THE FUNCTION INVERFC θ

By J. R. Philip*
[Manuscript received November 11, 1959]

Summary

The function inverfe θ arises in certain diffusion problems when concentration is taken as an independent variable. It enters into a general method of exact solution of the concentration-dependent diffusion equation. An account is given of the properties of this function, and of its derivatives and integrals. The function

$$
B(\theta)=\left(2 / \pi^{\frac{1}{2}}\right) \exp \left[-(\text { inverfe } \theta)^{2}\right]
$$

is intimately connected with the first integral of inverfe θ and with its derivatives. Tables of inverfc θ and $B(\theta)$ are given.

I. Introduction

The solution of one-dimensional diffusion problems is usually sought in the form.
concentration = explicit function of distance and time.

It has become increasingly evident, however, that there are occasions when it is simpler, and more illuminating, to seek the solution in the form

$$
\text { distance }=\text { explicit function of concentration and time. }
$$

In particular, the latter approach has proved fruitful when applied to concentra-tion-dependent diffusion (Philip 1955) and when applied to problems where concentration-dependent diffusion is combined with a first-order (not necessarily linear) phenomenon (Philip 1957).

In these connexions, it was found convenient (Philip 1955) to introduce the notation " inverfe" to denote the inverse of the function

$$
\begin{equation*}
\operatorname{erfc} x=\frac{2}{\pi^{\frac{1}{2}}} \int_{x}^{\infty} \exp \left(-\zeta^{2}\right) \mathrm{d} \zeta . \tag{1.1}
\end{equation*}
$$

Until now there has been no urgent need to examine in detail the properties of the inverfc function. However, inverfc θ and its first derivative and first integral with respect to θ enter intimately into the recently found general method of exact solution of the concentration-dependent diffusion equation (Philip 1960). This account of the properties of inverfc θ, its derivatives, and its integrals, therefore forms an essential supplement to Philip (1960). The tabulations of the functions inverfe θ and $B(\theta)$ given here will frequently be needed when the method of Philip (1960) is applied.

[^0]The concept of inverfc as the inverse of erfc leads to definition of the function through (1.2) :

$$
\begin{equation*}
\theta=\operatorname{erfc} \text { (inverfc } \theta \text {). } \tag{1.2}
\end{equation*}
$$

An alternative de novo definition of inverfe follows from equations (3.4) and (4.1) of Philip (1960). In this way the function may be introduced as the solution, $F=$ inverfc θ, of the equation

$$
\begin{equation*}
\frac{\mathrm{d} F}{\mathrm{~d} \theta} \int_{0}^{\theta} F \mathrm{~d} \theta=-\frac{1}{2} \tag{1.3}
\end{equation*}
$$

subject to the conditions

$$
\begin{equation*}
F(1)=0 ; \quad 0 \leqslant \theta \leqslant 1, F \geqslant 0 . \tag{1.4}
\end{equation*}
$$

The following elementary results come directly from the known properties of erfc :

$$
\begin{align*}
& \text { inverfc } 0=+\infty ; \quad \operatorname{inverfc} 1=0 ; \operatorname{inverfc} 2=-\infty, \ldots(1.5) \\
& \text { inverfc }(2-\theta)=-\operatorname{inverfc} \theta . \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots(1.6) \tag{1.6}
\end{align*}
$$

We shall deal almost exclusively with the interval in $\theta, 0 \leqslant \theta \leqslant 1$; it is a trivial matter to extend the results to the whole interval $0 \leqslant \theta \leqslant 2$ by means of (1.6). Note that inverfe θ is defined only within the latter interval.

Table 1
inverfc θ computed from series (2.4)

θ	inverfc θ Computed from Series (2.4)			inverfc θ Exact Value
	Three Terms	Four Terms	Five Terms	
$0 \cdot 6$	$0 \cdot 3706458$	$0 \cdot 3707451$	$0 \cdot 3707570$	0.3708072
0.7	$0 \cdot 2724424$	$0 \cdot 2724557$	$0 \cdot 2724566$	$0 \cdot 2724627$
$0 \cdot 8$	$0 \cdot 1791423$	$0 \cdot 1791431$	$0 \cdot 1791431$	$0 \cdot 1791434$
$0 \cdot 9$	$0 \cdot 0888560$	$0 \cdot 0888560$	$0 \cdot 0888560$	$0 \cdot 0888560$

II. Power Series for inverfc θ

We introduce the power series connected with erfc:

$$
\begin{equation*}
\frac{1}{2} \pi^{\frac{1}{2}}(1-\operatorname{erfc} x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{2!5}-\frac{x^{7}}{3!7}+\frac{x^{9}}{4!\overline{9}}-\ldots . \tag{2.1}
\end{equation*}
$$

Putting

$$
\begin{equation*}
\vartheta=\frac{1}{2} \pi^{\frac{1}{2}}(1-\theta) \tag{2.2}
\end{equation*}
$$

and writing x for inverfe θ, we have

$$
\begin{equation*}
\vartheta=x-\frac{x^{3}}{3}+\frac{x^{5}}{2!5}-\frac{x^{7}}{3!7}+\frac{x^{9}}{4!9}-\ldots \tag{2.3}
\end{equation*}
$$

Suppose now, that inverfc θ (i.e. x) may be expanded as a power series in ϑ. Then we may formally establish this series by equating coefficients of powers of ϑ on each side of (2.3). The result is

$$
\begin{equation*}
\text { inverfc } \theta=\vartheta+\frac{1}{3} \vartheta^{3}+\frac{7}{30} \vartheta^{5}+\frac{127}{630} \vartheta^{7}+\frac{4369}{22680} \vartheta^{9}+\ldots . \tag{2.4}
\end{equation*}
$$

No simple general expression for the coefficients is apparent. It will be shown later in Section IV that (2.4) may be derived directly from the Taylor expansion of inverfc θ about $\theta=1$. The series of (2.3) is uniformly convergent. Presumably the series of (2.4) converges for $|\vartheta|<\frac{1}{2} \pi^{\frac{1}{2}}$. It provides a useful means of calculating inverfe θ in the neighbourhood of $\theta=1$. Table 1 gives a comparison of the exact value of inverfc θ with that computed from the first few terms of series (2.4).

III. Asymptotic Forms of inverfe θ, θ Small

For large values of $x(=$ inverfc $\theta)$, we have the well-known asymptotic result :

$$
\begin{equation*}
\theta \approx \frac{\exp \left(-x^{2}\right)}{\pi^{\frac{3}{3}} x} \tag{3.1}
\end{equation*}
$$

(3.1) is equivalent to

$$
x^{2} \approx-\log \theta-\frac{1}{2} \log \pi x^{2}
$$

which has the continued logarithmic form

$$
x^{2} \approx-\log \theta-\frac{1}{2} \log \left[\pi \left(-\log \theta-\frac{1}{2} \log [. . .\right.\right.
$$

Accordingly we have the approximation for θ small :

$$
\begin{equation*}
\text { inverfc } \theta=\left\{-\log \theta-\frac{1}{2} \log \left[\pi \left(-\log \theta-\frac{1}{2} \log [. . .\}^{\frac{1}{2}} . \quad .\right.\right.\right. \tag{3.2}
\end{equation*}
$$

As far as the author knows, no formal study has been made of the convergence of continued logarithms. The convergence of (3.2) is rapid for θ small. See Table 2. In this table the symbol S_{n} denotes the nth member of the sequence formed by terminating the repeated logarithm at successive $\log \theta$'s. Thus,

$$
\begin{aligned}
& S_{1}=(-\log \theta)^{\frac{1}{2}} ; \\
& S_{2}=\left(-\log \theta-\frac{1}{2} \log [\pi(-\log \theta)]\right)^{\frac{1}{2}} ; \\
& S_{3}=\left(-\log \theta-\frac{1}{2} \log \left[\pi\left(-\log \theta-\frac{1}{2} \log \{\pi(-\log \theta)\}\right)\right]\right)^{\frac{1}{2}} ;
\end{aligned}
$$

and so on.
It is evident that the limit to the accuracy of using (3.2) for θ small is set by the limited accuracy of (3.1) rather than by the rate of convergence of the sequence S_{n}. Note that S_{2} proves a better approximation to inverfc θ than do the higher members of the sequence.

Table 2 inverfc θ COMPUTED FROM (3.2)

θ	S_{1}	S_{2}	S_{3}	S_{4}	inverfc θ Exact Value
10^{-6}	$3 \cdot 7169$	3.4540	$3 \cdot 4646$	$3 \cdot 4642$	$3 \cdot 4589$ 10^{-4}
10^{-2}	$3 \cdot 0349$	2.7437	$2 \cdot 7620$	$2 \cdot 7608$	$2 \cdot 7509$
$2 \cdot 1460$	1.8081	$1 \cdot 8549$	$1 \cdot 8480$	1.8214	

Pollack (1956) has established an inequality which leads to the following improved approximation

$$
\begin{equation*}
\theta \approx \frac{2 \exp \left(-x^{2}\right)}{\pi^{\frac{1}{2}}\left\{x+\sqrt{ }\left(x^{2}+4 / \pi\right)\right\}} \tag{3.3}
\end{equation*}
$$

This yields the better approximation

$$
\begin{equation*}
\text { inverfc } \theta=\left\{-\log \theta-\sinh ^{-1} \sqrt{\frac{1}{4} \pi\left(-\log \theta-\sinh ^{-1} \sqrt{ }\left[\frac{1}{4} \pi(-\log \theta \ldots\right.\right.} \cdot\right\}^{\frac{1}{2}} \tag{3.4}
\end{equation*}
$$

(3.4) is more accurate than (3.2), and converges at about the same rate; but it involves sinh ${ }^{-1}$, which is scarcely any simpler than inverfc.

The following result follows from (3.2) or (3.3)

$$
\lim _{\theta \rightarrow 0} \frac{\text { inverfc } \theta}{(-\log \theta)^{\frac{1}{2}}}=1
$$

IV. The Derivatives and Integrals of inverfe θ

Differentiating equation (1.2), we obtain

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \theta}(\text { inverfc } \theta)=-\frac{1}{2} \pi^{\frac{1}{2}} \exp \left[(\text { inverfc } \theta)^{2}\right] . \tag{4.1}
\end{equation*}
$$

I is convenient to introduce the function

$$
\begin{equation*}
B\left(0 ;=\frac{2}{\pi^{\frac{1}{2}}} \exp \left[-(\text { inverfc } \theta)^{2}\right]\right. \tag{4.2}
\end{equation*}
$$

We then have

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \theta}(\text { inverfc } \theta)=-\frac{1}{B} \tag{4.3}
\end{equation*}
$$

In addition,

$$
\begin{equation*}
\frac{\mathrm{d} B}{\mathrm{~d} \theta}=2 \text { inverfe } \theta, \tag{4.4}
\end{equation*}
$$

and, in general $(m \neq 0, n \neq 0)$,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \theta}\left[\frac{(\text { inverfc } \theta)^{m}}{B^{n}}\right]=-\frac{1}{B^{n+1}}\left[2 n(\text { inverfc } \theta)^{m+1}+m(\text { inverfc } \theta)^{m-1}\right] \tag{4.5}
\end{equation*}
$$

This result is useful for generating the higher derivatives* of inverfc θ. We have, for example,

$$
\begin{aligned}
\frac{\mathrm{d}^{2}}{\mathrm{~d} \theta^{2}}(\text { inverfc } \theta)= & \frac{1}{B^{2}}(2 \text { inverfc } \theta), \\
\frac{\mathrm{d}^{3}}{\mathrm{~d} \theta^{3}}(\text { inverfc } \theta)= & -\frac{1}{B^{3}}\left\{8(\text { inverfc } \theta)^{2}+2\right\}, \\
\frac{\mathrm{d}^{4}}{\mathrm{~d} \theta^{4}}(\text { inverfc } \theta)= & \frac{1}{B^{4}}\left\{48(\text { inverfc } \theta)^{3}+28 \text { inverfc } \theta\right\}, \\
\frac{\mathrm{d}^{5}}{\mathrm{~d} \theta^{5}}(\text { inverfc } \theta)= & -\frac{1}{B^{5}}\left\{384(\operatorname{inverfc} \theta)^{4}+368(\text { inverfc } \theta)^{2}+28\right\}, \\
\frac{\mathrm{d}^{6}}{\mathrm{~d} \theta^{6}}(\text { inverfc } \theta)= & \frac{1}{B^{6}}\left\{3840(\text { inverfc } \theta)^{5}+5216(\text { inverfc } \theta)^{3}+1016 \text { inverfc } \theta\right\}, \\
\frac{\mathrm{d}^{7}}{\mathrm{~d} \theta^{7}}(\text { inverfc } \theta)= & -\frac{1}{B^{7}}\left\{46,080(\text { inverfc } \theta)^{6}+81,792(\text { inverfc } \theta)^{4}\right. \\
& \left.+27,840(\text { inverfc } \theta)^{2}+1016\right\} .
\end{aligned}
$$

It is evident that, for n odd,
$\frac{\mathrm{d}^{n}}{\mathrm{~d} \theta^{n}}(\operatorname{inverfc} \theta)=-\frac{1}{B^{n}}\left(a_{n-1}(\operatorname{inverfc} \theta)^{n-1}+a_{n-3}(\text { inverfc } \theta)^{n-3}+\ldots+a_{0}\right)$, and, for n even,

$$
\begin{aligned}
\frac{\mathrm{d}^{n}}{\mathrm{~d} \theta^{n}}(\text { inverfc } \theta)= & \frac{1}{B^{n}}\left\{a_{n-1}(\text { inverfc } \theta)^{n-1}+a_{n-3}(\text { inverfc } \theta)^{n-3}\right. \\
& \left.+\ldots+a_{1} \text { inverfc } \theta\right\} .
\end{aligned}
$$

In both cases the coefficients a_{n-1}, etc. are all positive.
Now $2 / \pi^{\frac{1}{2}} \geqslant B \geqslant 0$ throughout the interval $0 \leqslant \theta \leqslant 2$, whilst inverfc θ is positive in $0 \leqslant \theta<1$, zero at $\theta=1$, and negative in $1<\theta \leqslant 2$. It therefore follows that, in the interval $0 \leqslant \theta<1$, $\frac{\mathrm{d}^{n}}{\mathrm{~d} \theta^{n}}$ (inverfc θ) is positive if n is even, negative if n is odd; at $\theta=1$,
$\frac{\mathrm{d}^{n}}{\mathrm{~d} \theta^{n}}$ (inverfc θ) is zero if n is even, negative if n is odd;
in the interval $1<\theta \leqslant 2$,
$\frac{\mathrm{d}^{n}}{\mathrm{~d} \theta^{n}}$ (inverfc θ) is negative whether n is even or odd.

[^1]We have the particular results :

$$
\begin{aligned}
(-1)^{n} \frac{\mathrm{~d}^{n}}{\mathrm{~d} \theta^{n}}(\text { inverfc } 0) & =\infty, \\
\frac{\mathrm{d}^{n}}{\mathrm{~d} \theta^{n}}(\text { inverfc } 2) & =-\infty .
\end{aligned}
$$

The values of the first nine derivatives of inverfc θ at $\theta=1$ are

$$
-\frac{1}{2} \pi^{\frac{1}{2}}, 0,-2\left(\frac{1}{2} \pi^{\frac{1}{2}}\right)^{3}, 0,-28\left(\frac{1}{2} \pi^{\frac{1}{2}}\right)^{5}, 0,-1016\left(\frac{1}{2} \pi^{\frac{1}{2}}\right)^{7}, 0,-69,904\left(\frac{1}{2} \pi^{\frac{1}{2}}\right)^{9} .
$$

It follows from these results that equation (2.4) may be established by applying Taylor's theorem to the right-hand side of the identity

$$
\text { inverfc } \theta=\text { inverfc }[1-(1-\theta)] .
$$

We also note that it follows from (4.4) that

$$
\begin{equation*}
\frac{\mathrm{d}^{n} B}{\mathrm{~d} \theta^{n}}=2 \frac{\mathrm{~d}^{n-1}}{\mathrm{~d} \theta^{n-1}}(\text { inverfc } \theta) \tag{4.6}
\end{equation*}
$$

It is readily established by integration by parts, or by use of (4.1) in (1.3), or by integrating (4.4), that

$$
\begin{equation*}
\int_{0}^{\theta} \text { inverfc } \theta d \theta=\frac{1}{\pi^{\frac{1}{2}}} \exp (-\operatorname{inverfc} \theta)^{2}=\frac{1}{2} B \tag{4.7}
\end{equation*}
$$

A further integration yields

$$
\int_{0}^{\theta} \int_{0}^{\theta} \text { inverfc } \theta \mathrm{d} \theta \mathrm{~d} \theta=\frac{1}{\sqrt{ }(2 \pi)} \operatorname{erfc}(\sqrt{ } 2 \text { inverfc } \theta)
$$

This and the higher integrals of inverfc θ do not appear to be of significance in the present developments.

V. The Function $B(\theta)$

We have seen that $B(\theta)$ is simply related to the first derivative, and to the first integral, of inverfc θ. For this reason it proves of primary importance in the development of the general method of exact solution of the concentrationdependent diffusion equation (Philip 1960).

We note from (1.6) and (4.2) that

$$
\begin{equation*}
B(2-\theta)=B(\theta) \tag{5.1}
\end{equation*}
$$

We have already remarked on the simple relation between derivatives of inverfc θ and those of B. It follows that the Taylor expansion of $B(\theta)$ about $\theta=1$ yields as the power series for B

$$
\begin{equation*}
B(\theta)=\frac{2}{\pi^{\frac{1}{2}}}\left[1-\vartheta^{2}-\frac{\vartheta^{4}}{6}-\frac{7}{90} \vartheta^{6}-\frac{127}{2520} \vartheta^{8}-\frac{4369}{113400} \vartheta^{10}-\ldots\right], \ldots \tag{5.2}
\end{equation*}
$$

where ϑ is again defined by (2.2). Presumably the series of (5.2) converges for $|\vartheta| \leqslant \frac{1}{2} \pi^{\frac{1}{2}}$. It enables B to be calculated readily in the neighbourhood of $\theta=1$.

The behaviour of B near $\theta=0$ is of interest. Approximation (3.1) applied in (4.2) yields

$$
\begin{equation*}
B(\theta) \approx 2 \theta(-\log \theta)^{\frac{1}{2}} \tag{5.3}
\end{equation*}
$$

and it may be shown that

$$
\lim _{\theta \rightarrow 0} \frac{B(\theta)}{2 \theta(-\log \theta)^{\frac{1}{2}}}=1 .
$$

It follows that, as $\theta \rightarrow 0, B \rightarrow 0$ more rapidly* than does $\theta^{1-\varepsilon}$, where ε is any nonzero positive quantity, and more slowly than does θ.
VI. Tables of inverfe θ and $B(\theta)$

The only existing table of inverfc θ known to the author is in Fowle (1921, p. 60). The column of the table headed v / c gives θ in the present notation, and that headed $2 q$ gives values of $2 \operatorname{inverfc} \theta$ to four or five significant figures. In connexion with Philip (1960) it is helpful to have a table of inverfc θ readily available. In the course of constructing the table of $B(\theta)$, it was a simple matter

Table 3
THE FUNCTIONS inverfc θ and $B(\theta)$

0	inverfc θ			$B(\theta)$				θ	inverfc θ			$B(\theta)$		
0					0			$0 \cdot 40$	0.595	116	1	$0 \cdot 791$	851	9
10^{-6}	$3 \cdot 458$	911		$0 \cdot 000$	007	177	8	0.45	0.534	159	1	$0 \cdot 848$	280	6
10^{-5}	3-122	587		$0 \cdot 000$	065	742		0.50	$0 \cdot 476$	936	3	0.898	807	9
10^{-4}	2.750	936		$0 \cdot 000$	583	27		0.55	0.422	680	2	0.943	766	6
10^{-3}	$2 \cdot 326$	754		$0 \cdot 005$	026	6		$0 \cdot 60$	$0 \cdot 370$	807	2	0.983	423	2
10^{-2}	$1 \cdot 821$	386		$0 \cdot 040$	898	3		$0 \cdot 65$	$0 \cdot 320$	858	3	1.017	992	1
$0 \cdot 05$	1-385	904		$0 \cdot 165$	219	5		0.70	$0 \cdot 272$	462	7	1.047	646	6
$0 \cdot 10$	1-163	087		0.291	711	6		$0 \cdot 75$	$0 \cdot 225$	312	1	1.072	526	1
$0 \cdot 15$	$1 \cdot 017$	902		$0 \cdot 400$	379	2		0.80	0.179	143	4	$1 \cdot 092$	741	7
$0 \cdot 20$	$0 \cdot 906$	193	8	$0 \cdot 496$	384	2		0.85	0.133	726	9	1-108	379	8
$0 \cdot 25$	$0 \cdot 813$	419	8	$0 \cdot 582$	241	7		0.90	0.088	856	0	1-119	505	3
$0 \cdot 30$	0.732	869	1	$0 \cdot 659$	472	6		0.95	$0 \cdot 044$	341	3	1-126	162	8
$0 \cdot 35$	$0 \cdot 660$	854	4	$0 \cdot 729$	098	6		$1 \cdot 00$		0		1-128	379	2

to develop a new and more accurate table of inverfc θ. Details are given below, and the resulting tabulation is presented in Table 3. No graph of inverfc θ is given, since the shape of erfc x is well known.

No table of $B(\theta)$ is known to the author. The tabulation of this function, which is also given in Table 3, was constructed with the aid of National Bureau of Standards (1954) tables by methods described below. Figure 1 gives the plot of $B(\theta)$.

Table of inverfc θ. The table of inverfc θ was constructed from the National Bureau of Standards (1954) tables of erf x by a process of inverse interpolation.

* Suppose $\underset{\theta \rightarrow \theta_{0}}{\lim } P(\theta)=0 ; \lim _{\theta \rightarrow \theta_{0}} Q(\theta)=0$. Then we say that, as $\theta \rightarrow \theta_{0}, P \rightarrow 0$ more rapidly than does Q, provided that $\lim _{\theta \rightarrow \theta_{0}} \frac{P}{Q}(\theta)=0$.
"Linear" interpolation of the type suggested in the introduction to those tables proved sufficiently accurate to ensure that errors in the final place given would not exceed unity. Twenty comparisons with Fowle's table were possible ; in every case the final place of Fowle's tabulation of $2 q$ (i.e. 2 inverfc θ) was confirmed.

Fig. 1.-The function $B(\theta)$.
Table of $B(\theta)$. Once inverfc θ was computed, it was a simple matter to calculate $B(\theta)$ by linear interpolation (again of the type suggested in the introduction) in the tables of the derivative of erf x in the National Bureau of Standards tables. It was established that this process would not yield errors greater than unity in the final places shown in the table.

Most of each table was checked by differencing.

VII. References

Fowle, F. E. (1921).-" Smithsonian Physical Tables." 7th Ed. (Smithsonian Institution : Washington.)
National Bureau of Standards (1954).-"Tables of the Error Function and its Derivative."
Applied Maths. Series 41. (U.S. Govt. Printing Office: Washington.)
Philip, J. R. (1955).—Trans. Faraday Soc. 51 : 885.
Philip, J. R. (1957).-Aust. J. Phys. 10 : 29.
Philif, J. R. (1960).-Aust. J. Phys. 13 : 1.
Pollack, H. O. (1956).-Rep. Statist. Appl. Res. Un. Jap. Sci. Engrs. 4 : 40.

[^0]: * Division of Plant Industry, C.S.I.R.O., Canberra.

[^1]: * I am indebted to the referee for remarks which suggest the following, more elegant, treatment of the higher derivatives of inverfc θ.
 $F=$ inverfc θ satisfies the equation

 $$
 \begin{equation*}
 \mathrm{d}^{2} F / \mathrm{d} \theta^{2}=2 F(\mathrm{~d} F / \mathrm{d} \theta)^{2} \tag{A}
 \end{equation*}
 $$

 This may be established by differentiating (1.3) with respect to θ. Now, if $P_{n}(F)$ denotes a polynomial in F, and

 $$
 \begin{equation*}
 \mathrm{d}^{n} F / \mathrm{d} \theta^{n}=P_{n}(F)(\mathrm{d} F / \mathrm{d} \theta)^{n} \tag{B}
 \end{equation*}
 $$

 it follows by differentiation and use of (A) that

 $$
 \mathrm{d}^{n+1} F / \mathrm{d} \theta^{n+1}=P_{n+1}(F)(\mathrm{d} F / \mathrm{d} \theta)^{n+1}
 $$

 where

 $$
 \begin{equation*}
 P_{n+1}(F)=(2 n F+\mathrm{d} / \mathrm{d} F) P_{n}(F) \tag{C}
 \end{equation*}
 $$

 Now (B) is true for $n=1$, and $P_{1}(F)=1$. Therefore, $P_{n}(F)$ for all $n>1$ follows at once from (\mathbf{C}), giving a simple means of determining the higher derivatives of inverfc θ.

