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Swmmary 

Only three forms of D(6) have previously been known to yield exact solutions 
of the equation 

-=- D(6)- , 86 8( 86) 
8t O:c O:c 

subject to the conditions 6=0, x>O, t=O; 6=1, x=O, t>O. The present paper reports a 
general method of establishing a very large class of D(6) functions which yield exact 
solutions. A similar method enables exact solutions of the same equation subject to 

the conditions 6=0, x>O, and 6=1, x<O, t=O; J: xd6=0, t;;..O. In this case also 

a very large class of D(6) functions yield exact solutions. Examples are given for both 
cases. 

Many of the exact solutions which are most readily found tend to lead to zero or 
infinite values of D at one or two points of the 6-range. Means of avoiding this difficulty 
are devised. Practical use of the method is discussed. 

I. INTRODUCTION 

Hitherto, the mathematics of concentration-dependent diffusion has depended 
almost exclusively on nUmerical analysis. According to Crank (1956, p. 166), 
the only known "formal solutions" in concentration-dependent diffusion are 
due to Fujita (1952a, 1952b, 1954). They provide solutions of the equation 

06 =!(D(6)06) 
at ox ox ' ..•..•........... '. (1.1) 

subject to the conditions 
6=0, x>O, t=O; -( 
6=1, x~O, t>O; ) 

and are for the following D(6) functions: 

. . . . . . . . . . . . .. (1.2) 

D=Do/(1-A6); D=Do/(1-A6)2; D=Do/(1+2a6+b62). 

Philip (1955) showed how (1.1) subject to (1.2) could be solved analytically 
for D, an n-step function of 6. However, the method is cumbersome when n 
is large. 

This paper presents a very ,general method of obtaining exact solutions of 
(1.1) subject to (1.2). It embraces all possible exact solutions, including as 
particular cases those of Fujita and those implicit in Philip (1955). The method 
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is also applicable to all possible exact solutions of (1.1) subject to the following " 
conditions, which are also of practical importance: 

6=0, x>O and 6=1, x<O, t=O; f: xd6 = 0, 1;;;. 0. . ... (1.3) 

Extension of the results of this paper to the slightly more general cases of 
(1.2) and (1.3) with 6=6" 6=60, in place of 6=0,6 = 1, is trivial, involving only 

.the introduction of the linear transformation 6*=(6-6,)/(60 - 6,) and solution 
in terms of 6*. 

II. EXACT SOLUTIONS AND EXACT Fl~CTIONS 

The use of the adjective "exact" to distinguish solutions obtainable in 
terms of the functions of analysis from those obtainable only numerically is well 
established (e.g. Carslaw and Jaeger 1959, p. 91). This usage is convenient and 
unambiguous, though no definition of the term seems to haw been given in the 
literature. 

For the purpose,s of the present work, it is de,~irablt" tu define an exact functioy' 
of a real variable. We say that y is an exact function of thf' real variable ~ 
some interval of x, providedycan be specified "ithout approximation for all 
values of x in the given interval by means of a finite number of explicit formulae. 

Further, we may then define an exact solution as a solution expressible in 
the form of an exact function. 

III. GENERAL PRlNCIPLES OF THE :METHOD 

It is well known (cf. Philip 1955) that the substitution 

rp=xt- i (3.1) 

enables (1.1) subject to either (1.2) or (1.3) to be reduced to 

J: rpd6= -2Dd6Jdrp, ................ (3.2) 

thn.t is, 

D=~idrpJd6J: rpd6. . ........... (3.3) 

It follows that the solution of (1.1), subject to either (1.2) or (1.3), rp(6), 
exists in exact form, so long as D(6) is .of the form 

D=~!dFJd6J:Fd6, ........... : .. (3.4) 

where F is any single-valued exact function of 6 in the interval 0 <; 6 .c1 which . . . ,,,,<:::::; , 

satisfies certain, not very restrictive, conditions, which we indicate in the following 
paragraphs·t . 

! ~ote ~h~t D is eX~i'essible in tenns of kno~ functions if F (as well as satisfying these 
conditIOns) IS mtegrable m terms of knowri functi?~s. . '. : . . . _. . - , 

\ 
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(i) Conditions imposed by Conditions governing (1.1) . ...:-Evidently,the exact 
solution for D(6) of form (3.4) is simply r.p '=F. F must therefore satisfy the 
conditions to be iinposed on (r.p in) equation (3.2). It follows that, for (1.1) 
subject to (1.2), 

F(l)=O, 

and that, for (1.1) 'subject to (1.3), 

...... .... ..... : . ... (3.5) 

f:Fd6=0. . ........... , ', ' ....• (3.6) 

(ii) Conditions imposed by Requirement that D Exists.-For D to exist for 

all values of 6 in the range 0 <; 6 <;1, it is necessary that f:Fd6 and dFjd6exist 

throughout this 6-range. (However, if a finite number of discontinuities in D 
are allowable, or if D is permitted to be infinite at a finite number of poin-ts in 
the range 0< 6<;1, dFjd6 may either not exist or be infinite at the appropriate 
finite number of points in the 6-range.) 

(iii) Condition imposed by Requirement that D ;;;;' O.-The fluX- of the diffusing 
entity in the sense x positive, Q, is equal to - Do6jox= -t-1Dd6jdr.p. Now 
both (1.2) and (1.3) describe phenomena in which for D ;;;;' O, Q ;;;;' O. It follows 
that d6/dr.p <;0 in both cases. Accordingly we have, for the two cases we consider, 
the further condition 

dF/d6 <;0 (0 <; 6<;1). ,(3.7) 

IV. SOLUTIONS OF (1.1), (1. 2) 
It is seen that exact solutions of (1.1) subject to (1. 2) may be established 

at will, simply by selecting F functions satisfying the conditions set out in 
Section III. Some typical results of this elementary process are given in Table l. 

It will be observed that the D functions in this table tend to have ' lim D(6) 
6->0 

either zero or infinite. * It would be a serious limitatiqn on the generality of 
the present methods if none of our exact solutions were for D(O) non-~ero, but 
finite.t Accordingly, we now give some attention to this question. 

A well-known result in linear diffusion (Carslaw and Jaeger 1959, p. 59) 
for phenomena governed by (1.2) is equivalent, from the present viewpoint, 
,to the ' statement that 

for F =2Dg inverfc 6, D =constant = Do' .....• (4. 1) 

The notation inverfc denotes the inverse of erfc (Philip 1955). 

* Fr6mthis point on w~sh'all write D(O) for limD(6) ~ Note that we use the (~rin 
e-.o 

lim D(6) since, strictly, the value of D at 6=0 is irrelevant to the phenomena_ We are con-
0->0 ' 

cemed only with values of D(6) in the interval 0 < 6 .;; 1. 

' t ' This is not 'toimply ;that no pra~tical intere~t attaches to cases with D(O) = O. , F ore. 
discussion of such cases and certain 'spplicatjonssee Philip '(1'956, 1957). . , 



J. R. PHILIP 

We therefore put 

F=2Dginverfc 6+f(6); Do finite, non-zero .... (4.2) 

in (3.4), and obtain 

( 
2f6 df) df J'6 D = Do +tDt - fd6-B- -t- · fd6, 

B 0 d6 d6 0 
..... , (4.3) 

where 

B(6) =27t-! exp [-(inverfc 6)2]. . . ...... . .... . ... . (4.4) 

TABLE I 
SOME SIMPLE CASES OF EXACT SOLUTIONS OF (1.1), (1.2) 

No. 
; 

D Remarks 'P 

1 ln6n[I-6n/(1 +n)] 1-6n n > O 
n 

2 - - [(1_6)n-1_(1_6)2n] (1-6)" n > O 
2(n+l) 

3 [6 ~n ] ln6-n l-n -I 6 - n- 1 O< n < l 

4 i sin2 i7t6 cos i7t6 
5 icos i7t6[cos i7t6 + i7t6-I] I-sin in6 

6 (6 cos-
1 

6 + 1 -1) 
i .y(I-62) 

cos- 16 

7 e7t- (I-6) sin~l (1-6) -1) 
i .y(26-62) 

sin- 1 (1-6) 

8 ( Sin-
1
6) 

i6 6 + .y(l-62) · .y(1-62) 

9 t sin n6( 7t6 + sin 7t6) cos2 in6 

10 -fr sin2 n6(5 +cos n6) cos3 !7t6 

11 ten6[1-en6+n6en] en-en6 n > O 

12 te-n6[l-e - n6-n6e-n] e-n6-e-n n > O 

13 !(I-log 6) -log 6 

14 n (-log6)n n > O. r(x,p) 
-(-log 6)n-1 
26 denotes the incom-

x {r(n+ I) - r(- log 6, n + l)} plete r-function 

f: e-xxp
-

1dx. 

This result depends on the following relationships, which are readily established: 

:6 (inverfc6)=-j; f:inVerfc6d6 = tB .. . (4.5) 

The properties of inverfc 6 and B(6) are treated in more detail in Philip (~960). 
Tables of these two functions are also given there. 
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Reve~ting to (4.3), we are concerned with the conditions under whichD(O) 
is finite, non-zero. Evidently, it is a sufficient condition that both 

lim (2f6 fda) and lim (Bdf
) . 

6->0 B 0 6->0, dO 

be finite (including zero). The slightly stronger condition that these limits 
be zero ensures that D(O) is equal to Do. Evidently, the imposition on f of the 
conditions 

(lf6 ) . 
6->~im B /dO =0, . ............. (~.6) 

lim (Bdf ) =0, 
6->0 dO 

(4.7) 

ensures that the inverfc term in (4.2) accounts completely for the finite but 
non-zero value of D(O) in (4.3). 

It is simply shown that (4.6) and (4.7) are equivalent to the single condition 
that 

lim. ~ 0=0. 
6->0 rnve c 

. . .. .... . ..... (4.8) 

Note that since (Philip 1960) 

(4.8) is equivalent to 

1· inverfc a -1 un -, 
6->0 (-log O) i 

lim ( If O)i=O. 
6->0 - og 

(4.9) 

(4:10) 

f is thus free to become infinite at 0=0, but it must approach infinity more 
slowly than (-log O) i. Note that it is necessary, but not 8ujficient,that f-Hfi) 

more slowly than 0-', where e is any non-zero P'Ositive quantity. 

Acc'Ordingly, there exists an exact solution of (1.1) subject to (1. 2) with 
D(O)=Do (finite, non-zero) c'OrresP'Onding t'O every D(O) 'Of the f'Orm (4.3) f'Or 
which 

(i) (2D3 inverfc a +f) satisfies the appr'Opriate c'Onditi'Ons on F set 'Out in 
Section III; 

(ti) f satisfies c'Ondition (4.8). 

A further result is that, f'Or 

.F=2D3 inverfc O±f (Do finite, n'On-zer'O), (4.11) 

(
2f6 df)'6 .df 

D=Do±lD3,B /dO-BdO -tJ/dO 'dO' (4.12) 

F'Or the results (4.2), (4.3), the restriction on dfldO was simply 

dfldO<'2D3IB. .. .............. (4.13) 
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We . here require the somewhat stronger restriction 
. . t I dI/de I <2Do/B. ................ (4.14) 

We note in passing that condition (3.5) reduces to the condition on I that 

f(I)=O . .................... (4.15) 

It will be observed that a very large class of functions I satisfy these various 
requirements, and that many of them may be found by elementary means. Some 
typical results are presented in Table 2. It is, of course, a simple matter to 
extend this table to a much greater length; but there seems little purpose in 
enumerating further examples. 

TABLE 2 
SOME EXACT SOLUTIONS OF (1.1), (1.2) WITH D(O) FINITE NON·ZERO 

No. D Remarks 

1 

2 

3 

Do+tn6n(1- ~) 
l+n 

±lD~[~(1-1:n)+Bn6n-l] 
D +_n_[(1_6)n-l_(1_6)2n l 

o 2(n+l) 

±lDb [_2_[I_(1_6)n+1] 
(n+I)B 

+Bn(I-6)n-l] 

2D~ inverfc 6±(l-6n) 

I 2Db inverfc 6±(1-6)n 

I 2D~ inverfc 6±cos~1t6 
I 

n>O. For minus sign 
Do>7tn2/16 

n>O. For minus sign 
Do has lower limit 

For minus sign 
D.>7t/16 

4, 

Do+l sin' i7t6±.J;Db sin t7t6 ' [7t~ +7tB] 

Do+ien6[I-en6+n6en] I 2Dg inverfc 6±(en_en6) n>O. For minus sign 
])0> '!tn'e2n /16 

±JD3[~(I-ene+n6en)+Bnen6] 
nB . 

V. SOLUTIONS OF (1.1), (1.3) 
Similarly, we may establish exact solutions of (1.1) subject to (1. 3) at will, 

simply by selecting F functions satisfying the appropriate conditions stated in 
Section III. Typical results are given in Table 3. It will be noted that the 
entries 1 and 11 of the table are for D(e) functions symmetrical about e = t. 
It is evident that these results follow immediately from Nos. 2 and 4 of Table 1, 
and that many more" symmetrical" exact solutions may be readily constructed 
from the results of the preceding section. 

We here again encounter the difficulty which arose previously, namely, 
that F functions chosen without certain precautions tend to lead to zero or 
infinite values of D. In Section IV, this occurred only for D(O); but here the 
trouble arises also for D(I), which we write for lim D(e). 

6-+1 
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In this case we may avoid the difficulty by using a known result for diffusion 
in composite media governed by conditions (1.3) (Carslaw and Jaeger 1959, 
p. 87). We find that, from the present viewpoint, this result is equivalent to 
the following statement. 

Let F be specified by (5.1) below: 

where 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

1:>0>0', F=-2Dbnverfc {(1-0)j(1-6')};} 

0<:0<6', F=2D~ inverfc (OW) ; 

O'=DtJ(D~+Dt). 

TABLE 3 

SOME SIMPLE CASES OF EXACT SOLUTIONS OF (1.1),. (1.3) 

D <p 

n 
(1-20)n --[(1-20)n-l_(1-20)2n] 

2(n+l) 

non 1 
---(I-on) _-on 
2(n+l) n+l 
nO-n 1 

_-(o-n-l) o-n- --
2(1-n) l-n 

n(l-o)n 1 
--[1-(1-0)n] (l-o)n--
2(n+l) n+l 

n(I-0)-n 1 
[(l-o)-n-l] - -(1-0)-n 

2(1-n) I-n 

! sin t7tO(sin !7t0-0) cos !7t0-2f7t 

! cos !7tO[cos !7tO+O-l] 2f7t-sin i7tO 

1 e + 0 cos-10-O .1] 
2 y(I-02) + cos-1O-1 

[(1-0) C08-1(1-0)+0] 
! y(20-02) 

sin-l(l-O)-!r.+ 1 

10 [0+Sin-1O-!7t0] 
"4 y(I-02) 

y(l-02)-lr. I 

! sin2 7t0 cos 7t0 
sin2 7t0 cos3 !7t0-4f37t --[5+2 cos 7t0-40 cosec !7t0] 

16 

!n2ene[(en~I)O-(ene_I)] en-1-nen6 

-!log 0 -(log 0+1) 

n 
-c-(-log o)n-l (-log o)n-r(n+I) 
20 

x {r(n+l)'(l-O)-r(-log 0, n+l)} 

.. (5.1) 

Remarks 

n=l, 3, 5, 7, ... 

n>O 

O<n<l 

n>O 

O<n<l 

n may be either 
positive or 

negative 

n>O 
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Then the corresponding D function is : 

1>6> 6', D=constant=Dl ;/ 

0<;6<6', D = constant =Do. I 

We therefore put F into the form (Dll Do finite, non-zero) 

1 >6> 6', F= -2DI inverfc {(1-6)/(1-6')} +f (6) ; I 
0<;6 <6', F=2D~ inverfc (6/6') +f(6). ) 

(5.2) 

.. (5.3) 

Using (3.4), we obtain the corresponding D(6) for diffusion subject to conditions 
(1. 3) : 

................ (5.4) 

The condition that D(O)=Do reduces to 

lim . rff (6W =0, 
6_0 lllve c ) 

............ (5.5) 

entirely analogous to (4.8) in the previous Section. We have similarly that the 
condition that D(l)=Dl is that 

lim f 0 (56) 
6-+1 inverfc {(1-6)/(1-6')} . . . . . . . . . . 

It follows that there exists an exact solution of (1.1) subject to (1. 3) with 
D(O)=Do, D(l)=Dl (both finite, non-zero) corresponding to every D(6) of the 
form (5.4) for which 

(i) F of the form (5.3) satisfies the appropriate conditions set out in 
Section III ; 

(ii) f satisfies conditions (5.5) and (5.6). 
It will be noted that, in this case, when df/d6 is continuous at 6=6', a 

discontinuity of magnitude Dl-Do occurs in D(6) at this point. The condition 
that dF/d6, and therefore D(6), is continuous at 6=6' is that 

~~(6' +) - ~~(6' -) = (D:vJ i (Dt + Db)(Dl -Do). .. (5.7) 

That is, a discontinuity in df/d6, defined in (5.7), is necessary if a discontinuity 
in D(6) is to be avoided at 6=6'. It is seen that usually f will be required to 
satisfy this further condition. 



EXACT SOLUTIONS IN NON-LINEAR DIFFUSION 9 

it is therefore helpful to replace f by 9 +1', where the discontinuity in dfld6 
at 6=6' is contained in dgjd6, with df'ld6 continuous at this point. Condition 
(3.6) on F reduces here to the requirement that 

J:fd6 =0, 

so that it is convenient to take 9 such that 

J:9d6=0. 

We then have as a condition on l' that 

The family of linear 9 functions satisfying (5.8) is 

1;>6>6', g=a+b(6-6'); I 
0<:;6<6', g=a+(b-c)(6-6'). \ 

Here a is an arbitrary constant, 

(5.8) 

(5.9) 

........ (5.10) 

b=(D! +D3) [2aj(DI -Db) + (rcDljDO)!] , 
and 

c=(rcjDoDl)l(Dt +Dg)(D1-Do)' 

We recall that 9 and f' must be such that dF/d6<:;0. 

It is evident that, despite these various restrictions, there still remains a 
wide range of permissible f functions. Figures 1 and 2 represent some simple 
exact solutions for the case Do=l, Dl =9, l' =0, and several values of the para
meter a. 

We have here treated the case with both Do and Dl finite non-zero. Evidently, 
when only one of these quantities is required to be finite non-zero, the conditions 
on F are weaker and the problem is correspondingly simpler. 

VI. PRACTICAL USE OF THE METHOD 

The typical mathematical problem arising in concentration-dependent 
diffusion is to compute tp(6) when D(6) is known (frequently determined experi
mentally). Effective use of the method developed here depends then on the 
ability to match any given D(6) :l'unction with a member of the family of D(6) 
functions yielding exact solutions. 

This may be done, though rather brutally, by introducing (for the case of 
diffusion subject to (1.2» an F function of the form 

n 
F=2Do inverfc 6+ L: ar (1-6}". . ......... (6.1) 

1 

The corresponding D(6) function follows from (3.4). We may now match this 
computed D(6) with its (n+l) adjustable parameters, Do and ar, at (n+l) 
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points of the given D(O) curve. The problem reduces to solving (n +1) simul
taneous equations for (n+1) unknowns. This is a possible, but not particularly 
attractive, manner of securing the solution. A similar method may be used 
for solving (1.1) subject to (1.3). 

18 

14 

12 -4 

t 
10 

0(1)=9 C 

8 

A--

Fig. I.-Parametric family of D(6) functions defined as follows: 

1:>6>!-, D=9+(1-6)[(2a+6yrr)6-3yrr]{2a+6yrr-12jB(4-46)}-!-(2a+6yrr)B(4-46); 

0<; 6 <!-, D= 1-6[(2a -+- iyrr)6-(2a + yrr) ]{2a+ iyrr-4/3B(46j3)}-!-(2a+ iYrr)B(46j3). 

Numbers on the curves denote values of a. 

It appears to the author that (both in the case of (1.1), (1. 2) and of (1.1), 
( 1. 3)) it is preferable to keep the number of disposable constants in the 1!' function 
down to perhaps two or three, and to provide the desired range of shapes of 
D(O) function by making use of the variety of the possible functional forms 
which 1!' is free to assume. This requires the construction of a "library" in 
which are arrayed various 1!' functions together with the corresponding D 
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functions. It should then be possible, by inspection, to select an appropriate 
functional form of F, and . the problem then reduces to matching the given D 
function by solving for the small number of disposable parameters occurring in 
the F function. It is beyond the scope of the present paper to provide such a 
library. Its construction and presentMion remain a task for the future. 

Fig. 2.- Parametric family of <p(0) functions defined as follows: 

1> 0>!, <p=-6 inverfc (4-40) +a+4(a+ 3v'1t)(0-!); 
O<;; O<!, <p=2 inverfc 40/3 + a + 4(a+!v'1t)(0-!). 

Numbers on the curves denote values of a. These curves represent 
exact solutions of (1.1), (1.3) corresponding to the D(O) functions 

of Figure 1. 

VII. DISCUSSION 

In the present study we have made use of (4.1) and (5.1), (5.2) to avoid. 
difficulties due to D(6) becoming zero or infinite at one or both ends of the 
6-interval; but we have not provided a thorough investigation of such questions 
as the relationship (for diffusion subject to (1. 2)) between the manner in which 
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cp(6) behaves as 6-'+0 and the behaviour of D(6) close to 6=0. It is hoped to 
return to questions of this nature in a later communication (cf. Philip 1957 for 
an early approach). 
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