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Summary 

The elastic scattering of 220 MeV polarized nucleons by carbon and calcium is 
studied using a new expression for the polarization. Except at small angles of scattering, 
substantial agreement is obtained with the results of calculations using a simplified 
form of the WKB method. Optical model parameters are found which are compared 
with those obtained by other workers for this energy region. 

I. INTRODUCTION 
The elastic scattering of polarized protons by complex nuclei has been 

investigated (Hafner 1958) for incident energies of 220 MeV with sufficient 
accuracy to permit a severe test of the optical model. At this energy, the 
polarization shows large fluctuations with scattering angle. For most scattering 
angles, the polarization as usually defined (equation (3)) is large and positive. 
However, the polarization is negative for those angles for which the differential 
cross section shows a minimum. Both the latter two effects are diffraction 
phenomena associated with the scattering. 

The theoretical interpretation of the experimental data has generally been 
carried out by the addition of a spin-orbit term to the complex central potential 
of the optical model. Fermi (1954) obtained qualitative agreement for the 
polarization of 340 MeV protons by carbon using the Born approximation. 
However, the Born approximation is not even qualitatively correct at large 
angles. Other workers have used the WKB approximation in a partial wave 
analysis. This method is discussed in Section III (b). It has been found to 
give excellent fits to the experimental data at all except small angles for a 
Woods-Saxon (1954) complex central potential with a spin-orbit term of the 
Thomas type. Unfortunately, the partial wave method tends to conceal the 
physics of the problem, which can be more easily understood in an approach 
such as the Born approximation. It is for this reason that an attempt has been 
made to obtain a closed formula for the polarization which does not have the 
defects of the Born approximation. 

II. ApPROXIMATIONS FOR POLARIZATIOlIi 
The nuclear potential is taken to be 

V(r)= -(V +iW)g(r)+yr-l(dg(dr)L. G, .••••••• (1) 

where g(r) is the shape of the central potential, V and Ware positive real functions 
so that the central force is attractive and absorptive, and y is a positive real 
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quantity corresponding to the sign of the spin-orbit force in the shell model. 
L and a represent the orbital and spin angular momenta of the nucleon. 

The differential cross section and the polarization for the elastic scattering 
of unpolarized nucleons by a spinless target are given by 

dO'(6)/dO=IA(6)+B(6)a. n 12=A*A+B*B, ........ (2) 
and 

P(6) -:P(6)n==: (A *B +B* A)n/(A * A +B*B), . . .. (3) 

.' where A(6) and B(6) are the amplitudes for spin-independent and spin-dependent 
scattering respectively and n is a unit vector given by 

n=kj x kf /k2 sin 6, .. . . . . . • . . . . . . . . .. (4) 

where k j and kf are n-I times the initial and final momenta of the nucleon. 

In the Born approximation; it may be shown that for neutrons 

A(6)=2m(V +iw)n-2I~ MKr)r2g(r)dr, .......... (5) 

B(6)=i2myk2n-2 sin 6 I~ MKr)r2g(r)dr, . .. . . .. ... (6) 

,:where K =2k sin i6, m is the reduced mass of the nucleon, and jo is the zero 
'order spherical Bessel function. Hence 

2yk2W sin 6 
P(6)=V2+W2+y2k4 sin26' .............. (7) 

This result for the polaI1zation has the following defects: 

(a) the polarization is proportional to the absorption potential, so that 
P(6)=0 for W=O; 

(b) the polarization is independent of g(r) and is therefore the same for a.ll 
nuclei for a given incident energy (assuming y and W constant) ; 

(e) the polarization vanishes only when 6=0 or 7t for finite W. 

These defects are a consequence of A(6) and B(6) having the same angular 
dependence apart from the sin 6 factor, so that the integral over r is the same for 
both amplitudes. 

The Montroll and Greenberg (MG) approximation has been shown (Mohr 
arid Robson 1956) to give better results for the differential cross section than the 
Born approximation, aJthough both approximations are rather unsatisfactory 
for complex potentials, when absolute magnitudes are concerned. If the 
approximate Montroll and Greenberg (1952) wave function is used instead of a 
plane wave, one obtai~s for neutrons: 

A(6)=2m(V +iW)n,.,-zp f: {MKJ) +qjo(K+r)}r2g(r)dr, ' ..... '. (8) 

B(6)=i2mykkl n-2p sin 6 f~,{jo(KJ)+qMK+r)}r2g(r)dr", (9) 
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p=2k1 exp {ia(kl-k)}j(kl +k)(1-q2), 

q=(k1-k) exp {2iak1}j(k1 +k), 
2 kl=k2-U, 

U = -2m(V +iW)h-2, 

and a is the radius of the equivalent sphere of the diffuse boundary spherical 
scatterer g(r). The assumption involved is that the MG approximate wave 
function does not differ too greatly from the accurate wave function in the diffuse 
boundary region of g(r). The polarization is given by 

Equation (10) differs only slightly from equation (7) and has the same 
defects. Both the Born and MG approximations for the polarizations fail for 
the same reason; A(6) and B(6) have the same angular dependence under the 
integral over r. The fluctuations in the polarization arise from a change in wave
length and amplitude of the wave function over the diffuse nuclear boundary. 

A simple approximate wave function which has changes in wavelength and 
amplitude is 

!.jJ(r)=p exp (iklno.r) +pq exp (-iklnO.r), r<,a,} 
=exp (ikno.r), r> a. 

.... (11) 

where Do is a unit vector along the incident direction, and a is some appropriate 
value of r. The above wave function is discontinuous at r=a (although it is 
nearly continuous at high energies), its wavelength and amplitude changing 
abruptly at this radius. On the other hand, the wavelength and amplitude of 
the exact wave function will change gradually over the whole diffuse nuclear 
boundary. However, it will be seen that the use of a " two-step" wave function 
is sufficient to account for the observed fluctuations of the polarization, which 
are not predicted by either the Born or MG approximations, which use" single
step" wave functions. 

In the following calculations g(r) is taken, for convenience, to be of trapezoidal 
form 

g(r)=l, 

--:-(b -r)j(b -a), 

=0, 

for O<r<,a, } 
a<r<,b, 

b<r<oo. 

. . . . . . . . .. (12) 

For simplicity, the" two-step" wave function was taken to be 

!.jJ(r)=p exp (iklnO.r) +pq exp (-ik1flo.r), 

=exp (ikno.r), 

o <r<,a, , 
\ ...... (13) 

a<r<,b. / 
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so that the change in the wavelength and amplitude takes place at r=a rather 
than at r=ro=!(a+b), the radius of the equivalent sphere. It was found 
that substantially the same results were obtained if the discontinuity of the wave 
function was taken at either r=a or r=ro. One finds for neutrons 

A(O)=2m(V +iW)jt-2{Z(a)+I(a)}, .............. (14) 

B(O) =i2myk2jt-2 sin O{Z'(a) +1(a)}, .... . . . . . . .• (15) 

where l(a)= f: MKr)r2g(r)dr, 

Z(a) =a2p{[j;(K_a)/K_J + [qjl(K+a)/K+]}, 
Z'(a)=a2h(Ka)/K. 

Z(a) and Z'(a) are equal only if kl=k, so that p=1, q=O, and K_=K. Z(a) 
arises from the region O<r<a of the A(O) integration, while Z'(a) arises from the 
region a<r<b of the B(O) integration and the difference between them is due 
entirely to the different wave functions in these regions. The polarization is 

2yk2L(a){WA(a) + V!L(a)} sin 0 
P(O)=(V2+W2)(A2+!L2)+y2k4L2 sin20' ........ (16) 

where L(a)=Z' +1, A(a)=Re{Z}+I, !L(a) = Im{Z}. 

The polarization, given by equation (16), does not exhibit the same defects 
as those given by the Born approximation (equation (7)) or the MG approximation 
(equation (10)). Firstly, P(O) #0 if W=O, since the polarization depends also 
upon V. Secondly, the polarization vanishes whenever L=O or {WA+ V!L}=O. 
These two conditions are satisfied for slightly different scattering angles and give 
rise to the observed fluctuations of the polarization. Moreover, the differential 
cross section given by the denominator of equation (16) (apart from a factor 
4m2jt-4), does not become zero at the diffraction minima, as in the Born and MG 
approximations, since the two terms do not vanish simultaneously. (It should 
be noted that the denominators of equations (7) and (10) are not the differential 
cross sections for the Born and MG approximations.) Thirdly, the polarization 
depends upon g(r) and is therefore different for different nuclei. 

III. COMPARISON OF THEORY WITH EXPERIMENT 

(a) Oarbon 
Figure 1 (a) shows the experimental results of Chesnut, Hafner, and Roberts 

(1956) and Hafner (1958) for 220 MeV protons elastically scattered by carbon, 
together with the theoretical curve of Hafner, who used the WKB phase shift 
method. The full curve is the prediction of equation (16) for neutrons of the 
same energy. The potential used was nearly that of Hafner, V =10 MeV, 
W =25 MeV, y=4·7 MeV f2 (f=1 fermi=10-13 cm), the mean nuclear radius 
ro=i(a+b)=2·4f and the diffuseness parameter a=!(b-a)=0·2f. 

Since the calculation is for neutrons, a discrepancy can be expected at small 
angles. .Also, Fernbach, Heckrotte, and Lepore (1955) have shown that the 
effect of the Coulomb interference is to decrease the first maximum and to increase 
the angular width of the diffraction dip of the polarization. Thus, the full curve 

D 
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maybe considered as a satisfactory prediction for the polarization of 220 MeV 
neutrons by carbon. 

In the present calculations, it was found that the zeros of the polarization 
are largely determined by the radius roo Changing ro from 2·4 f to 2·8 f moved 
the zeros to smaller angles by about 4°, so the choice of ro is rather critical. .A 
value of 3·0 f, corresponding to 1·3 Ai for ro, gives the dip of the polarization 
at too small an angle. The largest radius, which is consistent with the polariza
tion data, is about 1· 2 Ai. This agrees very well with the information about 
nuclear radii obtained from electron scattering experiments. It was found, in 
disagreement with Hafner, that reasonable changes in L1 (e.g. from 0·2 f to 0·4 f) 
did not change the polarization appreciably. 

1·0 

12C 

o·a 

t 
0·6 

CD 

!L 

0·4 

0·2 

- - - HAFNER 

--, OJ 
..... , ..... (ii) 

(a) 

Fig. I.-Polarization in elastic scattering of 220 MeV nucleons from 120. The 
points are the experimental results of Hafner for protons. (a) shows the theorfltical 
predictions of Hafner (with V=lOMeV, W=25 MeV, y=5·0MeVf2, ro=2·4f, 
and~=O·1 f) and of equation (16) (with (i) V =10 MeV, W =25 MeV, y=4· 7 MeV f2, 
ro=2·4f, ~=0·2f and (ii) V=lOMeV, W=40MeV, y=6MeVf2, ro=2·4f, 
~=0·2 f). (b) shows the theoretical prediction of equation (20) (with V=10 MeV, 

W=20MeV, y=3'OMeVf2, e:=-0·5, 1'o=2·4f, ~=0·2f). 

The effect of changes in V, W, and y may be studied by considering the two 
angles e=20 and 40°, where p(e) is a maximum. The theoretical curve cannot 
be a poor fit, if both the maxima and the zeros of the polarization data are 
satisfied. Figure 2 shows the predictions of P(200) and P(400) as a function of 
Wand y for V =10 and 20 MeV respectively. The polarization for these two 
angles is between 0·9 and 1· O. Table 1 shows the values of y with the corres
ponding values of W for which fits at both angles may be obtained. Figure 1 (a) 
shows that a satisfactory fit is also obtained for V =10 MeV, W =40 MeV, 
and y=6 MeV f2. 
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(b) Oalcium 
Figure 3 shows the method applied to the heavier nucleus, calcium. It is 

seen that a satisfactory result is obtained for V =10 MeV, W =25 MeV, 
y=4'7MeVf2, ro=3'9f, and ~=0·4f. For comparison, Hafner's parameters 
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Fig. 2.-Polarization in elastic scattering of 220 MeV nucleons from 
120 at 6=20 and 40°. The experinlental polarization lies between 0·9 
and 1· 0 for both an~les. The predictions of P(200) and P( 40°) given by 
equation (16) are shown for several values of y and W for V = 1 0 MeV and 

V=20MeV. 

:are V=10MeV, W=25 MeV, y=4·7MeVf2, ro=3'6f, and ~=O·lf. Such a 
value of the diffuseness parameter, which is considerably smaller than that 
.( ",0, 4 f) given by electron scattering experiments, causes the differential cross 

TABLE 1 
VALUES OF THE NUOLEAR POTENTIAL PARAMETERS 

V (MeV) y (MeVf2) W(MeV) 

10 ......,3 ......,18 
4·7 ':::25 
6 ;::34 

20 ......,4 ......,27 
4·7 ':::29 
6 ':::34 

section to be too large at angles greater than the first diffraction mmunum 
(Hafner 1958). This discrepancy would appear to arise from the failure of the 
WKB approximation at small angles. 

The effect of increasing or decreasing y is to move the maxima to smaller 
or larger angles respectively and make the peaks asymmetrical (Fig. 3 (b». 

DD 
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The zeros of the polarization are unaffected by variations of y and again they 
require the radius to be given by 1·1 Ai';;;r';;;1·2Ai . .As for carbon, one can 
expect that an equally satisfactory fit may be obtained for a larger value of y 
with a greater value of W. 
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Fig. 3.-Polarization in elastio soattering of 220 MeV nucleons from 40Ca. The 
points are the experimental results of Hafner for protons. (a) shows the theoretical 
prediotions of equation (16) (with V=lOMeV, W=25 MeV, y=4·7MeVf2, 
1'0=3'9f, A=0·4f) and of simplified WKB oalculations (with V=lOMeV, 
W=25 MeV, 1'0=3·8 f, A=0'4 fand (i) y=4'7 MeV f2, (ii) y=lO MeV f2. (b) shows 
the theoretioal predictions of equat-ion (16) (with V = 1 0 MeV, W = 25 MeV, 1'0 = 3 . 7 f, 

A=0'4f, and (i) y=l MeVf2, (ii) y=4·7MeVf2, (iii) y=lOMeVf2. 

Figure 3 (a) also shows a comparison with the calculations obtained with a 
simplified form of the WKB approximation. In this approximation, the phase 
shifts 3/ are given by 

( 17) 

where v=2mn-2V(r). Writing 31=xl +iYI' then, for the trapezoidal potential 
of equations (1) and (12), one finds 

otVV2 [P ( P') pJP=B x/=(B_A) v sinh arcosh v -arcosh v p=.A 

[ ]
P-B 

+2otyk2dg/dpL.a arcosh ~ P~.A' ( 18) 

Yl=(;~~)[~ sinh (arcosh~) -arcosh ~]:~:, ( 19) 

where ot=imn-2k-2, v=l+i, p=kr, A=ka, and B=kb. 
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It is seen that the two approximations agree qualitatively. Quantitatively, 
the main difference between the two methods exists at small angles, where the 
WKB approximation is least satisfactory on account of its phase shift cut-off. 
At larger angles, both approximations show a similar movement of the polariza
tion maxima as y is varied but in the WKB approximation the polarization 
zeros also move and the shape of the polarization curve shows less asymmetry. 
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Fig. 4.-Polarization in elastic scattering of 220 MeV nucleons 
from 120 at 6=20 and 40°. The experimental polarization lies 
between o· 9 and 1 ·0 for both angles. The theoretical predictions 
of P(200) and P(400) given by equation (20) are shown for several 
values of y and W for e:=1·0, 0·5, and -0·5 and V=lOru:eV. 

IV. COMPLEX SPIN-ORBIT POTENTIAL 

So far the discussion has been restricted to :real spin-orbit interactions. 
However, Heckrotte (1956) required the spin-orbit potential to have an imaginary 
term in order to fit the small-angle elastic scatterillg polarization of 300 MeV 
protons by carbon. He found that, if the ratio of imaginary to real spin-orbit 
potential e: was ",,-0·5 to -1·0, satisfactory agreement could be obtained with 
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experiment. It is thus of interest to investigate the effect of making e:#0. 
Replacing y by yc=y(1 +ie:), the polarization is 

pee) 2yk2L(a){WA+fL V +e:(W fL- VA) sin e 
(V2+ W2)(A2 + fL2) +y2k4(1 +e:2)L2 sin2 e' .... (20) 

Figure 4 shows the predictions for P(200) and P(400) as a fUnction of W, y, 
and e: for V=10MeV. Taking e:=0·5 or 1·0 is seen to give too small values at 
both angles. Further changes in y would not cause a significant increase. On 
the other hand, an appreciable amount of negative e: may be added and agreement 
with experiment can still be maintained. Figure 1 (b) gives the result of using 
e:=-0·5, V=10MeV, W=20MeV, and y=3·0MeVf2• Table 2 shows for 
comparison the values of y" determined by other workers. 

TABLE 2 
VALUES OF THE SPIN -ORBIT COUPLING CONSTANT 

Reference I 
Energy Re{yc} !m{yc} 
(MeV) (MeV f') (MeVf") 

Present paper · . · . · . · . 220 3 to 6 o to -3 
Sternheimer (1958) .. · . · . · . 150 1l·2 o to -1l·2 
Riesenfeld and Watson (1956) · . · . J90 (A) 2·4 -2·7 

(B) 3·3 -2·8 
Hafner (1958) · . · . · . · . 220 5·0 0 
Ohnuma (1958) · . · . · . · . 220 (GT) 3·3 -0,6 

(8M) 7·2 -1·1 
Jastrow and Harris (1959) · . · . 287 4 +1 
Bjorklund, Blandford, and Fernbach 300 2·2 -2·6 

(1957) 
Batty (1958) .. · . .. · . 310 6·4 o to -1·6 
Bethe (1958) · . · . · . · . 310 3·6 -1·1 

The two sets of results (A and B) refer to the two sets of nucleon-nucleon 
phase-shifts of Feshbach and Lomon (1956) used by Riesenfeld and Watson to 
calculate the optical model potential. Similarly, Ohnuma used the phase-shift 
data of Gammel and Thaler (1957) (GT) and of Signell and Marshak (1958) 
(SM). 
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