.

DE VAUCOULEURS, G. (1956).—"Vistas in Astronomy." (Ed. A. Beer.) Vol. 2, p. 1574. (Pergamon Press : London.)