THE FUNCTION INVERFC θ

By J. R. Philip*

[Manuscript received November 11, 1959]

Summary

The function inverse θ arises in certain diffusion problems when concentration is taken as an independent variable. It enters into a general method of exact solution of the concentration-dependent diffusion equation. An account is given of the properties of this function, and of its derivatives and integrals. The function

$B(\theta) = (2/\pi^{\frac{1}{2}}) \exp \left[-(\text{inverfe } \theta)^{2}\right]$

is intimately connected with the first integral of inverfe θ and with its derivatives. Tables of inverfe θ and $B(\theta)$ are given.

I. INTRODUCTION

The solution of one-dimensional diffusion problems is usually sought in the form

concentration=explicit function of distance and time.

It has become increasingly evident, however, that there are occasions when it is simpler, and more illuminating, to seek the solution in the form

distance=explicit function of concentration and time.

In particular, the latter approach has proved fruitful when applied to concentration-dependent diffusion (Philip 1955) and when applied to problems where concentration-dependent diffusion is combined with a first-order (not necessarily linear) phenomenon (Philip 1957).

In these connexions, it was found convenient (Philip 1955) to introduce the notation "inverfe" to denote the inverse of the function

erfc
$$x = \frac{2}{\pi^2} \int_x^\infty \exp(-\zeta^2) d\zeta.$$
 (1.1)

Until now there has been no urgent need to examine in detail the properties of the inverfe function. However, inverfe θ and its first derivative and first integral with respect to θ enter intimately into the recently found general method of exact solution of the concentration-dependent diffusion equation (Philip 1960). This account of the properties of inverfe θ , its derivatives, and its integrals, therefore forms an essential supplement to Philip (1960). The tabulations of the functions inverfe θ and $B(\theta)$ given here will frequently be needed when the method of Philip (1960) is applied.

* Division of Plant Industry, C.S.I.R.O., Canberra.

The concept of inverfe as the inverse of erfc leads to definition of the function through (1.2):

 $\theta = \text{erfc}$ (inverte θ). (1.2)

An alternative de novo definition of inverfc follows from equations (3.4) and (4.1) of Philip (1960). In this way the function may be introduced as the solution, $F = \text{inverfc } \theta$, of the equation

$$\frac{\mathrm{d}F}{\mathrm{d}\theta}\!\int_0^\theta\! F\mathrm{d}\theta = -\frac{1}{2}, \quad \dots \quad \dots \quad \dots \quad (1.3)$$

subject to the conditions

 $F(1)=0; \ 0 \le \theta \le 1, \ F \ge 0.$ (1.4)

The following elementary results come directly from the known properties of erfc:

inverte
$$0 = +\infty$$
; inverte $1=0$; inverte $2=-\infty$, ... (1.5)

We shall deal almost exclusively with the interval in θ , $0 \le \theta \le 1$; it is a trivial matter to extend the results to the whole interval $0 \le \theta \le 2$ by means of (1.6). Note that inverfe θ is defined only within the latter interval.

θ	θ	inverfe θ (inverfc θ		
		Three Terms	Four Terms	Five Terms	Exact Value
0.6	3	0.3706458	0.3707451	0.3707570	0.3708072
0.7	7	$0 \cdot 2724424$	$0 \cdot 2724557$	0.2724566	0.2724627
0.8	3	0.1791423	0.1791431	0.1791431	0.1791434
0.8)	0.0888560	0.0888560	0.0888560	0.0888560

TABLE 1 inverte θ computed from series (2.4)

II. POWER SERIES FOR inverte θ

We introduce the power series connected with erfc:

$$\frac{1}{2}\pi^{\frac{1}{2}}(1-\operatorname{erfc} x) = x - \frac{x^3}{3} + \frac{x^5}{2!5} - \frac{x^7}{3!7} + \frac{x^9}{4!9} - \dots$$
 (2.1)

Putting

$$\vartheta = \frac{1}{2}\pi^{\frac{1}{2}}(1-\theta),$$
 (2.2)

and writing x for inverfe θ , we have

$$\vartheta = x - \frac{x^3}{3} + \frac{x^5}{2!5} - \frac{x^7}{3!7} + \frac{x^9}{4!9} - \dots$$
 (2.3)

Suppose now, that inverfe θ (i.e. x) may be expanded as a power series in ϑ . Then we may formally establish this series by equating coefficients of powers of ϑ on each side of (2.3). The result is

inverte
$$\theta = \vartheta + \frac{1}{3}\vartheta^3 + \frac{7}{30}\vartheta^5 + \frac{127}{630}\vartheta^7 + \frac{4369}{22680}\vartheta^9 + \dots$$
 (2.4)

No simple general expression for the coefficients is apparent. It will be shown later in Section IV that (2.4) may be derived directly from the Taylor expansion of inverfe θ about $\theta=1$. The series of (2.3) is uniformly convergent. Presumably the series of (2.4) converges for $|\vartheta| < \frac{1}{2}\pi^{\frac{1}{2}}$. It provides a useful means of calculating inverfe θ in the neighbourhood of $\theta=1$. Table 1 gives a comparison of the exact value of inverfe θ with that computed from the first few terms of series (2.4).

III. Asymptotic Forms of inverse θ , θ Small

For large values of x (=inverfe θ), we have the well-known asymptotic result :

$$\theta \approx \frac{\exp\left(-x^2\right)}{\pi^{\frac{1}{2}x}}.$$
(3.1)

(3.1) is equivalent to

 $x^2 \approx -\log \theta - \frac{1}{2} \log \pi x^2$,

which has the continued logarithmic form

 $x^2 \approx -\log \theta - \frac{1}{2} \log [\pi(-\log \theta - \frac{1}{2} \log [...]]$

Accordingly we have the approximation for θ small:

inverte
$$\theta = \{ -\log \theta - \frac{1}{2} \log [\pi(-\log \theta - \frac{1}{2} \log [...]^{\frac{1}{2}} ... (3.2) \}$$

As far as the author knows, no formal study has been made of the convergence of continued logarithms. The convergence of (3.2) is rapid for θ small. See Table 2. In this table the symbol S_n denotes the *n*th member of the sequence formed by terminating the repeated logarithm at successive log θ 's. Thus,

$$\begin{split} S_{1} &= (-\log \theta)^{\frac{1}{2}};\\ S_{2} &= (-\log \theta - \frac{1}{2} \log [\pi(-\log \theta)])^{\frac{1}{2}};\\ S_{3} &= (-\log \theta - \frac{1}{2} \log [\pi(-\log \theta - \frac{1}{2} \log \{\pi(-\log \theta)\})])^{\frac{1}{2}}; \end{split}$$

and so on.

It is evident that the limit to the accuracy of using (3.2) for θ small is set by the limited accuracy of (3.1) rather than by the rate of convergence of the sequence S_n . Note that S_2 proves a better approximation to inverfe θ than do the higher members of the sequence.

inverte θ computed from (3.2)										
θ	S_1	S_2	S_3	S_4	inverfc θ Exact Value					
10-6	3.7169	3.4540	3.4646	3.4642	3.4589					
10^{-4}	$3 \cdot 0349$	$2 \cdot 7437$	$2 \cdot 7620$	$2 \cdot 7608$	$2 \cdot 7509$					
10-2	2.1460	1 · 8081	$1 \cdot 8549$	$1 \cdot 8480$	$1 \cdot 8214$					

TABLE 2 inverte θ computed from (3.2)

Pollack (1956) has established an inequality which leads to the following improved approximation

$$\theta \approx \frac{2 \exp(-x^2)}{\pi^{\frac{1}{2}} \{x + \sqrt{(x^2 + 4/\pi)}\}}.$$
(3.3)

This yields the better approximation

(3.4) is more accurate than (3.2), and converges at about the same rate; but it involves \sinh^{-1} , which is scarcely any simpler than inverfe.

The following result follows from (3.2) or (3.3)

$$\lim_{\theta\to 0} \frac{\operatorname{inverfc}\,\theta}{(-\log\theta)^{\frac{1}{2}}} = 1.$$

IV. THE DERIVATIVES AND INTEGRALS OF inverfe θ Differentiating equation (1.2), we obtain

 $\frac{\mathrm{d}}{\mathrm{d}\theta} (\mathrm{inverfc} \ \theta) = -\frac{1}{2}\pi^{\frac{1}{2}} \exp \left[(\mathrm{inverfc} \ \theta)^2 \right]. \qquad (4.1)$

L is convenient to introduce the function

$$B(0) = \frac{2}{\pi^{\frac{1}{2}}} \exp\left[-(\operatorname{inverfe} \theta)^{2}\right]. \qquad (4.2)$$

We then have

$$\frac{\mathrm{d}}{\mathrm{d}\theta} (\mathrm{inverfc} \ \theta) = -\frac{1}{B}. \quad \dots \quad (4.3)$$

In addition,

$$\frac{\mathrm{d}B}{\mathrm{d}\theta} = 2 \text{ inverse } \theta, \qquad (4.4)$$

and, in general $(m \neq 0, n \neq 0)$,

$$\frac{\mathrm{d}}{\mathrm{d}\theta} \left[\frac{(\mathrm{inverfc} \ \theta)^m}{B^n} \right] = -\frac{1}{B^{n+1}} [2n(\mathrm{inverfc} \ \theta)^{m+1} + m(\mathrm{inverfc} \ \theta)^{m-1}]. \quad .. \quad (4.5)$$

This result is useful for generating the higher derivatives^{*} of inverfe θ . We have, for example,

$$\begin{split} \frac{\mathrm{d}^2}{\mathrm{d}\theta^2} &(\mathrm{inverfe}\;\theta) = \frac{1}{B^2} \left(2 \ \mathrm{inverfe}\;\theta\right),\\ \frac{\mathrm{d}^3}{\mathrm{d}\theta^3} &(\mathrm{inverfe}\;\theta) = -\frac{1}{B^3} \left\{8 \ (\mathrm{inverfe}\;\theta)^2 + 2\right\},\\ \frac{\mathrm{d}^4}{\mathrm{d}\theta^4} &(\mathrm{inverfe}\;\theta) = \frac{1}{B^4} \left\{48 \ (\mathrm{inverfe}\;\theta)^3 + 28 \ \mathrm{inverfe}\;\theta\right\},\\ \frac{\mathrm{d}^5}{\mathrm{d}\theta^5} &(\mathrm{inverfe}\;\theta) = -\frac{1}{B^5} \left\{384 \ (\mathrm{inverfe}\;\theta)^4 + 368 \ (\mathrm{inverfe}\;\theta)^2 + 28\right\},\\ \frac{\mathrm{d}^6}{\mathrm{d}\theta^6} &(\mathrm{inverfe}\;\theta) = \frac{1}{B^6} \left\{3840 \ (\mathrm{inverfe}\;\theta)^5 + 5216 \ (\mathrm{inverfe}\;\theta)^3 + 1016 \ \mathrm{inverfe}\;\theta\right\},\\ \frac{\mathrm{d}^7}{\mathrm{d}\theta^7} &(\mathrm{inverfe}\;\theta) = -\frac{1}{B^7} \left\{46,080 \ (\mathrm{inverfe}\;\theta)^6 + 81,792 \ (\mathrm{inverfe}\;\theta)^4 \\ &+ 27,840 \ (\mathrm{inverfe}\;\theta)^2 + 1016\right\}. \end{split}$$

It is evident that, for n odd,

 $\frac{\mathrm{d}^n}{\mathrm{d}\theta^n} (\mathrm{inverfc} \ \theta) = -\frac{1}{B^n} (a_{n-1} (\mathrm{inverfc} \ \theta)^{n-1} + a_{n-3} (\mathrm{inverfc} \ \theta)^{n-3} + \ldots + a_0),$ and, for n even,

$$\frac{\mathrm{d}^{n}}{\mathrm{d}\theta^{n}} (\mathrm{inverfc} \ \theta) = \frac{1}{B^{n}} \{ a_{n-1} (\mathrm{inverfc} \ \theta)^{n-1} + a_{n-3} (\mathrm{inverfc} \ \theta)^{n-3} + \ldots + a_{1} \mathrm{inverfc} \ \theta \}.$$

In both cases the coefficients a_{n-1} , etc. are all positive.

Now $2/\pi^{\frac{1}{2}} \ge B \ge 0$ throughout the interval $0 \le \theta \le 2$, whilst inverfe θ is positive in $0 \le \theta \le 1$, zero at $\theta = 1$, and negative in $1 \le \theta \le 2$. It therefore follows that, in the interval $0 \le \theta \le 1$,

 $\frac{\mathrm{d}^n}{\mathrm{d}\theta^n}$ (inverse θ) is positive if n is even, negative if n is odd;

at $\theta = 1$,

 $\frac{\mathrm{d}^n}{\mathrm{d}\theta^n} (\mathrm{inverfc} \ \theta) \text{ is zero if } n \text{ is even, negative if } n \text{ is odd };$

in the interval $1 < \theta \leq 2$,

 $\frac{\mathrm{d}^n}{\mathrm{d}\theta^n}$ (inverfe θ) is negative whether *n* is even or odd.

* I am indebted to the referee for remarks which suggest the following, more elegant, treatment of the higher derivatives of inverse θ .

 $F = \text{inverfe } \theta$ satisfies the equation

$$d^{2}F/d\theta^{2} = 2F(dF/d\theta)^{2}. \qquad (A)$$

This may be established by differentiating (1.3) with respect to θ . Now, if $P_n(F)$ denotes a polynomial in F, and

 $\mathrm{d}^{n+1}F/\mathrm{d}\theta^{n+1} = P_{n+1}(F)(\mathrm{d}F/\mathrm{d}\theta)^{n+1},$

 $\mathrm{d}^{n}F/\mathrm{d}\theta^{n}=P_{n}(F)(\mathrm{d}F/\mathrm{d}\theta)^{n},$ (B)

it follows by differentiation and use of (A) that

$$P_{n+1}(F) = (2nF + d/dF)P_n(F). \qquad (C)$$

Now (B) is true for n=1, and $P_1(F)=1$. Therefore, $P_n(F)$ for all n>1 follows at once from (C), giving a simple means of determining the higher derivatives of inverse θ .

в

where

We have the particular results:

$$(-1)^n rac{\mathrm{d}^n}{\mathrm{d}\theta^n} (ext{inverfe } 0) = \infty,$$

 $rac{\mathrm{d}^n}{\mathrm{d}\theta^n} (ext{inverfe } 2) = -\infty.$

The values of the first nine derivatives of inverfe θ at $\theta = 1$ are

$$-\tfrac{1}{2}\pi^{\frac{1}{2}}, 0, \ -2(\tfrac{1}{2}\pi^{\frac{1}{2}})^{3}, 0, \ -28(\tfrac{1}{2}\pi^{\frac{1}{2}})^{5}, 0, \ -1016(\tfrac{1}{2}\pi^{\frac{1}{2}})^{7}, 0, \ -69,904(\tfrac{1}{2}\pi^{\frac{1}{2}})^{9}.$$

It follows from these results that equation (2.4) may be established by applying Taylor's theorem to the right-hand side of the identity

inverte
$$\theta = \text{inverte} [1 - (1 - \theta)].$$

We also note that it follows from (4.4) that

$$\frac{\mathrm{d}^{n}B}{\mathrm{d}\theta^{n}} = 2 \frac{\mathrm{d}^{n-1}}{\mathrm{d}\theta^{n-1}} \text{ (inverfe } \theta). \qquad \dots \dots \dots \dots (4.6)$$

It is readily established by integration by parts, or by use of (4.1) in (1.3), or by integrating (4.4), that

$$\int_{0}^{\theta} \operatorname{inverfc} \theta \, \mathrm{d}\theta = \frac{1}{\pi^{\frac{1}{2}}} \exp \left(-\operatorname{inverfc} \theta\right)^{2} = \frac{1}{2}B. \quad .. \quad (4.7)$$

A further integration yields

$$\int_{0}^{\theta} \int_{0}^{\theta} \operatorname{inverfe} \, \theta \, \mathrm{d}\theta \mathrm{d}\theta = \frac{1}{\sqrt{(2\pi)}} \operatorname{erfe} \, (\sqrt{2} \operatorname{inverfe} \, \theta).$$

This and the higher integrals of inverfe θ do not appear to be of significance in the present developments.

V. THE FUNCTION $B(\theta)$

We have seen that $B(\theta)$ is simply related to the first derivative, and to the first integral, of inverfe θ . For this reason it proves of primary importance in the development of the general method of exact solution of the concentration-dependent diffusion equation (Philip 1960).

We note from (1.6) and (4.2) that

$$B(2-\theta) = B(\theta). \qquad \dots \qquad (5.1)$$

We have already remarked on the simple relation between derivatives of inverfe θ and those of *B*. It follows that the Taylor expansion of $B(\theta)$ about $\theta=1$ yields as the power series for *B*

$$B(\theta) = \frac{2}{\pi^{\frac{1}{2}}} \left[1 - \vartheta^2 - \frac{\vartheta^4}{6} - \frac{7}{90} \vartheta^6 - \frac{127}{2520} \vartheta^8 - \frac{4369}{113400} \vartheta^{10} - \dots \right], \quad (5.2)$$

where ϑ is again defined by (2.2). Presumably the series of (5.2) converges for $|\vartheta| \leq \frac{1}{2}\pi^{\frac{1}{2}}$. It enables *B* to be calculated readily in the neighbourhood of $\theta = 1$.

18

The behaviour of B near $\theta=0$ is of interest. Approximation (3.1) applied in (4.2) yields

$$B(\theta) \approx 2\theta (-\log \theta)^{\frac{1}{2}}, \qquad \dots \qquad (5.3)$$

and it may be shown that

$$\lim_{\theta\to 0} \frac{B(\theta)}{2\theta \; (-\log \; \theta)^{\frac{1}{2}}} = 1.$$

It follows that, as $\theta \rightarrow 0$, $B \rightarrow 0$ more rapidly* than does $\theta^{1-\varepsilon}$, where ε is any non-zero positive quantity, and more slowly than does θ .

VI. TABLES OF inverte θ and $B(\theta)$

The only existing table of inverfe θ known to the author is in Fowle (1921, p. 60). The column of the table headed v/c gives θ in the present notation, and that headed 2q gives values of 2 inverfe θ to four or five significant figures. In connexion with Philip (1960) it is helpful to have a table of inverfe θ readily available. In the course of constructing the table of $B(\theta)$, it was a simple matter

0	inverfe θ			$B(\theta)$			θ	inverfe θ			Β(θ)			
0		x			0			0.40	0.595	116	1	0.791	851	
10^{-6}	$3 \cdot 458$	911		0.000	007	177	8	$0 \cdot 45$	0.534	159	1	0.848	280	6
10^{-5}	$3 \cdot 122$	587		0.000	065	742		0.50	0.476	936	3	0.898	807	9
10-4	2.750	936		0.000	583	27		0.55	0.422	680	2	0.943	766	6
10-3	$2 \cdot 326$	754		0.005	026	6		0.60	0.370	807	2	0.983	423	2
10^{-2}	1.821	386		0.040	898	3		0.65	0.320	858	3	$1 \cdot 017$	992	1
$0 \cdot 05$	$1 \cdot 385$	904		0.165	219	5		0.70	0.272	462	7	1.047	646	6
$0 \cdot 10$	$1 \cdot 163$	087		0.291	711	6		0.75	0.225	312	1	$1 \cdot 072$	526	1
0.15	1.017	902		0.400	379	2	ĺ	0.80	0.179	143	4	$1 \cdot 092$	741	7
$0 \cdot 20$	0.906	193	8	0.496	384	2		0.85	0.133	726	9	1.108	379	8
$0 \cdot 25$	0.813	419	8	0.582	241	7		$0 \cdot 90$	0.088	856	0	$1 \cdot 119$	505	3
0.30	0.732	869	1	0.659	472	6		0.95	0.044	341	3	$1 \cdot 126$	162	8
0.35	0.660	854	4	0.729	098	6		$1 \cdot 00$		0		$1 \cdot 128$	379	2
						and the second se		sector and the sector of the s	the state of the s			And a second secon		

TABLE 3 . THE FUNCTIONS INVERTE θ and $B(\theta)$

to develop a new and more accurate table of inverfe θ . Details are given below, and the resulting tabulation is presented in Table 3. No graph of inverfe θ is given, since the shape of erfe x is well known.

No table of $B(\theta)$ is known to the author. The tabulation of this function, which is also given in Table 3, was constructed with the aid of National Bureau of Standards (1954) tables by methods described below. Figure 1 gives the plot of $B(\theta)$.

Table of inverfe θ . The table of inverfe θ was constructed from the National Bureau of Standards (1954) tables of erf x by a process of inverse interpolation.

* Suppose $\lim_{\theta \to \theta_0} P(\theta) = 0$; $\lim_{\theta \to \theta_0} Q(\theta) = 0$. Then we say that, as $\theta \to \theta_0$, $P \to 0$ more rapidly than does Q, provided that $\lim_{\theta \to \theta_0} \frac{P}{Q}(\theta) = 0$.

"Linear" interpolation of the type suggested in the introduction to those tables proved sufficiently accurate to ensure that errors in the final place given would not exceed unity. Twenty comparisons with Fowle's table were possible; in every case the final place of Fowle's tabulation of 2q (i.e. 2 inverfe θ) was confirmed.

Fig. 1.—The function $B(\theta)$.

Table of $B(\theta)$. Once inverfe θ was computed, it was a simple matter to calculate $B(\theta)$ by linear interpolation (again of the type suggested in the introduction) in the tables of the derivative of erf x in the National Bureau of Standards tables. It was established that this process would not yield errors greater than unity in the final places shown in the table.

Most of each table was checked by differencing.

VII. References

FOWLE, F. E. (1921).—" Smithsonian Physical Tables." 7th Ed. (Smithsonian Institution : Washington.)

NATIONAL BUREAU OF STANDARDS (1954).—" Tables of the Error Function and its Derivative." Applied Maths. Series 41. (U.S. Govt. Printing Office : Washington.)

- PHILIP, J. R. (1955).—Trans. Faraday Soc. 51: 885.
- PHILIP, J. R. (1957).—Aust. J. Phys. 10: 29.

PHILIP, J. R. (1960).—Aust. J. Phys. 13: 1.

POLLACK, H. O. (1956).-Rep. Statist. Appl. Res. Un. Jap. Sci. Engrs. 4: 40.