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Summary 

The method of Part I is applied to the problem of finding the lowest antisymmetric 
eigenfunction of the wave equation for n electrons without spatial symmetry, and the 
lowest antisymmetric eigenfunction of given multiplicity. Knowledge of the multiplicity 
of the ground state is not needed. Theorem 3 of Part I, which proves the equivalence 
of the central stationary condition to a minimum condition, is extended to cover the 
present case. 

1. OHOICE OF THE SPIN FUNCTIONS 

The wave equation for n electrons moving in a field of atomic nuclei regarded 
as fixed point charges is, in atomic units, 

( -t~Y';-~ ~Na+ .~. ~)'¥=E'¥, .......... (1) 
J a J raj t<Jrij 

where E is the energy, '¥ the wave function, and, if xj, Yj' Zj are the Oartesian 
coordinates of the jth electron, 

rij= y{(Xi -X)2_HYi-y)2+(Z, -Z)2} , 

and, if Xa, Ya, Z" are the Cartesian coordinates of the octh nucleus, which bears 
the charge N a' 

r"j= y{(Xj -Xa )2+(Yj -Ya)2+(Zj _Z,,)2}, 
and 

2 a2 a2 a2 

Y'j =ax2.+ay2.+az~' 
J J J 

We seek not merely a solution of (1), but a solution of (1) having a certain 
symmetry. The simplest prescription for this symmetry is that the wave function 
including spin is "antisymmetric ", i.e. is multiplied by -1 by an odd 
permutation of the electron indices. Let the spin coordinates of the n 
electrons be denoted by 81, 8 2" •• , 8n• An arbitrary function 

If)(X1YIZ181X2Y2Z282' .. xnYnZn8n) 
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of space and spin coordinates can be expressed as an infinite series 

1I>=~~k 
k 

=~!lk(X1)g1k(Y1)h1k(Z1) crlk( 81)!2k(X2)g2k(Y 2)h2k(Z2) cr 2k( 8 2) ... !nk(Xn)gnk(Y n)hnk(zn) crnk( 8,,), 
k 

. . . . . . . . . . .. (2) 

where crjk(8)=as,Ojk and crjk may have the values +1 or -1. We shall write 
as,1=0(,(8) and as, -1=~(8). If P is a permutation on the numbers 1, 2, ... , n, 
let Op denote the operation of permuting the electron indices in a function of 
space and spin. Let QR denote the operation of applying a rotation R to the 
spin coordinates alone. Op and QR commute and we may express any function 
~ of space and spin in the form 

~=~(1) +~(2) + ... +~(S) + ... , 

where ~(S) belongs to the irreducible representation D(S)(R) of the rotation group 
with respect to QR: that is, it has the symmetry with respect to QR which 
corresponds to the multiplicity S (Wigner 1931). Further, each ~(S) can be 
written in the form '~(S) +"~(S), where '~(S) is antisymmetric with respect to 
Op and "~(S) contains no antisymmetric component, and both belong to D(S)(R) 
with respect to QR. Let Qp denote the operation of applying a permutation to 
the spin coordinates alone. A function of spin which belongs to D(S)(R) with 
respect to QR belongs to A(S)(P) with respect to Qp where A(S)(P) is an irreducible 
representation of the permutation group whose character is the coefficient of 
xtn-S in 

(l-x)(l+xPl)(l+xP,) ... (l+xPv), 

where PI) P2' •.. , Pv are the cycle-lengths of P. Hence 

~x(S)(P)Qp~=const. X ~(S), 
P 

where X(S)(P) is the character of P in A(S)(P), and 

~EpOp~X(S)(P')Qp'~=const. X '~(S), 
P p' 

where Ep= +1 or -1 according as P is even or odd. 

. . . • . . . . .. (3) 

This means that, given an arbitrary function ~ of space and spin, its com
ponent belonging to the irreducible representation EpD(S)(R) of the direct product 
group of Op and QR is given by the expression on the left of equation (3) (apart 
from a constant factor). 
If for ~ we substitute 

1I>=~~k 
k 

from (2), and assume that II> is antisymmetrie and has the multiplicity S, then 
an expression for II> is obtained in the form 

~ ~Ep6 p~X(S)(P') Q p!lk(x1)glk(Y1)hlk(Z1) cr1k( 81). • • !nk(Xn)gnk(Y n)hnk(zn) crnk( 871 ). 

k P P' 
( 4) 
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This expression is, in general, the sum of 2s + 1 orthogonal functions, one 
belonging to each of the 2s+1 rows of e:pD(S)(R). Those terms, for which 

-!( O"lk +0"2k +. . . +O"nk) =m, 

belong to the mth row, the rows being numbered -m to +m. Hence, if the 
spin functions are restricted to satisfy t(0"1k+0"2k+ ... +O"nk)=m, where I m I <8, 
the expression (4) belongs to the mth row of e:pD(S)(R). Since the eigenvalues 
of (1) are independent of m, for the purpose of calculating an eigenvalue it is 
sufficient to choose m=O, if n is even, and m=i, if n is odd. 

For example, for fI=3, 8=1 taking O"lk(S) = ot(s), 0"2k(S)=~(s), O"Sk(S)=ot(s) 
and using the abbreviation 

CPI (X}) -fl(Wj)gl(y})hl(zj) 
the series is 

~ ~e:pO~X(l)(PI)Qp'CPI(XI)ot(SI)CP2(X2)~(S2)CP3(X3)ot(SS)' • • • • •• (5) 
P P' 

where the subscript k has been omitted on the :first summation sign and on the 
cp's. The elements of the group of permutations on 1, 2, 3 are (1), (12), (23), 
(31), (123), and (132). The characters are 

X(l)(l) =2, X(I)(12) =X(l)(23) =X(1)(31) =0, X(l)(123) = -1=X(l)(132). 

Hence the expression (5) becomes 

~ [2~e:pO PCPI (X l)ot(SI)CP2(X 2) ~(S2)CP3(X s)ot(S 3) 
P 

- ~e:pO PCPI (XI)ot(SI)CP2(X 2)ot(S2)CPS(X 3) ~(s s) 
P 

- ~e:pOPCPI (Xl) ~(Sl) CP2(X 2)ot(S2)CPS(X 3)ot(S s)], 
P 

which may be written for short 

~[2 Det {CPlotCP2~CP3ot}-Det {CPlotCP2otcp3~}-Det {CPI~CP2otCPSot}]. •. (6) 

It follows that an eigenfunction belonging to any given eigenvalue, in 
particular the lowest eigenvalue, regardless of its multiplicity, can be expressed 
in the form 

~ Det {flk(WI)glk(YI)hlk(ZI)ot(SI) . •• fnk(Wn)gnk(Yn)hnk(Zn)~(sn)}' •• (7) 
k 

where an equal number of ot'S and Ws are to be taken if n is even, and one more 
ot than ~ if n is odd. 

In the next section, the stationary condition for the functions of one variable 
is based on the expression (7) for the wave function. If the lowest eigenvalue 
of multiplicity 8 is sought, and it is not the ground state eigenvalue, the stationary 
condition must be based on (4), wherein the O"'s may, as above, be chosen so 
that m=O (if n is even) and m=i (if n is odd). 

II. DERIVATION OF THE STATIONARY CONDITION FOR THE GROUND STATE 

Application of the method of Part I (Bassett 1959a) to this problem, whereby 
the successive terms in the series expression for the eigenfunction become the 
determinants of (7), finds the lowest eigenfunction of the form (7), and therefore 
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finds an eigenfunction belonging to the lowest eigenvalue which corresponds 
to a physical state. The determinants are built up by the type of iterative 
procedure described in Parts I and II (Bassett 1959a, 1959b), in which the central 
process is the solution of a stationary condition for a function of one variable. 

Let:Yt' represent the differential operator in (1). Following the notation 
used in Parts I and II, let us write 

Q = Q('Y) = J'Y:Yt''Yd''t'= ('Y,:Yt''Y), 
N =N('Y) = J'Y2d"t'= ('Y,'Y) , 

where the integration is over all space and spin coordinates, and 'Y is taken 
to be real. Let us write A=A('Y)=Q('Y)/N('Y). 'Y is to be expressed in the 
form (7), which we shall for the moment write 

1: Det {tpl(Xl)OC(Sl)' .. tpn(Xn)~(sn)}' 
so that 

Q=[1:Det {tpl(Xl)OC(Sl)' .. tpn(Xn)~(sn)},:Yt'1: Det {tpl(Xl)OC(Sl)' .. tpn(Xn)~(sn)}]' 

which, owing to the symmetry of :Yt' with respect to permutation of the electron 
indices, is equal to 

n![1:tpl(Xl )OC(Sl)' .. tpn(Xn)~(sn)' :Yt'1: Det {tpl(Xl)OC(Sl)' .. tpn(Xn)~(sn)}]' 

Let us write 'Y in the form 

'Y =U(X lSI' . . XnSn) + Det {fl (Xl)gl (Yl)hl (Zl)OC(Sl)' . . fn(Xn)gn(Yn)hn(zn) ~(S n)}, 

and let us determine the condition that A=Q/N be stationary with respect to fl' 
The variation aQ of Q, consequent on a variation afl of fu satisfies 

aQ =2[13 Det {fl(Xl )gl(Yl)h1(Zl)OC(Sl)' .• fn(xn)gn(Yn)hn(zn)~(sn)}' :Yt''Y] 
=2[Det {afl(Xl)gl(Yl)hl(Zl)OC(Sl) ... fn(xn)gn(Yn)hn(zn)~(sn)}' :Yt''Y] 
=2n! [afl (Xl)gl (Yl )hl (Zl)OC(Sl)' . . fn(Xn)gn(Yn)hn(zn)~(Sn)' :Yt''Y]. 

Similarly, 

aN =2n![afl(xl )gl(Yl)hl (zl)OC(Sl)' .. fn(xn)gn(Yn)hn(zn)~(sn)' 'Y]. 

a(Q/N)=(l/N){aQ-(Q/N)aN}=O if and only if 

[afl(Xl )gl(Yl)h1(Zl)OC(Sl)' . • fn(xn)gn(Yn)hn(zn)~(sn)' :Yt''Y -(Q/N)'Y] =0. 

This is true for arbitrary afl if and only if 

J. . . Jgl (Yl)hl (Zl)OC(Sl)' . . fn(xn)gn(Yn)hn(zn) ~(sn){:Yt''Y - (Q /N)'Y} 
xdyldzl ... dXndYndzndsl ... dsn=O •..•...• (8) 

for all Xl' The functions gu hu' . ., hn are allotted values, and an initial guess 
is made at fl' which is substituted where fl occurs in an integral with respect to 
Yu Zl" .. , zn' and in Q/N, and (8) then becomes a differential equation for an 
improved fl' A" self-consistent" fu i.e. one which, when substituted in (8) 
gives an equation whose solution is fl1 is the solution of the stationary condition. 
Theorems 1 and 2 below lead to theorem 3, which shows that this stationary 
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condition is, subject to certain reservations, a unique mmlm um condition. 
Equation (8) can be regarded as an extended form of Hartree-Fock equation. 
Formulae for the individual terms on the left-hand side of (8) are complicated, 
but can be obtained in a straightforward way. Their number is reduced some
what by the orthogonality of oc and ~ spin functions. 

In the following, a translation to " numerical form" as in Part I, Section 3, 
is assumed. H denotes the matrix which produces the finite-difference operation 
corresponding to :Ye, and the functions become vectors operated on by H. 

Theorem 1 
Let us write 

D(fl)=Det {fl(Xl)Yl(Yl)hl(Zl)OC(Sl) ... fn(xn)Yn(Yn)hn(zn)~(8n)}' 

Let ~ denote a function of Xl' Let 

d 
dtA[u+D(fl +t~)] I t=o =O'} 

I >(}. 
t=O 

. . . . . . . . . . .• (9) and 
d2 
dt2A[u+D(f1 +t~)] 

Let every; for which D(~) is not identically zero satisfy eqnations (9), for fl ='f; 
then the same cannot be true for fl = "f, unless D('f) is identically equal to 
D("f). 

Proof. Let D('f) be not identically equal to D(''f), and let us suppose that 
equations (9), for every ~ for which D(~) is not identically zero, are satisfied 
by f='f and by f="f. Then, since D(,f)-D(''f)=D('f--''f) is not identically 
zero, 

d~A[u+D{,f+oc("f-'f)}] 1"=0 =0, 

::2A [U+D{'f+oc("f-'f)}] 

d~A[u+D{"f+~('f-"f)}] 

:;2A[u+D{"f+~('f-"f)}] 

1"=0>0, 

I =0, 
[3=0 

I >0. 
[3=0 

Hence, writing oc=t, ~==l-t, we find A[u+D{'f+t("f-'f)}] has a proper local 
minimum with respect to t for t=O and t=l, which contradicts the lemma of 
Part 1. 

Theorem 2 

If the functions 

U(XIYIZ181 · .. xnYnznsn) and Yl(Yl)' h1(Zl)" .. , hn(zn) 

are given and 

A(u) < min A[Det {OCl(Xl)~1(Yl)Yl(Zl)OC(81)' .. ocn(xn)~n(Yn)Yn(Zn)~(8n)}]' 
".[3.y •... "n[3nYn 
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there is a function fl for which 

A[u+Det {fl(Xl)gl(Yl)hl(Zl)IX(Sl)' .. hn(zn)~(sn)}] 

assumes its least possible value. For this fl1 A is stationary with respeot to fl' 

Proof. The proof of Theorem 2 of Part I can be easily adapted. 

Theorem 3 
Let the functions 

U(XlYlZlSl' .. znsn) and gl(Yl)' hl(Zl)" .. , hn(zn) 

be given and let 

A(u)< min A[Det {lXl(Xl)~l(Ylh'l(Zl)IX(Sl)' •. Yn(zn)~(sn)}]' 
IXlJ ~1' Yl, ••• , Yn 

Let A[u+Det {fl(Xl)gl(Yl)hl(Zl)IX(Sl)' .. hn(zn)~(sn)}] <A(u) and let A be 
stationary with respect to fl' There. is only one determinant D(fl) for which 
fl satisfies these conditions, and that gives to A its least possible value. 

Proof. It is sufficient to show that, if ~ is such that D(~) is not identically 
zero then 

d2 I dt0-[u+D(fl+tW t=o>O' 

under the hypotheses of the theorem. Since A is stationary with respect to fl1 

~l[U+D(fl +t~)] I t=o =0. 

It follows that 

that is, 

By hypothesis, 

Hence 

d2 I 1 (d2Q I d2N I ) dt0- t=O =N dt2 t=o -A dt2 t=o' 

~;0-1 t=O =~[Q{D(~)}-A{u+D(fl)}N{D(~)}]. 

Q{D(~)} =A[D(~)]>A[u+D(fl)]' 
N{D(~)} 

d2 A I >0. 
dt2 · t=o 
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