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Summary 

The function inverfc 6 arises in certain diffusion problems when concentration is 
taken as an independent variable. It enters into a general method of exact solution 
of the concentration-dependent diffusion equation. An account is given of the properties 
of this function, and of its derivatives and integrals. The function 

B(6) = (2/1t!) exp [-(inverfc 6)2J 

is intimately connected with the first integral of inverfc 6 and with its derivatives. 
Tables of inverfc 6 and B(6) are given. 

I. INTRODUCTION 

The solution of one-dimensional diffusion problems is usually sought in the 
form 

concentration=explicit function of distance and time. 

It has become increasingly evident, however, that there are occasions when it 
is simpler, and more illuminating, to seek the solution in the form 

distance=explicit function of concentration and time. 

In particular, the latter approach has proved fruitful when applied to concentra
tion-dependent diffusion (Philip 1955) and when applied to problems where 
concentration-dependent diffusion is combined with a first-order (not necessarily 
linear) phenomenon (Philip 1957). 

In these connexions, it was found convenient (Philip 1955) to introduce the 
notation" inverfc " to denote the inverse of the function 

............ (1.1) 

Until now there has been no urgent need to examine in detail the properties of 
the inverfc function. However, inverfc 6 and its first derivative and first 
integral with respect to 6 enter intimately into the recently found general method 
of exact solution of the concentration-dependent diffusion equation (Philip 
1960). This account of the properties of inverfc 6, its derivatives, and its 
integrals, therefore forms an essential supplement to Philip (1960). The tabula
tions of the functions inverfc 6 and B(6) given here will frequently be needed 
when the method of Philip (1960) is applied. 

* Division of Plant Industry, C.S.I.~.O., Canberra. 
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The concept of inverfc as the inverse of erfc leads to definition of the function 
'through (1.2): 

G =erfc (inverfc 0). ................ (1. 2) 

An alternative de novo definition of inverfc follows from equations (3.4) 
and (4.1) of Philip (1960). In this way the function may be introduced as the 
solution, F=inverfc G, of the equation 

~~f: FdG= -t, .................. (1.3) 

subject to the conditions 

F(l)=O; O<;G<;l, F>O. . ........... (1.4) 

The following elementary results come directly from the known properties 
of erfc: 

inverfcO=+OOj inverfc1=0; inverfc2=-oo, (1.5) 

inverfc (2-0)=-inverfc G ....................... (1.6) 

We shall deal almost exclusively with the interval in 0, 0<;0<;1 j it is a 
trivial matter to extend the results to the whole interval 0<;0<;2 by means of 
( 1. 6 ). Note that inverfc 0 is defined only within the latter interval. 

TABLE 1 
inverfc e COMPUTED FROM SERIES (2.4) 

inverfc 6 Computed from Series (2.4) 
6 

Three Terms \' Four Terms Five Terms 
! 

---~-'------ ,-----~-~- --~-~-

0·6 
0·7 
0·8 
0·9 

0·3706458 
0·2724424 
0'1791423 
0·0888560 

0·3707451 
0·2724557 
0·1791431 
0·0888560 

0·3707570 
0·2724566 
0·1791431 
0·0888560 

II. POWER SERIES FOR inverfc 6 

We introduce the power series connert'ld with erfc: 

Putting 

inverfc e 
Exact Value 

0·3708072 
0·2724627 
0·1791434 
0·0888560 

........................ (2.2) 

and writing x for inverfc G, we have 

........ (2.3) 
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Suppose now, that inverfc 6 (i.e. x) may be expanded as a power series in I}. 
Then we may formally establish this series by equating coefficients of powers of I} 
on each side of (2.3). The result is 

. f 6-1} 11}3 7a5+1271}7+ 43691}9+ 
mver c - +3 + 30u ' 630 22680 . (2.4) 

No simple general expression for the coefficients is apparent. It 'Will be 
shown later in Section IV that (2.4) may be derived directly from the Taylor 
expansion of inverfc 6 about 6=1. The series of (2.3) is uniformly convergent. 
Presumably the series of (2.4) converges for I I} I <tn!. It provides a useful 
means of calculating inverfc 6 in the neighbourhood of 6 =1. Table 1 gives a 
comparison of the exact value of inverfc 6 with that computed from the first 
few terms of series (2.4). 

III. ASYMPTOTIC FORMS OF inverfc 6, 6 SMALL 

For large values of x (=inverfc 6), we have the well-known asymptotic 
result : 

6~exp(,-x2) ... " ........................... (3.1) 
n'x 

(3.1) is equivalent to 

which has the continued logarithmic form 

X2~ -log 6 -pog [n( -log 6 -t log [. 

Accordingly we have the approximation for 6 small: 

inverfc 6={ -log 6-t log [n( -log 6-t log [ ... }!. " (3.2) 

As far as the author knows, no formal study has been made of the con
vergence of continued logarithms. The convergence of (3.2) is rapid for 6 small. 
See Table 2. In this table the symbol 8n denotes the nth member of the sequence 
formed by terminating the repeated logarithm at successive log 6's. Thus, 

81 =( -log 6)! ; 

8 2=( -log 6-pog [n( -log 6)])!; 

83 =( -log 8 -t log [n( -log 6 -t log {n( -log 6m])! ; 

and so on. 

It is evident that the limit to the accuracy of using (3.2) for 6 small is set 
by the limited accuracy of (3.1) rather than by the rate of convergence of the 
sequence 8 n: Note that 8 2 proves a better approximation to inverfc 6 than do 
the higher members of the sequence. 
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TABLE 2 
inverfc e COMPUTED FROM (3.2) 

! 
e S1 S. S3 S. ! inverfc e 

Exact Value 

10-· 3·7169 3·4540 3·4646 3·4642 3·4589 
10-' 3·0349 2·7437 2·7620 2·7608 2·7509 
lO-' 2·1460 1·8081 

I 
1·8549 1·8480 1'8214 

i 

Pollack: (1956) has established an inequality which leads to the following 
improved approximation 

e R::J 2 exp ( _X2) 3 3 
7t!{x+y(x2 +4/7t)}' .............. ( . ) 

This yields the better approximation 

inverfc e={ -log e-sinh-1 Y!7t( -log e-sinh-1 y[!7t( -log e ... p . 
. .. .. .. .. ... (3.4) 

(3.4) is more accurate than (3.2), and converges at about the same rate; but 
it involves sinh-I, which is scarcely any simpler than inverfc. 

The fonowing result follows from (3.2) or (3.3) 

lim inverfc e =1. 
6->-0 (-log ell 

IV. THE DERIVATIVES AND INTEGRALS OF inverfc e 

Differentiating equation (1.2), we obtain 

:e (inverfc e)= -i7t! exp [(inverfc e)2]. 

1 IS co:rvc::lient to introduce the function 

( 4.1) 

.................... (4.2) 

'Ye then have 

:e (inverfc e)=-~. . ..................................... (4.3) 

In addition, 

: =2 inverfc e, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. (4.4) 

and, in general (m#O, n#O), 

d [(inVerfc e)m] 1. . de Bn = - Bn+I[2n(mverfc e)m+! +m(mverfc e)m-l]. .. (4.5) 
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This result is useful for generating the higher derivatives* of invedc 6. 
We have, for example, 

::2 (invedc 6)=;2 (2 invedc 6), 

d3 1 . 
d63 (invedc 6)= - B3 {8 (invedc 6)2+2}, 

:;4 (invedc 6)=;4 {48 (invedc 6)3+28 invedc 6}, 

::5 (invedc 6)= - ;5 {384 (invedc 6)4+368 (invedc 6)2+28}, 

::6 (invedc 6)=~6 {3840 (invedc 6)5+5216 (invedc 6)3+1016 invedc 6}, 

::7 (invedc 6)= - ;7 {46,080 (invedc 6)6+81,792 (invedc 6)4 

+27,840 (inverfc 6)2+1016}. 
It is evident that, for n odd, 

:~ (invedc 6)= - ;" (a"-l (invedc 6)",-1 +an-3 (invedc 6)n-3+ . .. +ao), 

and, for n even, 

:;" (invedc 6)=;" {a,,-1 (invedc 6),,-1 +a,,-3 (invedc 6)n-3 

+ ... +aI invedc 6}. 
In both cases the coefficients a"-I' etc. are all positive. 

Now 2j1t!>B>0 throughout the interval 0<6<2, whilst invedc 6 is positive 
in 0<6<1, zero at 6=1, and negative in 1<6<2. It therefore follows that, 
in the interval 0<6<1, 

d" 
d6" (invedc 6) is positive if n is even, negative if n is odd; 

at 6=1, 

:;" (invedc 6) is zero if n is even, negative if n is odd; 

in the interval 1 <6 <2, 

:;" (invedc 6) is negative whether n is even or odd. 

* I am indebted to the referee for remarks which suggest the following, more elegant, treatment 
of the higher derivatives of inverfc 6. 

F=inverfc 6 satisfies the equation 

d 2F/d62 =2F(dF/d6)2. . ....................... (A) 

This may be established by differentiating (1.3) with respect to 6. Now, if Pn(F) denotes a 
polynomial in F, and 

(B) 

it follows by differentiation and use of (A) that 

where 
d,,+1F/d6"+1 =P "+1(F)(dF/d6)n+l, 

•••••••••••••••. (C) 

Now (B) is true for n=l, andP1(F)=1. Therefore, P,,(F) for all n>l follows at once from 
(C), giving a simple means of determining the higher derivatives of inverfc 6. 

B 
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We have the particular results: 

dn 
(-I)n d6n (inverfc 0)= 00, 

dn 
d6n (inverfc 2) = - 00. 

The values of the first nine derivatives of inverfc 6 at 6=1 are 

-tnt, 0, -2( tn i )3, 0, -28( tn') 5, 0, -1016( tnt) 7, 0, -69,904( tnt) 9. 

It follows from these results that equation (2.4) may be established by applying 
Taylor's theorem to the right-hand side of the identity 

inverfc 6=inverfc [1-(1-6)]. 

We also note that it follows from (4.4) that 

dnB dn - 1 . 
d6n =2 d6n - 1 (mverfc 6). . ........... (4.6) 

It is readily established by integration by parts, or by use of (4.1) in (1. 3), 
or by integrating (4.4), that 

fa inverfc 6 d6= ~ exp (-inverfc 6)2=tB. 
o n' 

.. (4.7) 

.A further integration yields 

f:f>nverfc 6 d6d6= y'~n) erfc (y'2 inverfc 6). 

This and the higher integrals of inverfc 6 do not appear to be of significance in 
the present developments. 

V. THE FUNCTION B(6) 
We have seen that B(6) is simply related to the first derivative, and to the 

first integral, of inverfc 6. For this reason it proves of primary importance 
in the development of the general method of exact solution of the concentration
dependent diffusion equation (Philip 1960). 

We note from (1.6) and (4.2) that 

B(2 -6) =B(6). . . . . . . . . . . . . . . .. (5.1) 

We have already remarked on the simple relation between derivatives of 
inverfc 6 and those of B. It follows that the Taylor expansion of B(fJ) about 
6 =1 yields as the power series for B 

where {} is again defined by (2.2). Presumably the series of (5.2) converges 
for I {} I <tn'. It enables B to be calculated readily in the neighbourhood of 
6=1. 
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The behaviou1:'of ·Bnear 6=0 is of interest. Approximation (3.1) appliM 
in (4.2) yields'.',) 

.........•...... (5.3) .. ,i 

and it may be shown that 
. B(6) 

6--->"!Jim 26 (-log 6)! =1. 

It follows that, as 6-0, B_O more rapidly* than does 61-&, where s; is any non
zero positive quantity, and more slowly than does 6. 

VI. TABLES OF invedc 6 AND B(6) 
The only existing table of invedc 6 known to the author is in Fowle (1921, 

p. 60). The column of the table headed vic gives 6 in the present notation, 
and that headed 2q gives values of 2 invedc 6 to four or five significant figures. 
In connexion with Philip (1960) it is helpful to have a table of invedc 6 readily 
available. In the course of constructing the table of B(6), it was a simple matter 

TABLE 3 
THE FUNCTIONS inverfc 6 AND B(6) 

I 
I 

I 
0 inverfc 6 B(6) 6 I inverfc 6 B(6) i 

I 

0 OCJ 0 0·40 0·595 116 1 0·791 851 9 
10-6 3·458 911 0·000 007 177 8 0·45 0·534 159 1 0·848 280 6 
10-l; 3·122 587 0·000 065 742 0·50 0·476 936 3 0·898 807 9 
10-4 2·750 936 0·000 583 27 0·55 0·422 680 2 0·943 766 6 
10-3 2·326 754 0·005 026 6 0·60 0·370 807 2 0·983 423 2 
10-" 1·821 386 0·040 898 3 0·65 0·320 858 3 1·017 992 I 
0·05 1·385 904 0·165 219 5 0·70 0·272 462 7 1·047 646 6 
0·10 1·163 087 0·291 711 6 0·75 0·225 312 1 1·072 526 I 
0·15 1·017 902 0·400 379 2 0·80 0·179 143 4 1·092 741 7 
0·20 0·906 193 8 0·496 384 2 0·85 0·133 726 9 1·108 379 8 
0·25 0·813 419 8 0·582 241 7 0·90 0·088 856 0 1·119 505 3 
0·30 0·732 869 1 0·659 472 6 0·95 0·044 341 3 1·126 162 8 
0·35 0·660 854 4 0·729 098 6 1·00 0 1·128 379 2 

I i 

to develop a new and more accurate table of invedc 6. Details are given below, 
and the resulting tabulation is presented in Table 3. No graph of invedc 6 is 
given, since the shape of edc ill is well known. 

No table of B(6) is known to the author. The tabulation of this function, 
which is also given in Table 3, was constructed with the aid of National Bureau 
of Standards (1954) tables by methods described below. Figure 1 gives the plot 
of B(6). 

Table of inverfc 6. The table of inverfc 6 was constructed from the National 
Bureau of Standard.s (1954) tables of ed ill by a process of inverse interpolation. 

* Suppose lim P(6) =0; lim Q(6) =0. Then we say that, as 6->-60, P->-O more ra.pidly 
6->6. 6---+6. 

P 
than does Q, provided that lim -(6)=0. 

6--->0. Q 
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" Linear" interpolation of the type suggested in the introduction to those tables 
proved sufficiently accurate to ensure that errors in the final place given would 
not exceed unity. Twenty comparisons with Fowle's table were possible; in 
every case the final place of Fowle's tabulation of 2q (i.e. 2 inverfc 6) was 
confirmed. 

r 
ID 

a 0'6 o·e 

Fig. I.-The function B(e). 

Table of B(6). Once inverfc 6 was computed, it was a simple matter to 
calculate B(6) by linear interpolation (again of the type suggested in the intro
duction) in the tables of the derivative of erf (J) in the National Bureau of Standards 
tables. It was established that this process would not yield errors greater than 
unity in the final places shown in the table. 

Most of each table was checked by differencing. 
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