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Summary 

The interpretation of radio-frequency observations of H II regions is discussed 
with particular regard for the possible effects of random variations in the electron density 
and electron temperature through the nebulae. It is shown that such variations serve 
to alter the optical depth and that the conventional definition of the" emission measure " 
requires modification if it is to be considered an observable quantity. The radio emission 
of Stromgren spheres is discussed, and a means of determining their electron temperatures 
is described. An empirical method for the determination of Stromgren's constant 
defining the ionized volume as a function of the spectral type and luminosity of the 
exciting star is described. 

1. INTRonUCTION 

A number of galactic H II regions have been observed at radio frequencies. 
The observations published to date cover frequencies ranging from 19·7 to 
9375 Mc/s. S-qch observations can provide information about the temperatures 
and densities of the nebulae, and about the far ultraviolet radiation of the stars 
exciting them. The objective of the present paper is to examine in some detail 
the problem of deriving physical data on the nebulae from radio observations; 

The H II regions constitute a special class of radio source characterized by 
their spectra, which are "fiat" except at the lower frequencies where they 
become optically thick. That is, their fiux densities are nearly constant over a 
very wide range of frequencies. This is what is expected if the nebulae are 
radiating by the thermal process of free-free transitions in an ionized gas. They 
are readily distinguished from the" non-thermal" radio sources, whose spectra 
show a strong frequency dependence. 

The radio emission of H II regions is well understood theoretically (e.g. 
Piddington 1951). Discussions of the nebulae as radio sources have generally 
assumed for simplicity that the objects are uniform throughout, although it has 
been known that a non-uniform distribution of the nebular gas would tend to 
increase the radio emission because the emissivity of an ionized gas depends on 
the square of the electron density. In the present paper we shall give particular 
attention to the consequences of such a non-uniform distribution. 

Section II is devoted to a discussion of the directly observable properties of 
H II regions. Section III considers the effect of density and temperature 
variations on the optical depth, and the magnitude of the effect is estimated 
for some particular nebular models. A modification of the definition of the term 
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4' emission measure" is suggested. In Section IV, the radio emission of 
Stromgren spheres is discussed, and a method of deriving their electron temper
.atures is described. Section V is concerned with the excitation of the nebulae. 

II. DIREOTLY OBSERVABLE PROPERTIES 

Mills, Little, and Sheridan (1956) have used the term" apparent flux density" 
to describe the observed radiation of an H II region of uniform electron temper
.ature T e, lying between the observer and a background of uniform brightness 
temperature T h' This quantity is 

li'app=(2kf2/c2)(Te-Th)!(1-e---r)dD.., .......... (1) 

where the integration is extended over the entire solid angle D.. subtended by the 
nebula. -In the above equation, k is Boltzmann's constant, c is the velocity of 
light, f is the frequency in hertz, and 't' is the optical depth at the frequency f. 
The" apparent flux density" as defined here is the difference between the actual 
flux density coming from the nebula plus the transmitted portion of the back
ground radiation, and the flux density which would be incident from the area 
oovered by the nebula if the latter were absent. It should not be confused with 
the actual flux density coming from the area covered by the nebula, which is 

(2kJ2/C2){Te! (l-e---r)dD.. +T h! e--rdD..}, 

provided no emission arises between the nebula and the observer. This assump
tion is reasonable for frequencies above about 100 Mc/s for nebulae near enough 
to be observed optically. The quantity "apparent flux density" offers the 
advantage that it describes the" visibility" of a nebula in a convenient manner. 
If Te> T bl the object appears in emission; if T. <T h' it is seen in absorption. 
It will not be detectable at all if Te=Th' It is important to note that, while the 
actual flux density is always positive, the "apparent flux density" may be 
~ither positive or negative, depending on whether the object is seen in emission 
-or absorption. 

The apparent flux denSity incident from an H II region may be measured at 
various frequencies. Existing observations have been made with aerials having 
beamwidths of the same order as the angular sizes of the nebulae observed. In 
the future it will be possible, presumably, to resolve a number of the larger 
nebulae with very large aerials. This will permit direct determinations of the 
·distributions of radio brightness across these objects. .At present, however, the 
radio data usually consist only of measurements of li'app and Th at various 
frequencies. Information about the angular sizes and apparent shapes of most 
·of the nearer H II regions may be obtained from photographs, although in some 
·cases these are severely affected by interstellar absorption. In the present paper 
we shall consider only the quantities derivable from these data. 

Equation (1) implies that we may learn the electron temperature of a nebula 
Simply by finding the frequency at which li'app is zero, and measuring Th at this 
frequency. Then Te=Tb' Mills, Little, and Sheridan (loc. cit.), following this 
line of thought, have shown that the commonly accepted value of Te R::l10,000 OK 
is consistent with the observational evidence. There are two considerations 
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which prevent this approach being a sensitive method of determining electron 
temperatures. Firstly, current calibration methods do not permit the absolute, 
accuracy of brightness temperature measurements to be better than about 
±20 per cent. Secondly, the random noise fluctuations in the output of 
contemporary receivers prevent an accurate determination of the frequency at 
which Fapp vanishes. Therefore at present this method can give us only the order
of magnitude of the electron temperatures. Nevertheless, future improvements, 
in instrumental calibration techniques and receiver characteristics may make an 
approach of this kind useful. 

III. THE RADIO EMISSION OF A NON-UNIFORM HYDROGEN NEBULA 

(a) The Optical Depth 
We shall consider the optical depth in a cloud of completely ionized hydrogen 

gas. We assume that the emission and absorption of radiation in the gas are 
completely described by the mechanism of free-free transitions. According to 
Piddington (1951), at low densities the absorption coefficient per centimetre in a, 
gas consisting of equal numbers of protons and electrons is 

x = ~n; /f2T~/2, 

~ =9·70 X 10-3 In (3kTe/2hf). 
} ............ (2) 

In these equations, ne is the number of free electrons per unit volume and h is: 
Planck's constant. The optical depth along a particular line of sight in a cloud. 
of ionized hydrogen is 

't'= f: xds, . . . . . . . . . . . . . .. . . . . . . . . . . ... (3) 

where S is the length traversed by the line in the ionized region. If the distribu
tion of matter and temperature is perfectly uniform, we have simply 

(4) 

The subscript u denotes the uniform case. 

In general, there is no physical justification for an a priori assumption that 
an actual nebula is entirely uniform. The electron density and electron temper
ature at a point s on a particular line of sight may be written 

n.(s) = ne +~ne(s), 

T.(s)=Te+~Te(s), 

where n. and Te are the average values for the nebula, and ~ne(s) and ~T.(s) are 
the local deviations from the average. Defining 

m-~ne(s)/ne' 

t-~Te(s)/Te' 
we have 

ne(s) = ne(1 +m), } .................. (5) 
Te(s)=Te(1+t). 
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Neglecting the slow variation of ~ as a function of T e, we may rewrite the 
-equations (2) as 

~(n:)2 (1 +m)2 .. } 
X= j2T!/2 . (1 +t)3/2' 

~=9 ·70 x10-3 1n (3kTe/2hf). 

............ (6) 

The optical depth is then 

"=~suJSo (1+m)2 
(1 +t)312ds. . . . . . . . . . . . . . . . . . . .. (7) 

The optical depth therefore differs from that in the uniform case by a factor 

IJS (I+m)2 
Q=S 0 (I+t)3/2ds . ...................... (8) 

We shall call this the" amplification factor". If Q>I, the optical depth is 
greater than that corresponding to a uniform density and temperature; if 
Q <1, it is less. The value of Q is independent of the frequency, and is fixed by 
the distribution of matter and temperature within the nebula. Equation (8) 
is quite general; it may be applied for either systematic or random variations. 

It is evident that, in the absence of systematic density and temperature· 
'Variations, the optical depth is the same as if the nebula were at a uniform 
temperature Te With a uniform density equal to nevQ. .An unfortunate conse
quence of these considerations is that the average density of an H II region 
<lannot be found from radio-frequency observations without an independent 
knowledge of the distribution of matter and temperature. We may, however, 
·derive an "equivalent density" defined by 

neq=n.VQ. . ..................... (9) 

This is " equivalent" in the sense that it is the density the nebula would need 
to have in order to produce the observed radio emission if it were uniform. 
Strictly speaking, it is a parameter which depends in an undetermined manner 
on the average electron density and the variations in density and temperature. 
In the special case that the electron temperature is uniform the equivalent 
density is equal to the root mean square density. 

(b) The Apparent Flux Density 
The apparent brightness temperature at a point on the projected surface of a 

nebula is 

T =e-'t"J'" T e",'d,,'+T e---B ·e b 
o 

=T:(I-e---)+~e-'J: te",'d,,' +Tbe-'t" . 

If the temperature fluctuations are random along the line of sight, and if their 
linear scale is small compared to the length of the line of sight in the ionized 
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region, 1=0, and consequently the integral vanishes. Therefore, the apparent 
brightness temperature is 

TB=Te(l-e-'t") +Tbe-'t". 

This differs from T b by 

!:l.T = (Te -T b)(l-e-'t"). 

The apparent flux density is then 

Fapp=(2kf2!02)(Te-T b) !(l-e-'t")dQ. . . . . . . .. (10) 

This expression is equivalent to equation (1) if the electron temperature is 
uniform. 

(0) On the Evaluation of the Amplification Factor 
There is no general solution to the equation for the amplification factor 

(equation (8)). .A considerable simplification results, however, if the variations 
are purely random and if there is a functional relationship between electron 
temperature and density. In an actual nebula, it is likely that such a functional 
relationship exists, at least approximately. In the present subsection we shall 
consider two extreme possible cases: an isothermal nebula (uniform electron 
temperature) and an adiabatic nebula (uniform entropy). If the density varia
tions within a nebula arise from turbulent motions of the gas, we may expect 
the actual relationship to lie somewhere between these two extremes. 

In an isothermal nebula, t=O everywhere and equation (8) gives 

where the average is taken over the part of the line of sight lying in the nebula. 
Since we are assuming that the density· variations are random, the above 
expression may be written 

In an adiabatic nebula, we have 

w~ere y is the ratio of specific heats. The electrons and protons comprising the 
gas have no communicable internal degrees of freedom, so y=5/3. We obtain 
the result that 

Q=l+m=l. 

Thus the optical depth is unaffected by the presence of random density variations 
if they are adiabatically related to the temperature variations. 

(d) The Discrete Cloud Model 
The value of the amplification factor depends not only on the relation 

between m and t but also on the form of the function m(s). .A particularly simple 
model is one in which a fraction ~ of the mass of a nebula resides in condensations 
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occupying a fraction oc. of the nebular volume, the densities being uniform and 
equal in the condensations, and also uniform outside them. This situation 
corresponds to having 

inside the condensations and 

outside. If the electron temperature is uniform, and if the condensations are 
distributed at random, we find 

Q=~2/oc.+(1-~)2/(1-oc.). . ........... (11) 

A consequence of this result is that 

This means that if, instead of condensations, we have uniform regions of sub
average density scattered through a nebula, we obtain a positive amplification 
factor equal to that in the inverse case. Figure 1 shows Q as a function of oc. and ~ 

0'6 

f3 0'5 

0'4 

0'3 

0·2 

001 

o 0·5 0·6 0·7 0'8 O-g 1-0 

Fig. l.-Q(cx,~) for an isothermal nebula. 

for constant electron temperature. The part of the diagram above the diagonal 
corresponding to Q=l applies to the case of true condensations (oc.<~); the 
part below refers to "negative condensations" (oc.> ~). If oc.=~, the nebula is 
uniform and perforce Q=1. 

(e) The Emission Measure 
Stromgren (1948) introduced the term emission measure to describe the 

monochromatic intensity of nebular radiation in the Balmer lines. The emission 
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measure is defined as the product of the square of the density (which Stromgren 
assumed to be uniform) and the length of the emission path in parsecs; 

e=(3·08X1018)_ln;S ................. (12) 

The numerical factor is required because we are using c.g.s. units. 
The emission measure has also been used by some authors in discussing the 

radio emission of H II regions. According to equation (4), we have a simple 
relationship between emission measure and optical depth for perfectly uniform 
nebulae: 

't"u=3 ·08 x 1018~e/f2T3J2. . ................. (13) 
e 

For a non-uniform nebula, however, 

(14) 
If we define 

e'=(3·08X1018)-ln2 S eq , (15) 

we obtain an expression analogous to (13): 

't"=3·08x1018~e'/f2Te3/2 ................... (16) 

The emISSIOn measure as defined by Stromgren is not appropriate for 
discussing a non-uniform nebula, since it cannot be determined from observations 
without reference to a physical model of the nebula. However, the analogous 
quantity e' defined by equation (15) can be related directly to the optical depth, 
provided the average electron temperature is known. In the next section we 
shall outline a means of obtaining the average electron temperature and the 
equivalent density of a spherical nebula from radio data. Therefore e' is in 
principle an observable quantity, whereas e is not. We suggest that the term 
"emission measure" should be defined by (15) instead of (12). The two 
definitions are equivalent for a uniform nebula because then Q=1. 

IV. STROMGREN SPHERES 

Stromgren (1939, 1948) has studied theoretically the ionized region which 
would surround a hot star imbedded in an extended uniform cloud of hydrogen 
gas. He showed that the Lyman continuum radiation of the star would cause 
almost complete ionization of the hydrogen out to a quite sharply defined 
boundary. The radius of the ionized sphere was shown to depend upon the 
density of the gas and the Lyman continuum flux emitted by the star. Stromgren's 
theory provides a convenient basis for discussing hydrogen nebulae, although it 
treats a highly idealized case. Many galactic H II regions are very nearly 
spherical in shape and are reasonably concentric with the stars exciting them. 
Such nebulae evidently approximate to the case considered by Stromgren and 
are frequently referred to by the convenient designation " Stromgren spheres". 
In the present section we consider the radio emission of these objects. 

(a) The Apparent Flux Density 

We assume that the average density of the nebular hydrogen does not 
change as a function of distance from the exciting star and that the density and 
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temperature variations have a linear scale small compared to the radius of the 
ionized sphere. We shall let "0 denote the optical depth of the ionized sphere at 
its apparent centre, and eo be the apparent angular radius of the nebula in radians. 
We also assume that the radius of the ionized region is small compared with its 
distance, so that we may set 

eo=sin eo. 

The optical depth at an angular distance e from the centre of the nebula will be 

,,(e) ="0(1-e2je~)!. 

For a spherical nebula, equation (10) takes the form 

lJ'app=2kJ2/c2(Te-Tb) f:o (1-e-'I"(6»27tede 

= 47tkJ2(~ -T b)f60 e(1-e-'I"(6»de. . ........... (17) 
c 0 

Completion of the integration gives the result 

lJ'app ={47tke~J2(Te -T b)jc2} Y("o), 
where 

An equivalent expression is 

(18) 

( 19) 

ex) ~ 

Y("o)= ~ (-l)n+1 '( ~2r .............. (20) 
n~l n. n 

This series may be shown to converge for all values of "0> o. If "0 <0 ·1, the 
approximation 

is sufficiently accurate. We also note that Y(oo)=0·500. Figure 2 shows 
Y("o) for 0·1<"0<10·0. 

Equation (18) takes the limiting forms 

lJ'app={47tke~f2(Te-Tb)j3c2},,0, ............. (21) 
for "0<1 and 

for "0>1. These correspond to expressions given by Mills, Little, and Sheridan 
(loc. cit.). 

(b) The Electron Temperature 
Equation (18) provides a means of estimating the average electron temper

ature of a Stromgren sphere from observations of the apparent flux density at 
two well-separated frequencies. The central optical depth as a function of 
electron temperature may be calculated at each frequency. The ratio of the 
optical depths at each temperature is then found. The ratio corresponding to 

H 
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the correct electron temperature will be equal to the ratio of the opacities at the 
two frequencies, so 

TO,l ~1 f~ 
TO, 2 =~2 • ?f 

where the subscripts 1 and 2 denote the two frequencies. 

(23) 

We may illustrate the calculation by considering the Rosette Nebula 
(NGC 2237). This object resembles a classical Stromgren sphere except for the 
fact that its central part appears to be much lower in 'density than the average. 
According to Mills, Slee, and Hill (1958), the apparent flux density at 85·5 Mc/s 
is 2·7 X 10-24 W m-2 Hz-I. Piddington and Trent (1956) found the apparent 
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Fig. 2,-The function Y("t"o). 

flux density at 600 Mc/s to be 4·0 X 10-24 W m-2 HZ-I. .At 85·5 Mc/s, 
P b=1800 oK (Mills, unpublished data), while P b is negligible at 600 Mc/s. The 
angular diameter of the nebula is 80 min of arc. Using these data, we find the 
values given in Table 1. The values of the ratio of TO, 1 to TO, 2 calculated from 
equation (23) are 56·6 at 8000 oK and 56·4 at 10,000 oK. We can now plot 
the two determinations of optical depth ratio as a function of electron temperature. 
The intersection of the two curves gives the required value of the average electron 
temperature. We do this in Figure 3, obtaining the result 1';=8600 oK. 
Unfortunately, this result is sensitive to the errors in the measured flux densities; 
it is probably within about 30 per cent. of the correct value. The method has 
other limitations. Firstly, it is not reliable if the central optical depth is too 
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great at one or both frequencies, since the computed values of "0 are then too 
sensitive to errors in Y("o).Secondly, if the nebula is too thin optically at both 
frequencies, so that Y("o) is linear at each, one cannot obtain a reliable result. 
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50'0 

8000 9000 10.000 

8600 

Fig. 3.-Determination of the electron tempera.ture of the 
. Rosette Nebula (NGC 2237). 

(c) The Equivalent Density 
We may use equation (18) to derive the equivalent density of a spherical 

nebula from measurements of its radio-frequency flux, provided its central 
optical depth is not too great. If F app, T e, T h, and 60 are known we may solve, 
for Y('t'o) , and find the corresponding value of "0' 

Now 

whence 

TABLE 1 
CENTRAL OPTICAL DEPTH OF THE ROSETTE NEBULA AS A FUNCTION OF FREQUENCY AND ELECTRON' 

TEMPERATURE 

Frequency 85·5 Me/s 600 Me/s 

-
T. Y("O,l) ("0,1) Y("0,2) "0, 2 "0,1/"0,2 (OK) 

8,000 0·229 0·96 0·00535 0·0161 59·5 
9,000 0·197 0·78 0·00475 0·0142 55·0 

10,000 0·173 0·66 0·00428 0·0128 51·5 
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R is the distance to the nebula in parsecs, which must be found from opti<laI 
studies of the exciting star. This ordinarily requires a knowledge of the absolute 
magnitude and intrinsic colour of the star. These data are not well determihed 
for 0, B, and Wolf-Rayet stars. Since only stars of these types are Sufficiently 
hot and lumihous to excite an observable Stromgren sphere, it follows that the 
distance to an H II region is not easy to find accurately. The seriousness of the 
matter is reduced somewhat for our purposes by the fact that the equivalent 
density depends only on the square root of R. We note that the derived 
equivalent density is almost independent of T., since the product j2T.3J'kro is 
nearly constant for a given nebula over a very wide range of t~mperatures. 

Johnson (1957) has found that the distance to the cluster NGC 2244, which 
contains the stars exciting the Rosette Nebula, is 1660 parsecs. Using this 
distance and the radio data given above, we obtain an equivalent density of 
17 cm-3, in good agreement with the value 14 cm-3 found by Minkowski (1955) 
from optical data. 

V. THE EXCITATION OF THE NEBULAE 

Stromgren (1939) has shown that the quantity 

U =n2 /3so ...................... (25) 
eq 

is a constant depending on the spectral type and absolute lumihosity of the 
eXQiting star, So being the radius of the ionized zone in parsecs. Stromgren 
assumed a uniform density in his derivation; according to the considerations 
we have presented in Section III this may be replaced by the equivalent density 
n.q• 

Stromgren computed the excitation constant U for stars of various spectral 
types from his theory. The calculated values depend on a number of assumptions, 
however, and it is desirable to have a direct observational determination of 
.these quantities. Substituting (24) in (25) and replacing Reo by SOl we get 

U =6 'S7 X 10-7S2J3j2J3T.IJ2('t'0/2~)lJ3. . ......... (26) 
o 

'rills result is independent of the possible presence of density variations in the 
nebular gas, since 't'o varies as S02 for any value of Q. It is almost independent 
of the electron temperature, because of the quasi-constancy of the product 
.f2T.312't'0' Therefore we may find U for a sta: exciting ~ spherical nebula if we 
know So from optical studies and 't'o from radio observatIOns. 

We may apply equation (26) to the Rosette Nebula, using the data of 
• Section IV. We find U =126. The nebula is actually excited by four O-stars

one each of types 05 and 06, and two of type OS. The effective U for a group 
of stars is the cube root of the sum of the cubes of the U's of the individual 
stars. The effective U found from the data given by Stromgren is 167, which 
is in fair agreement with the empirical value. 
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