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Summary 

The equa.tion of radiative transfer incorporating Eddington's approximation is 
expressed in a form applicable to an inhomogeneous medium, as 

1 
t'V"J=-'l/J. 'l/iC+iC'(AJ-bS). 

3iC 

Here J is the total intensity, iC the attenuation coefficient, A the ratio of absorption 
and attenuation coefficients, and S the source function. 

A study is made of the emission from a simple model inhomogeneous semi·infinite 
medium, including the relative effects of variations in ic, A, and S across the surface. 
Particular attention is drawn to the significance of variations in attenuation coefficient 
in connexion with the appearance of chromospheric granulation. 

I. INTRODUCTION 

Solutions of the equation of radiative transfer used in astrophysics are 
customarily those for a plane parallel or spherically symmetrical medium. It 
is by no means clear, however, to what extent such solutions are applicable to 
atmospheres exhibiting granulation, and particularly whether they may be used 
in deducing from observation the spatial variation of physical conditions. 

To study this question, the differential equation of radiative transfer, 
embodying Eddington's approximation, is generalized here for non-uniform 
media. A solution is obtained for a semi-infinite medium in which the attenuation 
coefficient, scattering parameter, and source function are independent of depth 
but may have small sinusoidal variations as functions of a coordinate parallel 
to the surface. This investigation yields some insight as to the effect of structure 
size on the appearance of granules, one of the important deductions being that, 
with structures that are not too coarse or too fine, variations in attenuation 
coefficient alone are sufficient to result in marked variations in brightness. 

II. THE EQUATION OF RADIATIVE TRANSFER 

Consider a coherently scattering medium in which x, A, and S are functions 
of position, x being the attenuation coefficient and A the scattering parameter 
(=l-wo, where Wo is the albedo for single scattering), while S, the source function, 
is the ratio of the emission per unit volume and solid angle to the attenuation 
coefficient. 

The intensity of radiation, I, is a function of direction and position. To 
establish an equation for the intensity we note that the change of intensity of a 
beam of radiation in traversing a distance ds is due to an attenuation loss xIds 
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and a gain due to scattering and emission. The gain due to isotropic coherent 
scattering is (1/41t)woxJds, where 

J=J' Ida 
47'< 

is the total intensity, and the contribution due to emission is x8ds. So 

dI/ds= -xl + (1/41t)woxJ +x8. 

In rectangular coordinates, 

. e 01. e· 01 e 01 .. T 1 - J + 8 sm cos tp ox +sm sm tp oY +cos oz = - ¥U. + 41t woX x, .. (1) 

e being the angle between the beam and the z-axis and tp the azimuth referred 
to the x-axis. 

In its most general form, I may be expanded in a series of spherical harmonics 

where !L=cos e, Pn(!L) and P:'(!L) being Legendre polynomials and associated 
Legendre functions respectively, and In' a:', and b:' the corresponding amplitudes. 
Substituting (2) in (1) and integrating around tp, it follows that 

a <Xl • <Xl (oa l ObI) I <Xl 1 _ 
!L- ~ InPn(!L)+! sm e ~ ~+~ Pn(!L) = -x ~ InPn(!L)+4woxJ +x8. 

oz n=O n=l ox oy n=O 1t 
................ (3) 

Multiplying by Pm(!L)d!L and integrating from -1 to +1, using the recurrence 
and integral relations for Legendre functions, and noting that J = 41tIo, it follows 
that 

~ OII+~ oa~+! ob~= -xAIo+xS 
30z 30x 30y 

010+ ~ 01 2 +~ (oa~ + Ob~) = -xI 
oz 50z 50x oy I 

(m=O), } 
. . .. (4) 

(m=1). 

Subject to the approximation that 12, a~, and b~ are zero, the latter equation 
becomes 

oI%z= -xII. . ................... (5) 

In the plane parallel case when a~ and b~ are zero and x a function only of z, 
equations (4) and (5) lead to the well-known Eddington equation of radiative 
transfer. 

When x is a general function of position, we may note that, by symmetry, 
two other equations similar to (5) can be obtained immediately: 

oI%x= -xa~, oI%y= -xb~. 
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From these and (5), 

'021 ( 1 aX+bl aX+1 ax) _,,(aai+abi+a1I). 
v 0 = - al ax 1 ay 1 az "ax ay az 

Using the same equations and (4), this leads to 

V21 =~(a1o ax + a10 ax + a10 ax) +3x2(AI -xS). 
o x ax ax ay ay az az 0 

In terms of the total intensity, the generalized equation of radiative transfer 
may be written in the form 

1 1 
sV2J =3xVJ . VX+X2(AJ -4nS). . ................... (6) 

III. RADIATIVE TRANSFER IN A MODEL SINUSOIDAL MEDIUM 

In general, the solution of (6) is rather lengthy, though we can gain worth
while insight as to the effect of structure in stellar atmospheres from a restricted 
study of a model semi-infinite medium in which the x and y axes lie in the surface, 
the z axis being directed outwards, and the quantities x, A, and 8 are independent 
of y and z but have small sinusoidal variations, all of the same phase, in the x 
direction. Then 

X=Xo+XI cos lx, } 
A="-o+AI cos lx, 

8=80+81 cos lx. 

Here 1 is a measure of the structure size. 

To solve (6), J may be expressed in the form 

00 

J =~fn(z) cos nlx, 
o 

. . . . . . . . . . . . . . .. (7) 

and, together with (7), substituted in the equation of radiative transfer. Now 
fo(z) is the average value of J at depth z, while fI(Z) describes the variations of J 
with the same periodbty as the medium. Higher terms in fn(z), n>2, represent 
distortion of the intensity distribution and may be disregarded for small enough 
values of Xu AI' and SI' Then (6) becomes 

i D2fo + i(D2--,--P)fI cos lx=i(Xo+xI cos 1X)-I(l2fIXI sin2lx) 

+(XO+XI cos lX)2{("-o+AI cos lx)(fo+fI cos lx)-4n(80+81 cos lx)}, 

where D=ajaz and fn=fn(z). 
Terms of the type cosn lx are now replaced by a sum of terms in cos mlx, in order 
to permit separation of equations for the various harmonic components. After 
some straightforward analysis in which terms involving second orders of small 
quantities are neglected, it is found that terms independent of x yield 

D2fo=3x~"-o"0+ [~(2XOXIAO+X~Al)+~ 12~] "1-12nx~So. 
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Terms involving cos lx yield 

The solutions of these simultaneous differential equations, subject to the 
boundary condition that the intensity remain finite deep within the medium, 
are 

rE =AeP,z+BeP2Z + C(l2+a)-(b+f)d } 
0"0 a2+al2-2b(b+f)' 

ad-2bc 
fl =(pi -a)(b +f)-lAeP1Z+(p~ -a)(b +f)-lBep2z + a2+al2 -2b(b +f)' 

b = ~(2XOXl Ao +X~Al)' 
c=127tx~SO) 

d = 127t(2XoxlSo +X~Sl)' 

f=~l2 ~ 
2 xo' 

PI = [~l2+a+~(l4+8b2+8bf)!] i, 

P2= Dl2+a - ~(l4+8b2+8bf)!] i. 

. • . • . . . . . . . . . . .. (8) 

The constants A and B are chosen to ensure zero inward flux at the boundary, 
z=O. In particular, this applies at points where oJ/ox=O, or sin lx=O; i.e. 
~os lx= ±1. .As in the usual treatment of the plane parallel equation of transfer, 
this leads to the condition 

xJ=-- iDJ, 

when z=O, cos lx= ±1. Then, after some straightforward analysis, it is found 
that 

where IX.=Xo+ txl(b +f)-1[l2+(l4+8b2+8bf)i]+ iPl' 

~=Xo+txl(b +f)-1[l2_(l4+8b2+8bf)!] + iP2' 

y= -{Xo[c(l2+a) -(b+f)d] +xl(ad-2bc)}{a2 +al2-2b(b+f)}-t, 

~=X1 +(tXo+ !P1)(b +f)-1[l2+(l4+8b2+8bf)!], 

<:=x1 +(tXo+ !P2)(b +f)-1[l2_(l4 +8b2+8bf)!], 

'I) = -{x1[c(l2+a) -(b +f)d] +Xo(ad-2bc)}{a2 +al2 -2b(b +f)}-1. 

To simplify these results, we note from physical considerations that, when 
·l is small enough (very coarse structures), J at any point is the same as in a uniform 
medium having the same values of x, A, and S. When l is large enough (very 
fine structures) the intensity variations are negligible, J being the same as ina 
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uniform medium where the constants are Xo, 110, and 80 , The condition 
l4~8b(b +f) is satisfied almost throughout the entire transition between these
extremes, in which case the average value of the total intensity at the surface is. 

2 
/o=~ 3 

(z=O). .. (9) 

Thus the first important result emerges, that the mean value of J at the surface
is unaffected by small sinusoidal variations in x, A, or 8 in a direction parallel 
to the surface; it can also be shown that this conclusion applies to the mean 
value of J at all depths. 

Under the same conditions, l4~8b(b +f), the fractional variation in J across· 
the surface is 

~:=fC(a+l2)[ Xo+~yI(a+l2)] r1 

x f -2~bC[1- yI(l +l2/a)] -2Xobc+Xoadyl(1 +l2/a) -x1ac(l +l2/a ) 

+~yI(a+l2). (ad-2bC)}. . ......................... (10) 

This relation is easiest discussed in some special cases. 

(i) As l--.+oo, /1//0--.+0. 
(ii) When l2~a, i.e., for fine enough structures, greater changes are produced 

in the total intensity at the surface by a given fractional change in attenuation 
than by equal fractional changes in 8 or A. This can be appreciated by noting 
that the dominant term in the numerator of (10) is then -x1ac(1+l2/a). 

(iii) When 8 1 =0 and Al =0 (variations in x alone), 

Thus, when the variations in medium are of attenuation alone, 

/1--.+0 
/0 ' 
/1= _ x1(3-2y12) 
/0 Xo+iyl2 ' 
/1 Xl 

/o~- Xo+i l ' 

/1--.+0 
/0 ' 

This sequence shows that the variation in the total intensity across the surfacer 
or the contrast, rises from zero to a maximum and decreases to zero again as the-
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size of the structures diminishes. The maximum value of /1//0 is of the order 
of but less than the fractional variation in x, and occurs for a value of l some
where in the range v'a:5l:53Xo/2. Maximum values of J across the surface cor
respond to minima of attenuation coefficient; this is because radiation can escape 
from greater depths at such positions. 

(iv) When Xl =0 and Al =0 (variations in B alone), 

Xo+ iv'a 
Xo+ iv'(a+l2) 

(z=O). 

Thus the contrast remains high from the coarsest structures down to those for 
which l2 ~a, and diminishes for smaller structures. The maximum value of 
/1//0 is B1/Bo, maxima of J coinciding with maxima of B. 

(v) When Xl =0 and B1 =0 (variations in A alone), 

/1 __ ~ 
/0- Ao 

Thus 

Xoa/l2{1-v'(1 +l2/a )} +Xo+2v'av'(1 +l2/a) 
(1 +l2/a ){Xo+ iv'(a+l2)} 

(z=O). 

which is of the order of -tAl/Ao for resonance radiation (Ao<l). 

/1 Al 2-v'2+2v'(6Ao) 
/0 = - 2Ao' 1+iv'(6Ao) , 
/1 Al a(xo+2l) 
/0 = - ~ . l2(Xo+ il)' 

As the size of the structure diminishes, so does the contrast, being substantially 
reduced when l2=a. 

(vi) When the emission per unit volume and solid angle is proportional to 
the absorption coefficient, then B/A is uniform throughout, and ad=2bc. Thus 
/1 vanishes deep in the medium, as is to be expected from very general con
siderations. 

IV. DISCUSSION 

In showing that emission from a non-uniform medium is dependent on 
structure, the present work complements an earlier investigation by the author 
where, using a different method, the reflectance of a semi-infinite diffuse medium 
was also found to depend on structure (Giovanelli 1957*). 

The most significant result obtained here is that, in a certain size range, 
variations in brightness of the medium are most sensitive to variations in attenua
tion coefficient, a quantity which in the case of a semi-infinite plane parallel 
medium does not appear explicitly in the expression for the brightness. For 
very coarse structures, variations in attenuation coefficient have no influence, 

* GIOVANELLI, R. G.-AU8t. J. PhY8. 10: 227. 
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but variations in scattering parameter and source function then have their 
greatest effects. As the structure size decreases, the effects of variations in 
A and S become less significant and variations in x become more important. 
After an optimum size, further decrease in the structure dimensions results in a 
reduction of brightness variations towards zero. 

The solutions obtained here are for a problem too simplified to have direct 
application to the Sun's atmosphere. However, it is instructive to calculate the 
orders of magnitude of the important structure sizes using data appropriate 
to the solar chromosphere. For example, if 1<o;S2 X 10-8 cm-1 in Hoc and if 
Ao~10-2, then the structural dimensions corresponding to l=3xo/2 and va are 
x=2rc/Z;S2 X 10 8 cm and 2 X 109 cm respectively. This range includes such a large 
fraction of actual chromo spheric structures that it is clearly essential to use 
appropriate solutions of the equation of radiative transfer, taking into account 
non-uniformities of the chromosphere, in deriving spatial variations of physical 
conditions there. Again, it would appear that even with perfect telescopic 
resolution there is a natural limit to the size of structure which can be detected 
with given contrast. 

A further point requires stressing: the average intensity /0 is certainly 
influenced by structure when the variations in physical conditions are large. 
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