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Summary 

Solid state three-level masers operating with zero magnetic field are shown to be 
feasible and to have advantages over magnetic field masers in many applications. The 
requirements of the working substance are discussed and it is found that compounds of 
CrH, Fe3+, NiH, and Gd3+ should be suitable. Diagrams and tables of maser properties 
of selected compounds are given; on the basis of present knowledge a number of ampli
fying frequencies between 120 and 75,000 Mc/s should be available. The range of 
suitable compounds which has been studied is very small, and should be extended. 

1. INTRODUOTION 
A primary requirement of the three-level maser, which was stated by 

Bloembergen (1956) in his original proposal of the device, is that non-zero 
magnetic-dipole transition probabilities should exist between all three of the 
participating levels. This requirement is not fulfilled when the quantization of 
angular momentum is pure, since the selection rule /).M = ±1 applies. As a 
means of breaking down this selection rule, Bloembergen proposed that a para
magnetic salt possessing a Stark splitting due to its internal electric field should 
be subjected to a magnetic field inclined at an angle to the axis of the crystalline 
electric field. If the resulting Zeeman splittings are made comparable to the 
Stark splittings the quantization is very mixed and transitions may in general 
take place between all levels. 

Use has been made of this principle, which one may call magnetic-field 
mixing, in a number of successful maser oscillators and amplifiers (for example, 
Scovil, Feher, and Seidel 1957; McWhorter and Meyer 1958). 

In view of the great interest which has been aroused by the three-level 
maser it is surprising that no attention seems to have been paid to the possibility 
of realizing the device without using a magnetic field. It will be shown below 
that, among the paramagnetic substances already studied, there are several 
which provide the necessary transitions, between three levels, in zero magnetic 
field. 

Such zero-field masers will not be tunable beyond the line width of the 
magnetic resonances involved, and so will hardly compete with magnetic-field 
masers where the profile of a naturally opcurring radiation, such as the hydrogen 
line of radio astronomy, is to be studied. Nevertheless, zero-field masers possess 
some considerable advantages which may prove paramount in applications 
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such as radar, communications, and high-sensitivity paramagnetic resonance 
experiments, where frequency, as such, is not important. The advantages 
are: 

(1) The necessity for a magnet, which in magnetic-field masers has to fulfil 
exacting requirements of homogeneity, stability, and working space, is avoided. 

(2) The orientation of the crystal loses its primary importance as an energy
determining factor. Thus large mono crystals of paramagnetic material will not 
be required; indeed powders could be used, so that unit filling factor could be 
achieved without difficulty. 

(3) As a corollary of (2) it is possible to utilize differently oriented but 
otherwise equivalent paramagnetic centres in the crystal, whereas in a magnetic
field maser only one type would, in general, be correctly oriented with respect 
to the field. 

(4) Line broadening caused by inhomogeneity of the magnetic field, or of 
orientation of the crystal axes, is absent. 

(5) A superconductor may be employed for the construction of the microwave 
circuits since no magnetic field is employed. 

(6) Complicated or extended microwave structures, limited only by the 
requirement that they enter a Dewar vessel of reasonable size, may be used. 

These advantages lead to great freedom in the design of masers. An 
attractive example is a travelling-wave maser consisting of a superconducting 
coaxial line filled with powdered paramagnetic and wound into a coil to permit 
convenient cooling of a considerable length. 

In view of the advantages of zero-field masers we present a compilation of 
transition probabilities and frequencies calculated for a number of materials 
which, on the basis of present-day knowledge, are promising as working sub
stances. The grounds for selection will also be given, and this will necessitate a 
consideration of maser and paramagnetic resonance theory. 

II. THE THREE-LEVEL MASER 

We refer at this point to Bloembergen's (1956) paper. Bloembergen 
considers a system with three energy levels Es>E2>El' to which is applied a 
strong microwave magnetic field at the frequency vs1=(Es-E1)/h and a weak 
field at the frequency vS2=(Ea-E2)/h. He gives an expression for the difference 
in population between levels for the case when all energy level differences are 
much less than kT. Preserving only terms of order hv /kT, we may ignore the 
distinction between wij and Wj;, thus obtaining 

. . . . .. (1) 

The notation is Bloembergen's: N is the number of paramagnetic centres, 
the w's are the thermally induced (relaxation) transition probabilities, W S2 is 
the transition probability between the levels Es and E2 due to the microwave 
field H(vS2), and T is the absolute temperature. Without loss of generality one 
may suppose that W21V21>WS2VS2, for, if not, the labels 1 and 3 can simply be 
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reversed. Then '1'13> n2, and stimulated emission occurs at the frequency V32' 

The power emitted is 

Pmagn=Nh;~T~W21V21-W32~)~32. • ••••••••• (2) 
W21 +W32+ 32 

We now wish to express W 32 in terms of the exciting field H(V32)' the matrix 
~lement <21 H.B 13), and the width of the magnetic resonance line. At this 
point we depart from the nomenclature of Bloembergen and use the half-width 
at half-intensity /).v instead of the relaxation time T 2• (/).v=1/(21tT2).) Then the 
transition probability takes the form 

W32=1tg2~21 <3 I H.B I 2)12/h2/).V=1tg2~2H(V32)21 <31 BH I 2)12/h2/).v, 
(3) 

where g is the spectroscopic splitting factor, ~ the Bohr magneton, and BH the 
}>rojection of the spin operator in the direction of H(vS2)' 

Provided that the field H(VS2) is small, so that W32~W21 +W32, equation (2) 
,shows that the power emitted is proportional to H(VS2)2. One may then define 
a magnetic quality factor Q M by the equation 

-1 power emitted per unit volume 
QM =21tvS2 X (stored energy per unit volume)' 

'This definition differs from that of Bloembergen in that unit volume of the 
paramagnetic is here considered, so that dependence on the volume of any 
-conducting enclosure is avoided. We believe that this definition has the merit 
,of embodying only properties characteristic of the paramagnetic material. Let 
the further stipulation be made that N shall be the number of paramagnetic 
-centres per unit volume, so that equations (1) and (2) now refer to unit volume. 
Then 

_.!.= 41t • Ng2~21<31 BH 1 2)1 2 • W21V21-WS2VS2 (4) 
Q M 3kT /). v w21 +WS2 • . ... 

The concept of magnetic Q is of central importance in any discussion of 
-circuit properties of practical maser amplifiers. In the case of the cavity maser, 
for example, McWhorter and Meyer (1958) have shown that, under reasonable 
}>ractical circumstances, 

GIB...;-2vs2/1 QM I, .................. (5) 

where G is the power gain, and B is the bandwidth. 
As a very different example we shall take a travelling wave coaxial-line 

'structure operating in the principal (TEM) mode. The gain per unit length 
:attributable to the magnetic material is 

G=(l/1 QM l)(v2s/2v)(Zo/Z) nepers, .......... (6) 

where Zo is the intrinsic impedance of the magnetic material, Z is the wave 
impedance of the filled coaxial line, and v is the group velocity of the wave in the 
filled coaxial line. 

In both cases it is evident that the larger 1/1 Q M I the better the performance, 
:and we shall therefore use it as a figure of merit of paramagnetic materials. 

AA 
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III. EXTENSION OF THE MASER EQUATION TO FOUR LEVELS AND 

EXTRAPOLATION TO MORE THAN FOUR LEVELS 

The number of paramagnetics with precisely three levels is limited, and in 
fact the successful masers so far operated have used four or eight levels. In 
spite of this the equations of a multilevel maser do not appear to have been 
published. However, some estimate of the influence of extra levels is needed 
for the assessment of suitability of working substances. 

For a four-level maser, we find that, with a natural extension of 
Bloembergen's notation, the equation analogous to equation (1) is 

where w,,-w14 +W24 +w34• 

W,,(W21V 21 -WS2VS2) +W2,,(W14V21 -WS4VS2) 

W 4(W 21 +WS2 ) +W24(W14 +WS4 ) 
.. (7) 

If no relaxation transitions exist between the fourth level and the other 
three, i.e. W14=W24=WS4=0, the population difference nS-n2 turns out to be 
three-quarters of that given by equation (1), which accords with expectation 
since in this case only iN centres are participating in the maser process. The 
same result is produced in quite a variety of circumstances: (i) if W 24=0; 

(ii) if w 14 =WS4 =0; (iii) if W 14/W 21 =WS4/WS2 ; (iv) if all the w's are equal. 
It may also be seen that the position of the fourth energy level is of no 

account. However, equation (7), like equation (1), rests on the assumption 
that all energy differences are small compared to kT. 

Very little is at present known about the values of the relaxation frequencies 
w. We shall assume here that the effect of extra levels is simply to reduce the 
working population, so that for an x-level maser, 

. 1 hN w21V21-WS2VS2 nS -n2 =i=- • - • • 
x kT W 21 +W32 

The figure of merit then takes the form (cf. equation (4)) 

Ng2~21<31 SH 12>12 

Av 
W 21V21 -WS2VS2 

W 21 +W32 

(8) 

.... (9) 

IV. REQUIREMENTS OF THE SPIN AND HAMILTONIAN FOR ZERO-FIELD 

MASERS 

In this section we shall discuss what values of spin are required to give three 
or more energy levels in zero field, and what components must be present in the 
spin Hamiltonian to provide transitions between the levels. It will be assumed 
that the nuclear spin is zero; its influence when it is not zero will be discussed 
in Section VII. 

Paramagnetic resonance results are customarily presented in terms of the 
spin Hamiltonian formalism of Pryce (1950). The ground states of the para
magnetic centres are described in terms of a spin S, and the spin Hamiltonian 
is a function of spin operators with semi-empirical parameters. Once these are 
known all paramagnetic properties may be calculated, including those relevant 
to masers. .A particularly useful compilation of spin Hamiltonian parameters 
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has been given in the review article on paramagnetic resonance by Bowers and 
Owen (1955). 

The number of independent states of an ion with spin S is 2S +1; but, 
by virtue of Kramers' theorem (1930), the number of distinct energy levels 
cannot exceed S +t for integer-plus-a-half spins. For integer spin the number 
of levels may be 2S + 1. In either case the full multiplicity allowed by 
Kramers' theorem may not be realized in crystal fields of high symmetry. 
Assuming low enough symmetry, the multiplicity is tabulated below as a function 
of spin: 

Spin 1/2 1 3/2 2 5/2 3 7/2 
Number of levels 1 3 2 5 3 7 4 
Example CuH NiH Cr3+ CrH Fe3+ Gd3+ 

A spin higher than 7/2 is not expected to occur and no examples of spin 3 
are known. It is seen that all values of spin except 1/2 and 3/2 are suitable 
for zero-field masers. 

We come next to the required properties of the spin Hamiltonian. By 
far the commonest form of zero-field Hamiltonian, for S> t, is 

£,=D{S~-tS(S+1)}, .............. (10) 

where z is an axis of symmetry of the crystalline field. A zero-field maser is 
out of the question with this Hamiltonian. Since £' commutes with S z the 
eigenstates of the energy are simultaneous eigenstates of Sz. The eigenvalues 
of the Hamiltonian are 

EM=D{M2_tS(S+1)}, .............. (11) 

where M is the eigenvalue of Sz. This gives a series of levels, in the order 
M =0, M = ±1, M = ±2, ... for ions with integer spin and in the order M = ±1/2, 
M = ±3/2, M = ±5/2, ... for those with integer-plus-a-half spin. The pumping 
transition for a maser, which must always be a leap-frog transition, that is, one 
spanning two energy intervals, would here require D.M = ±2. But this is 
forbidden since the states are pure eigenstates of S z and the normal selection rule, 
D.M = ±1, applies. 

Fortunately for the zero-field maser, the term in S;, equation (10), is quite 
frequently accompanied by other terms, though generally it remains predominant. 
The additional terms fall into two classes: those with axial symmetry, viz. S~ 
and S~; and those with lower symmetry. The axially symmetric terms make 
no improvement in the situation, for the Hamiltonian after their inclusion still 
commutes with Sz. 

It is to the terms with lower symmetry-rhombic, trigonal, tetragonal, 
and hexagonal-that one must look in order to realize a zero-field maser. These 
terms are conventionally expressed as operator functions which transform under 
rotation in the same way as the spherical harmonics. Most of the terms met 
with in paramagnetic resonance are given in full in Bleaney and Stevens' (1953) 
review article (pp. 132, 137, and 150); it is invariably the case that a term with 
m-fold symmetry contains the operators S~ and S~, where 

S+=Sx+iSy, S-_SX-iSy. . ........... (12) 
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These terms do not commute with 8 z , and therefore the eigenstates of the 
Hamiltonian are not pure eigenstates of 8z , and normal selection rules no longer 
apply. 

In general one may say that any paramagnetic with spin other than 1/2 or 
3/2, which has a spin Hamiltonian of rhombic, trigonal, tetragonal, or hexagonal 
symmetry, is a candidate for a zero-field maser. 

There is one exception to the rule. This is the case of perfect cubic symmetry, 
which has the Hamiltonian (Bleaney and Stevens 1953, p. 137) 

.Yt'cublc=!a{8;+8t+8!-!8(8+1)(382 +38-1)}, .... (13) 

where a is a numerical coefficient. For all spins less than 3 this Hamiltonian 
gives fewer than three levels, and for 8 =3 and 7/2 the number of levels is three 
but the leap-frog transition probability turns out to be zero. It should be 
emphasized that this is true only of perfect cubic symmetry ;.Yt'cubic in con
junction with other operators has rhombic, trigonal, or tetragonal symmetry 
and the rule then applies. 

V. LINE WIDTH AND ULTIMATE PERFORMANCE 

The figure of merit, equation (9), depends on the line width ~v. In a 
zero-field maser three agencies can contribute to this :(1) the random magnetic 
fields of the nuclei of the diamagnetic neighbours of the paramagnetic centres; 
(2) a spread in the values of the spin Hamiltonian coefficients; (3) the fields 
of the paramagnetic centres themselves. In principle, (1) and (2) can be made 
small compared to (3) by choosing a host material in which the diamagnetic 
atoms have small nuclear moments and by obtaining a sufficiently perfect crystal 
structure. Then performance would depend only on the line width due to 
paramagnetic spin-spin interaction (3). 

Kittel and Abrahams (1953) have calculated the line width for a dilute 
paramagnetic with a cubic lattice. With some adaptation of their result one 
obtains 

~v~6g2~2N'V'{8(8+1)}/h . ......••...... (14) 

We shall take this to be a fair indication of line width for any lattice, not 
merely cubic. Then the figure of merit becomes, using (9) and (14), 

_ -.!..= 2h(W21V21-W32V32) 1<31 8 H 12>12 (15) 
QM' xkT(W21 +W32 )'V'{8(8+1)} ......... 

The value of 1<31 8H 12>12 will be typically of the order of (1)82; the number 
of distinct energy levels, x, is 8 +1- and 28 +1 for integer-plus-a-half and integer 
spins respectively; thus to a rough approximation (15) is independent of spin. 
Making now the simplifying assumption that W21 "-'W32' and V21~V32' one obtains 
for the figure of merit 

1 
- QM""hv21/4kT .................. (16) 

for integer-plus-a-half spin (Kramers degenerate ions). For integer spin the 
figure of merit is roughly halved. 
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It is interesting to compare (16), which should be valid for a magnetic-field 
maser as well as for a zero-field maser, with the results of McWhorter and Meyer 
(1958). In their experiment, V21--6 x109 cis, T=1·25 oK, and 8=3/2. After 
adjustment for the doubling of multiplicity brought about by the presence of 
the magnetic field our theory predicts -1/QM--hV21/8kT or 1/35. In fact the 
experimentally measured figure, derived from the quoted gain-bandwidth 
product, by the use of equation (5), was 1/3300, or about 100 times worse than 
the ultimate predicted. The factor of 100 is made up in the following way. 
(a) The filling factor of the sample in the cavity was only 10 per cent., which 
contributes a factor 10. (b) The line width (derived from the quoted value of 
5 X 10-9 sec for T 2 ) was 30 Mc/s, whereas that attributable to paramagnetic 
spin-spin interaction in the working population of 1019 per cm3 was, according 
to equation (14), only 6 Mc/s. This contributes a factor 5. (0) The approxi
mation made in deriving equation (18), namely, that V21:>V32, is not justified; 
in fact V32 ...;... !vm which contributes a factor 2. The product of these factors 
is 100. The closeness of this agreement is only accidental, considering the 
approximations made in deriving equation (16). 

The significant conclusion from the above comparison is that it is desirable 
to increase the paramagnetic concentration, or reduce other sources of line 
width, until the paramagnetic spin-spin width is dominant. The former course
increasing concentration-cannot necessarily be followed with impunity. For 
example, in their experiments with a 1400 Mc/s maser using dilute potassium 
chromicyanide, Autler and McAvoy (1958) found that, whereas ! per cent. 
crystals (N __ 1019) functioned successfully, 1 per cent. crystals did not. This 
fact may be understood in terms of the theory of Giordmaine et al. (1958). 
According to this theory, the phonon frequencies near the spin resonances are 
considerably broadened by interaction with the spins. The phonon width I1vL 
is proportional to Nt, and, for a typical case, I1vL --400 Mc/s at N =1019• It 
follows that if the resonance at V31 is saturated, as in pumping a maser, the 
temperature of all phonons in the range v31±l1vL is raised and these will saturate 
in turn any other spin resonances which they overlap. It is clear that in this 
model maser action would not occur if I1vL> va2, for then the saturation of V31 
would spread to V21 with the result that n1 =n2=n3• The same failure can occur 
even if I1vL <va2 because the lattice modes are not expected to show a sharp 
cut-off at v ±l1vL • 

Since it may not be possible to increase paramagnetic concentration it is 
probable that the other course, of reducing the width due to diamagnetic 
neighbours, is the more promising. In most hydrated salts the protons in the 
water molecules cause a half-width of 20 Mc/s; by substituting heavy water 
this may be reduced to about 6 Mc/s (Bleaney and Stevens 1953, p. 119). By 
growing crystals which do not contain water of crystallization even greater 
improvements may be expected; for example, the diamagnetic neighbour width 
in dilute K aCr(CN)6 crystals is only 3 Mc/s (Bowers 1952). 

The other source of width-variation of spin Hamiltonian parameters
is more obscure. For example, it was found by Bleaney and Trenam (1954) 
that among the diluted ferric alums the ammonium, potassium, and thallium 



8 G. S. BOGLE AND H. F. SYMMONS 

sulphates did not give narrow lines, whereas the rubidium and methylamine 
sulphates and potassium selenate did. 

More experimental data are needed concerning causes of line width in 
paramagnetic compounds. However, it is reasonable to expect that ways will 
be found to utilize the full potential figure of merit given by equation (16). 

To demonstrate the implications of this equation one may propose an 
example of a cavity maser with a Kramers degenerate working substance (8=5/2 
or 7/2) in which V21 ",,-,20000 and V31 ",,-,3000 Mc/s, T ",,-,2 oK, G",,-,30 dB. From 
equations (5) and (16) the bandwidth would be 25 Mc/s. By contrast, the 
bandwidth so far achieved in a magnetic field maser at the same power gain is 
only 60 kc/s (McWhorter and Meyer 1958). The example shows that the present 
view of the maser as essentially a narrow-band device should be revised. 

VI. RELAXATION TIMES 

The relaxation times for transitions between the three levels affect both 
the pumping power requirements and the figure of merit of the maser. We 
shall discuss first the pumping power. 

The power absorbed at saturation, Pa' may be found by adapting the treat
ment of Eschenfelder and Weidner (1953), giving 

P = N(hv)2W = N(hv)2 . !. (17) 
a 3kT 6kT ,,' ........... . 

where w is the thermally induced (relaxation) transition probability between the 
two levels saturated, and" is the associated spin-lattice relaxation time, which is 
equal to 1/(2w) (see, for example, .Andrew 1955, p. 15). The power absorbed in 
pumping a maser is not correctly given, however, by direct substitution of 
V3l for v and W 31 for w in equation (17) because the direct relaxations from level 
3 to 1 are supplemented by those passing from 3 to 2 and thence to 1. From 
the Bloembergen equations we have derived the following general expression 
valid for three levels 

(18) 

where "ij=1/(2wi). 

We now consider the desirable limitations on the relaxation times. We 
shall use an effective time ,,={1/"31 +1/("21 +"32)}-1; the experimental results 
available do not warrant a closer examination of the separate times. 

The use of liquid helium temperatures is likely to be general since the figure 
of merit, equation (16), is inversely proportional to the absolute temperature . 
.As a typical case, then, one may take T",,-,l, N ",,-,1019, V31",,-,1010, and x=4, whence 
the power absorbed is about 1/10" mW/cm3 • The volume of working substance 
will be some tens of cubic centimetres, so that Pa""-'l/" mW. Postulating an 
upper limit of 1 W, which would evaporate about a litre of liquid helium per 
hour, one is led to the requirement that" be a millisecond or longer. 

Relaxation times of the order of milliseconds have indeed been measured 
at liquid helium temperatures (Gorter 1947 ; Benzie and Cook 1950; Eschenfelder 
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and Weidner 1953; Giodmaine et al. 1958). It appears to be generally the case 
that, if a paramagnetic has a long enough relaxation time at room temperature 
to give observable resonance lines, then it has a relaxation time longer than 
1 msec at liquid helium temperatures. We shall therefore assume that to be 
suitable for a maser a paramagnetic must give observable resonance lines at 
room temperature. 

As Bloembergen (1956) has remarked, the w's may be expected to reflect 
the Debye (\1 2) phonon spectrum: if so, the figure of merit would contain 
(\I~l -\lg2)/(\l21 +\132)' Accordingly we shall assume, for the purpose of this paper, 
that even if \121 is only a few tens per cent. greater than \132 the substance is a 
reasonable candidate for a zero-field maser. 

VII. INFLUENCE OF HYPERFINE STRUCTURE 

If the nucleus of a paramagnetic centre has odd mass number it will possess 
angular momentum and magnetic moment. A magnetic interaction will exist 
between the nucieus and the paramagnetic electrons, to account for which the 
term 

must be added to the Hamiltonian, Ix, 1 11 , and I z being the components of nuclear 
spin. An electric quadrupole interaction may also exist but is unimportant 
for the discussion in hand. 

The effect of yeN is to increase considerably the number of levels. With 
electronic spin 8 and nuclear spin I the number of independent states is 
(28 +1 )(21 +1) and, although not all need correspond to distinct energy levels 
(see, for example, Fig. 8 of the paper by Bleaney and Ingram 1951), the number 
of levels, that is, x in equation (9), is often nearly an order of magnitude greater 
than the three required for maser action. The figure of merit is correspondingly 
reduced. Furthermore, hyperfine-structure masers, with their more closely 
spaced levels, are more likely to encounter the phonon-width trouble referred to 
in Section V. 

For these reasons we do not regard hyperfine-structure masers as likely 
to be as important as fine-structure masers (masers with electronic splittings 
only). Nevertheless, hyperfine-structure masers merit some consideration 
because they hold the promise of extending the frequency coverage of zero-field 
masers. The energy splittings caused by yeN range from A to (I + t)A; A is 
typically a few hundred Mc/s, and I may be as great as 7/2. Thus the band of 
frequencies covered is typically from 100 to 1000 Mc/s. We shall give one 
example of a hyperfine-structure maser in Section XI. 

VIII. ELIGIBLE IONS 

Since it is our aim to focus attention only on the most promising working 
substances for zero-field masers, we shall now apply rather liberally the dis
qualifications implied by the preceding sections. 

Paramagnetism has been observed in compounds of the five transition groups, 
the iron, palladium, rare earth, platinum, and actinide groups, which are 
associated with unpaired electrons in the 3d, 4d, 4j, 5d, and 5f shells respectively. 
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We shall consider these groups in turn. Most of the available paramagnetic 
resonance data are collected together in the review article by Bowers and Owen 
(1955), to which we refer as B & 0. 

The most thoroughly investigated group is the 3d. Most ions in the group 
give observable spectra at room temperature so that only a few need be dis
qualified by the relaxation-time criterion, leaving as eligible the ions V02+, V2+r 
Or2+, ~'In2+ (but not [Mn(ON)6]4+), Fe3+ (but not [Fe(ON)6P+), Ni2+, :md Ou2+. 
Next, the disqualification of ions which possess a large proportion of isotopes 
with hyperfine structure removes V02+, V2+, Mn 2+, and Ou2+. Those remaining 
which possess spin 1/2 or 3/2 must be disqualified for providing too few levels: 
Or 3+, with 8=3/2 is thus rejected, leaving Or2+ (8=2), Fe3+ (8=5/2), and Ni2+ 
(8=1). 

The next group, the 4d group, provides rather few investigated compounds 
because chemical stability appears to go hand-in-hand with diamagnetic bonding. 
Of the compounds investigated, none have spin other than 1/2 or 3/2, so that the 
entire group is disqualified. The same applies to the 5d group (B & 0, p. 355). 

In the 4f or rare earth group relaxation times are generally very short and 
liquid hydrogen or helium temperatures have had to be employed in order to 
observe the spectra. The only ions giving observable spectra at room temperature 
are the iso-electronic Eu2+ and Gd3+, which have 8=7/2. Eu2+ is disqualified 
by its large proportion of isotopes with hyperfine structure (B & 0, p. 363). 
Gd 3+ has 30 per cent. isotopes with nuclear spin, but the associated hyperfine 
structure is so small that it eluded for years attempts to resolve it (Low 1956). 
The four electronic energy levels of Gd 3+ are each thus effectively single and 
provide a good basis for a zero-field maser. 

In the 5f series the behaviour appears to resemble that in the 4f series 
(Bleaney 1955; Hutchison et al. 1956), so that very short relaxation times are 
to be expected. Bleaney (1955) has pointed out that the ions Am2+, Om3+r 
and Bk4+ are expected to behave analogously to Gd 3+ and Eu 2+, with reasonably 
long relaxation times. However, the expense of these elements and the destruc
tion of crystal structure which their radiations will cause, make it doubtful that 
they, or any other actinides, will be attractive candidates for zero-field masers 
and accordingly we shall not consider them further. 

It is seen that the promising working substances for zero-field masers are 
the compounds of no more than four ions: Or2+, Fe3+, Ni2+, and Gd3+. These 
will be discussed in detail in Section X. 

IX. TRANSITION PROBABILITIES 

The transition probability, equation (3), may be expressed in terms of an 
effective magneton number for the transition p analogous to that used in the 
description of magnetic susceptibilities. p is defined by 

The figure of merit then takes the form (cf. equation (9)) 

-1 47tN~2p2 

QM = xkTt:.v 
W 21 V21 -W32V32 

W 21 +W32 
............. 

(20) 

(21) 
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If lmn are the direction cosines of H with respect to the axes xyz of the spin 
Hamiltonian, 

p2=l2p;+m2p;+n2p;, ................ (22) 

where p;=g2 I<i 1 Sx 1 j)I2, and so on. 
It is illuminating to notice that, for a free electron spin with oscillating field 

applied perpendicular to a steady field, p2==g2 1< -t 1 Sx 1 t>I2=1 since g=2 ·00. 
Hence, in general, p2 denotes the strength of a transition in terms of that for a 
free spin having the same line width: in other words, p2 is the strength in 
free-spin units. 

For powdered salts p2 must be averaged over all directions of H, giving 

p~v=Hp;+p;+p;). . ............... (23) 

If the spectroscopic splitting factor g were anisotropic, equations (20) 
and (21) would require generalization; but for compounds suitable for masers 
it turns out that g is always nearly isotropic. 

X. MASER PROPERTIES OF SELECTED COMPOUNDS 

We shall now consider the suitability of those compounds of Cr2+, NiH, 
Fe3+, and Gd 3+ which have been studied by paramagnetic resonance. In many 
cases results have been observed at room temperatures, and the properties 
deduced from them must be taken only as an indication of what will apply at 
liquid helium temperatures. 

Energies and eigenstates have been calculated from the spin Hamiltonian 
by standard methods. The eigenstates have been then used to calculate 
transition probabilities which in the diagrams that follow will be labelled by the 
value of p2=l2p;+m2p;+n2p; appropriate to the transition. The information 
in the diagrams will allow prediction of maser performance in case it should be 
desired to obtain optimum transition probabilities by mounting crystals of the 
working substance in a definite orientation in the oscillating fields. 

It should be noted, however, that, when there are several differently oriented 
paramagnetic ions per unit cell of the crystal structure, it is not in general possible 
to mount crystals so as to use the most favourable component of p2 for all ions: 
the spatial average P~v is then a useful guide to performance. Furthermore, 
one of the characteristic features of zero-field masers is the possibility they 
provide of using powdered material, which allows structural freedom and good 
filling factor. Therefore, in the tables of maser properties of specific compounds 
we shall quote the spatial average. 

The ions Cr 2+ and Nj2+ will be treated first. They both lack Kramm's 
degeneracy and have larger splittings and probably shorter relaxation times 
than Fe3+ and Gd 3+ which are Kramers degenerate. 

CrH: S==2. 

Only one compound, CrS04.5H20, has been studied (Ono et al. 1954). The 
results were obtained with undiluted crystals. There are two differently oriented 
ions per unit cell, each with the Hamiltonian 

JIC'=D{S;-!S(S +1)} +E(S;-S;). . ......... (24) 
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The g-value is nearly isotropic and equal to 2·0. The energy levels are 
(B & 0, p. 336): E 1=-2(D2+3E2)li,E2=-D-3E, E3=-D+3E, E4=2D, and 
E s=2(D2+3E2)1. The transition probabilities are given in Figure 1. 

LEVEL Mels 
E. 

270,000 t 
E4 

E. 77,000 

41' 12(E2/02)n2 

E. 59,000 

E, 0 

Fig. I.-Transition probabilities for Cr'+ in free-spin units with oscillating 
field in the direction (lmn). The numerical values of the energy for 
CrSO,_5H.O at room temperature are given; g' is taken as 4. For 

meaning of D and E, soo equation (24). 

The frequencies and spatially averaged transition probabilities are given in 
Table 1. 

From Table 1 it is evident that a very promising possibility exists for a 
maser amplifying at about 18,000 Mc/s. The higher modes, band c, may become 
practicable in the future. 

TABLE 1 
MASER PROPERTIES OF CrH AND NiH SALTS 

Pumping Amplifying 
Temper- Probability Probability 
ature of Pumping for Amplifying for Difference 

Salt Measure- Frequency Powdered Frequency Powdered Frequency 
ment (Mc/s) Salt (Mc/s) Salt (Mc/s) 
(OK) (free-spin (free-spin 

units) units) 

CrSO,.5H.O .. · - 290 (a) 77,000 4 18,000 1·3 59,000 
(b) 270,000 O-Ol 77,000 4 190,000 
(c) 270,000 O-Ol 59,000 4 210,000 

K.Ni(SO,)._6H.O · . 290 115,000 1-7 30,000 1-7 85,000 
(NH,).Ni(SO,) •. 6H.O 90 75,000 1·7 29,000 1·7 46,000 
TI.Ni(SO,h·6H.O .. 290 80,000 1-7 6,000 1-7 74,000 
(NH,).Ni(SeO,) •. 6H.O 90 76,000 1·7 27,000 1·7 49,000 
NiSO,.7H.O · . 290 150,000 1-7 60,000 1-7 90,000 

NiH: 8=1. 

A number of nickel salts has been studied, and it has been found that where 
the crystalline environment has trigonal or higher symmetry the spin Hamiltonian 
provides only two distinct levels (Bleaney and Stevens 1953, p. 144) and so is 
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useless for a zero-field maser. The majority of salts, however, are· suitable, 
exhibiting rhombic symmetry with the same Hamiltonian as that of OrS04.5H20 
given above. The g-value is nearly isotropic and equal to 2 ·25. The energies 
and transition probabilities are given in Figure 2. 

Table 1 gives maser properties of suitable nickel salts (B & 0, p. 350). 
The data refer to undiluted salts; dilution may alter the frequencies by 20 per 
cent. In the Tutton salts there are two, and in NiS04.6H20 four differently 
oriented ions per, unit cell. 

ENERGY 

.~ O+E --------r----,_----

~ O-E 

5m 2 512 

-i o ! I 
Fig. 2.-Energies and transition probabilities for NiH assuming g2=5. 
The transition probabilities are given in free-spin units and the oscillating 

field has the direction (lmn). For D and E, see equation (24). 

It can be seen that a variety of amplifying frequencies is likely to be provided 
at liquid helium temperatures by nickel salts. The transition probabilities are 
substantial, being greater than the free-electron probability even for powdered 
salt. 

That paramagnetic resonance has been observed in so few nickel salts is 
probably because the zero-field splittings for most salts are even greater than 
those in Table 1. These will constitute a reserve of maser materials for the 
future as the millimetre wave region develops. 

Fe3+: S=5/2. 

The behaviour of ferric salts hitherto studied is described by the spin 
Hamiltonian of Bleaney and Trenam (1954) which in zero field takes the form 

..u> S 2 1 } 1 S 4 4 4 707} 7 (4 95 2 81) 
on =Dl S z- sS(S+1) +Sal SI;+Sll+S I;- 16 +36F SZ-14Sz+16 ' 

................ (25) 

where the coordinate system ~1JC;: refers to three mutually perpendicular axes 
with respect to which the z-axis is the (111) direction. Such a Hamiltonian 
is to be expected when the environment of the ion.is predominantly cubic with 
cubic axes ~1JC;:, with a superposed distortion along the (111) or z-direction such" 
that the resulting symmetry is only trigonal with z as axis. The term in F 
is usually of small influence. 
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The term in a, or cubic term, has off-diagonal elements when expressed in 
the Bz-representation, as may be seen in the matrix given by Meijer (1951). 
These provide the leap-frog transitions which are necessary for zero-field maser 
action. 

General formulae for the zero-field levels and eigenstates of the Hamiltonian 
(25) have been given by Bleaney and Trenam (1954). The energy levels are 
doublets at 

and the eigenstates involve trigonometric functions of an angle oc defined by 

tan oc=cay'20/{9D+Ha-F)} . ...................... (27) 

From these eigenstates transition probabilities may be calculated, which we 
present for the general case in Figure 3. The g-value is isotropic and equal 
to 2 ·00. 

E, 

~(13- 3 cosa)(12 + m 2 ) 

Fig. 3.-Transition probabilities for Fe3+ in free-spin units with 
oscillating field in the direction (lmn), assuming g2=4. The order 
oflevels is appropriate to D positive and predominant. For E 1,2,., ex, 

and D, see equations (25), (26), and (27). 

Although paramagnetic resonance has been observed in a wide variety of 
undiluted compounds (B & 0, p. 342), the only compounds in which the spectrum 
of Fe3+ has been observed in diluted form (Le. with high resolution) appear 
to be the alums (B & 0, p. 342), the acetylacetonate (Jarrett 1957), MgO (Low 
1957), and Alll3 (sapphire) (Kornienko and Prokhorov 1957; Bogle and 
Symmons, paper in preparation). 

Apart from MgO, where the Hamiltonian is purely cubic and need not be 
considered for a zero-field maser (Section IV), two classes of compounds may be 
distinguished. 

The first class comprises the alums, except methylamine alum, and is 
characterized by comparable values of D and a, each being a few hundred Mc/s. 
This class is easy to pump and provides amplifying frequencies from 100 to 
1000 Mc/s. 
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The second class comprises methylamine alum, the acetylacetonate, and 
sapphire; in these compounds D is some thousands of Mc/s while a 
remains a few hundred. The pumping transition probability reduces to 
(20/9)(a 2/D2){n2+!(Z2+m2)} for a~D, which shows that this class is difficult 
to pump. It provides amplifying frequencies of the order of 10,000 Mc/s. 

The maser properties of the above-mentioned compounds are given in Table 2. 
The methylamine alum is omitted because the pumping probability turns out to 
be only 0 ·003 free-spin unit. The acetylacetonate is included in spite of there 
being no data on the size of a, because the presence of off-diagonal terms is 
indicated by the failure of the Hamiltonian D{S~-tS(S+I)} to fit the measure
ments (Jarrett 1957). 

The alums have four differently oriented ions per unit cell, the acetyl
acetonate two, and sapphire two. 

TABLE .2 
MASER PROPERTIES OF DILUTE FeH AND GdH COMPOUNDS 

Temper- Pumping Amplifying 

ature Probability Probability Dif-

of Pumping for Amplifying for ference 
Ion Diluent Measure- Frequency Powdered Frequency Powdered Fre-

ment (Mc/s) Material (Mc/s) Material quency 

(OK) i (free-spin (free-spin (Mc/s) 

I units) units) 

I 
Fes+ KAI(SeO.) •. 12H.O 20 2,475 0·95 1,020 3·4 1,455 
FeS+ Sapphire .. 4 31,300 0·02 12,030 5·3 19,270 
FeS+ Cobalt acetyl-

acetonate .. 290 17,000 - 6,000 5 11,000 
Gds+ Sm.(SO.)s·8H.O 290 (a) 14,760 2·4 7,370 17 7,390 

I 
(b) 25,040 0·04 10,280 5 14,760 
(c) 17,670 0·04 7,390 8 10,280 

Gd3+: S=7/2. 

The general form of the spin Hamiltonian for gadolinium salts is given by 
B & 0, p. 364. Recasting the Hamiltonian in terms of the b-coefficients, which 
are normally used to express experimental results, one obtains 

-if£' bO\S2 IS } 1 2 2 2 1 ° ° 1 ° ° 1 6 6 6 
,?f- = 2( Z-3 (S +1) +6b2(S+ +S_)+ 60b4P4+1260b6P6+ 2520P6(S+ +S_) . 

. .. __ " ......... (28) 

The operators P~ and Pg are rather complicated functions of Sz which are given 
explicitly by Elliott and Stevens (1953)_ The only case known not to be described 
by equation (28) is Gd3+ in CaF2, which has been studied by Ryter (1957). 
Rere the Hamiltonian has cubic symmetry and so does not provide a basis for 
a zero-field maser (see Section IV). 

The dominant term in the Hamiltonian, except for cubic symmetry, is 
always the first, just as in the case of most iron group compounds. (D of 
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equation (10) has the same meaning as bg of (28).) The energy levels are thus 
approximately those of bg(S;-!S(S+I)) acting alone, that is, -5bg, -3bg, bg, 
and 7bg, so that the possible maser amplifier frequencies are about 2bg and 4bg. 

The Hamiltonian of equation (28) presents a generality not found in nature: 
in compounds so far studied it possesses either hexagonal symmetry, in which 
case b~=O, or else rhombic symmetry, in which case b~=O. Nevertheless, no 
misunderstanding need arise if the energy levels are written down as if all terms 
in (28) were simultaneously present. With the assumption that bg is the 
dominant term, the levels are given by the following equations, which are correct 
to the second degree in b~ and b~ : 

E( ±7/2) =7bg +7b~ +bg +(7/30)(b~)2/bg +(2/21)(b~)2/bg), 
E( ±5/2) =bg -13b~ -5bg +(5/6)(b~)2/bg -(2/21)(bg)2/bg, 

E( ±3/2) = -3bg -3b~ +9bg +(31/10)(b~)2/bg, 
E( ±1/2) = -5bg +9b~ -5bg -(25/6)(b~)2Ibg. 

} .. (29) 

The above expressions, except for the term in (b~)2, have in effect been 
given by B & 0, pp. 365 and 368. Although the term in (b~)2 is unimportant 
for compounds studied hitherto we have included it for the sake of compounds 
which may be studied in the future. 

When one comes to consider transition probabilities it proves desirable, 
for clarity, to present separate diagrams for the hexagonal and rhombic classes. 
This is done in Figures 4 and 5 respectively. 

Class I. Gd3+ with hexagonal Hamiltonian 
The only diluted compounds in ~his class which appear to have been studied 

in detail are the ethyl sulphate and double nitrate (B & 0, p. 367) and the 
anhydrous chloride (Hutchison, Judd, and Pope 1957). In these salts the 
pumping transition probabilities are very small, namely, 3 X 10-6, 6 X 10-5, 

and 4 X 10-5 that of a free spin respectively. It is doubtful whether they will 
ever find application in a zero-field maser and we shall not consider them further. 

Class II. Gd3+ with rhombic Hamiltonian 
The only representative of this class for which data are available appears 

to be the sulphate octohydrate, which has been studied at room temperature 
with the corresponding samarium salt as diluent (B & 0, p. 367). In this salt 
r-b~/bg=O ·60, which is by no means small compared to unity. Consequently 
the energies and the transition probabilities are not given with sufficient accuracy 
by equation (29) and Figure 4. We have solved the problem numerically in 
order to obtain the results shown in Figure 6. 

Table 2 shows that several possible pumping and amplifying frequencies 
exist, with substantial transition probabilities. To demonstrate this variety, 
which is a feature of Gd 3+ in a rhombic environment, is the main purpose of the 
entry; no great credence is to be attached to the actual magnitudes since (1) on 
cooling to liquid helium temperatures bg may be expected, by analogy with the 
ethylsulphate (Bleaney et al. 1951), to change by about 10 per cent., with the 
other b's not necessarily changing in proportion; and (2) the diluent will have 
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to be changed from paramagnetic samarium to diamagnetic yttrium. Lanthanum 
sulphate does not crystallize isomorphously with the gadolinium salt; yttrium 
sulphate does so, and the Gd 3+ spectrum has been qualitatively observed in this 
diluent (Bogle, unpublished data). 

+ 7 
-'2 

(2b~/2 'b~)2(12 + m 2) 

15(1 2 +m 2 ) 

+ , i 
-'2 

Fig. 4.-Transition probabilities in free-spin units for GdB+ with a 
hexagonal Hamiltonian and with oscillating field in the direction 

(lmn). g2 is taken as equal to 4. For bg and b~, see equation (28). 

The order of levels is appropriate to b~ positive and dominant. 

+2 
- 2 

+5 
-2 

+1-
- 2 

+ , 
- 2" 

7(1 + ;)1 2 

+ 7{1 _ ;)2~2 

I 
12(1 + rn r)21Z 

+ 12(1-~r)2m2 

I 
I 

15 (1+r)212 + 15( l-r)2m 2 

+ 80r2 n 2 
3 

t 

28r 2 n 2 
75 

~ ([2+m 2 ) 
45 

BOr 2 
(12+m 2 + *n 2 ) g-

l 
Fig. 5.-Transition probabilities in free-spin units for Gd3+ with a rhombic 
Hamiltonian and with oscillating field in the direction (lmn). g2 is taken as equal 

to 4. r=b~/b~; for b~ and b~, see equation (28). The order oflevels is appropriate 

to bg positive and dominant. 

The conclusion to be drawn from the foregoing discussion is that gadolinium 
compounds with low symmetry are the most promising for zero-field masers. 
These have been neglected in the past, probably because both the presence of 
off-diagonal elements in the Hamiltonian and the frequent occurrence of several 
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directionally inequivalent ions per unit cell have rendered analysis difficult. 
Some information is already available about the nitrate (Bleaney et al. 1951) 
and the chloride hexahydrate (Dieke and I.eopold 1957) which suggests that 
they will be suitable working substances, with frequencies of similar order to 
those of the sulphate octohydrate. It can hardly be doubted that a wealth of 
gadolinium compounds of low symmetry awaits investigation. 

APPROXIMATE 

STATE 

+ 7 - ;; 

:!:2 
2 

:!: 3 ;; 

:l: I 
;; 

ENERGY 

(Me/s) 

25,040 

14,760 

7,370 

0 

0·04 

Fig. 6.-Energies and transition probabilities for Gd'+ in Sm2(SO.) •. 8H20 
at 290 oK. The transition probabilities are averages for a powdered 

sample and are expressed in free-spin units. 

XI. AN EXAMPLE OF A HVPERFINE-STRUCTURE MASER 

Ions satisfying the relaxation-time criterion (Section VI) and possessing 
a large proportion of isotopcs with nuclear spin are (B & 0, pp. 334, 363) V2+, 
Mn2+, Cu2+, and Eu3+. We choose for our example (NH4hMn(S04)2.6H20 
diluted with the corresponding zinc salt, which has been thoroughly investigated 
at 20 oK by Bleaney and Ingram (1951). 

Manganese consists entirely of isotope 55 with nuclear spin equal to 5/2 ; 
the hyperfine-structure coupling is practically isotropic so that in zero field the 
Hamiltonian is (neglecting a small cubic term) 

£,=D{S;-iS(S+I)}+E(S~-S;)+AS.I . ........ (30) 

The electronic spin Sis 5/2. The values of the parameters are: D=830, E=150, 
and A = -280 Mc/s. Because the parameters are all of comparable magnitude 
the quantization is very mixed and the calculation of the energy levels and 
eigenstates can only be effected by numerical methods. The energy levels are 
given numerically by Bleaney and Ingram (Fig. 8 of their paper); it may be seen 
that they extend in a series from 0 to 8500 Mc/s with gaps averaging 400 Mc/s 
and nowhere exceeding 900 Mc/s. 

Expressing transition probabilities in free-spin units as before, one may say 
that a series of pumping frequencies exists between 4500 and 8500 Mc/s with 
probabilities of order (E/D)2 or 0 '03, and amplifying frequencies between 60 Mc/s 
and 2000 Mc/s with probabilities of order unity. If a non-resonant microwave 
structure were used, the salt would provide amplification at 2220, 2160, 2040, 
1980, 1920, 1440, 1200, 720, 600, 480, 180, 120 Mc/s, the pumping frequency 
being required to vary only from 8500 to 7000 Mc/s. 
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XII. CONCLUSION 

The important fact which has emerged from the search for zero-field maser 
materials is that even with the few compounds of the eligible ions Cr2+, Fe3+, 
NiH, and Gd3+ which have been studied a wide range of frequencies should be 
available. That the number of known suitable compounds is not greater is 
simply a consequence of the fact that attention in the past has been concentrated 
on compounds with properties either inessential or detrimental to zero-field 
maser action: namely, compounds easily obtainable as large crystals; likely to 
lead to the discovery of nuclear spins; possessing few inequivalent ions; or 
characterized by a simple spin Hamiltonian. 

There is need for systematic research into that great majority of compounds 
of the ions named which is as yet untouched. Much of the work may be best 
pioneered by the classical cavity-resonator technique (fixed frequency and 
variable magnetic field). The loss of sensitivity occasioned by the necessity, 
where it exists, to use small crystals should be offset by application of the modern 
technique of high-frequency field modulation which has proved so simple and 
sensitive (see, for example, Buckmaster and Scovil 1956; Llewellyn 1957). 
At the same time direct measurements at zero-field will be needed, since the 
work of Bleaney, Scovil, and Trenam (1954), one of the few examples of zero-field 
measurements, has shown that the spin Hamiltonian which fits measurements 
at fixed frequency and variable field may not correctly predict the zero-field 
levels. In the case of dilute gadolinium ethyl sulphate the discrepancy amounted 
to 7 per cent. or 100 Mc/s. The theoretical basis of this anomaly is not yet 
understood and more experimental data on zero-field splittings are desirable for 
the solution of this problem as well as for maser design. 

When data become available for a large proportion of the stable compounds 
of suitable ions, it is possible that zero-field masers will be able to supersede 
magnetic-field masers in the majority of applications. 
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