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A description is given of radiative transfer, under conditions of constant flux, in a 
semi-infinite mediUm in which the attenuation coefficient increases exponentially with 
depth, and has small sinusoidal variations in a direction parallel to the surface. 

The directional intensity at the surface is evaluated numerically in several cases, and 
the extrapolatio~ to other cases is discussed. 

I. INTRODUCTION 

In astrophysical problems the equation of transfer has usually been applied 
to plane parallel ,semi-infi!l~te media, uniform except for possible variation with 
depth. Recently, however, investigations of the granulation in the solar 
photosphere and of the structure of the umbra and penumbra of sunspots have 
focused attention on the need for solutions for non-uniform media. Giovanelli 
(1959)t investigated the problem in which the attenuation coefficient, scattering 
parameter, and source function are independent of depth, but exhibit small 
sinusoidal variations as functions of one coordinate parallel with the surface. 

In any discussion of stellar atmospheres, however, it is necessary to consider 
the extent to which the increase of attenuation coefficient with depth affects 
the solution of the equation of transfer. In the present paper the solution of the 
constant flux problem is lilldertaken for a, plane parallel semi-infinite medium in 
which the attenuation coefficient, in addition to small sinusoidal variation 
parallel to the surface, increases exponentially with depth. 

The transfer equation is solved here in terms of the total intensity, which is 
then integrated numerically to obtain the directional intensity at the surface., 

II. THE EQUATION OF TRANSFER 

Consider an isotropic medium in which x is the attenuation coefficient, xA 
the absorption coefficient, xWo the coefficient of single scattering, and S, the 
source function, is the ratio of emission per unit volume and solid angle to the 
attenuation coefficient. For a non-uniform medium, x, A, wo, and S are scalar 
functions of position. The intensity of radiation, I, is a function of position and 
direction, while the total intensity J, defined by 

J=I IdQ, 
4re' 

is a function of position only. 

A 
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From the transfer equation, Giovanelli (1959) obtained an equation for J 
embodying an approximation similar to that of Eddington, 

1 
\l2J=_\lJ.\lX+X2(AJ-47tS) . ............ (1) 

x 

If the medium is in radiative equilibrium, then 

47tS=AJ, 

and (1) simplifies to 

(2) 

The following discussion is confined to this conservative case. 

III. OHARACTERISTICS OF THE MEDIUM 

If the attenuation coefficient of a semi-infinite medium increases 
exponentially with depth below the surface and varies sinusoidally in one 
direction parallel to the surface, x must have the form 

(3) 

the z-axis being normal to the surface z =0 and positive outwards. The simple 
model of a stellar atmosphere, in which the attenuation coefficient tapers off 
exponentially to a negligibly small value, corresponds to the limiting case where 
Xo tends to zero. .A non-zero value of Xo, with x=O for z>O, provides a simple 
model for an atmosphere whose attenuation coefficient initially increases rapidly 
with depth and then more slowly according to (3). 

Since the horizontal structure size is determined by 27tj1, and the scale 
height by v-I, the appearance of the medium will be found to depend largely on 
whether vj1 is large or small as compared with unity. 

IV. SOLUTION OF THE EQUATION OF TRANSFER IN THE 

OONSERVATIVE OASE 

To solve (2) for a medium in radiative equilibrium carrying constant mean 
flux, J is expressed in the form 

J(x,z) =:L.jn(z) cos n1x. 
n 

Here jo(z) is the mean value of the total intensity at depth z, while jl(Z) is the 
amplitude of the variations in J(x,z) having the same periodicity as the structure 
of the medium. For n:> 2 the functions jn(z) represent distortions in the intensity 
distribution, and if rx is sufficiently small they may be disregarded. Then 

where jljjO is assumed small. Substituting (4) with (3) into (2) yields 

jii(l +rx cos 1x) +(ji -12jl){cos 1x+trx(l +cos 21x)} =jdrx12(l-cos 21x) 

-v{jo+trxji +(ji +rxjo) cos lx+trxji cos 21x}, 

(4) 

( 5) 
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where jo =djo/dz and j" =d2jo/dz2• Equating the coefficients of cos nlx when 
n =0 and n =1 yields 

( 6) 

and 
(7) 

The coefficients of cos 2lx correspond to the distortion terms and may be ignored 
for sufficiently small ex. 

Elimination of jo and use of the approximation ex2 =0 yield a differential 
equation for j1) having the solution 

. . . . . . . . . . . . . . . . .. (8) 

wherep =t{ -v+v'(v2+4l2)}, Q = -t{v+v'(v2+4l2)}, and 01 and D1 are constants 
of integTation. Substitution in (6) or (7) yields the solution for jo, 

(9) 

where 00 and Do are also constants of integTation. Thus 

J(x,z) =Oo+Doe-vz + (OlePz+D1eQ')( tex +cos lx). . . .. (10) 

The constants of integration 0 0, 01) Do, and D1 are determined by the 
constant :flux requirement and the boundary conditions. Deep within the 
medium the following conditions should hold. 

(i) The mean intensity jo may increase linearly with optical depth but at 
no gTeater rate, as may be inferred by comparison with known solutions for 
uniform media. 

(ii) The form of J(x,z) should be self preserving, i.e. lim j1fjO should 
~-oo 

exist and, from (4), should be small. As z-+ - 00, the mean optical depth 
behaves as e-VZ • However, since lim eqz/e-vz is infinite, condition (i) requires. 

z-?- 00 

D1=0. 

Alternatively, from (6) and (7) 

J. D1eQZ 
lim -/= lim 

z->-,,:,)o z->-oo texD1eQz+Doe-vz 
=2/ex if D l 7"=O, 
=0 if D1=0. 

Since ex is small, condition (ii) also requires Dl =0. 

At the surface z =0, the inward radiation :flux is assumed zero. As usual 
in the treatment of the plane parallel case" this leads to the condition 

xJ(x,O) = -idJ(x,O)/dz. 

Substituting for J at z=O, cos lx= ±1, we obtain 00 and 0 1 in terms of Do,. 
whence finally 

J(x,z) =Dor i~ +e-vz -l-i~epz cos lxt. 
( Xo xo+aP j 

.... (11) 

Here also terms of order ex2 have been. ignored. 
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'fhe.flux per unit area across any layer parallel to the surface is 

1 dJ(x,z) 
- 3x -a:z-

Deep within the medium this has the value 

and, if the net flux is independent of Xo and v, (11) takes the form 

J(x,z)=AL~3+~(e-VZ--l)-312 IX / ePzCOSlX}, .... (12) 
<- v +p Xo 

where the constant A replaces Do'~/xo and is determined solely by the mean value 
of the net flux. In particular, the contrast at the surface, jl(O)l.io(O), given by 
(12), is 

jl/jO=-IXXO/(Xo+ip). . ............... (13) 

Thus an intensity maximum is associated with an attenuation minimum. 

It is of interest to note that in the limit as v-+O (i.e. if the medium is uniform 
with depth), then p-+l and 

~ J(x,Z)=At i - Xoz - 3/2~l/xoeIZcos lX}. 
This is similar in form to Giovanelli's solution for a medium which is uniform with 
depth. 

V. THE DIRECTIONAL INTENSITY AT THE SURFACE 

If e is the angle between the emergent radiation and the z-axis, and cp is 
the azimuthal angle referred to the x-axis, the directional intensity I(x,z,e,cp) 
at the surface (z=O) is found by integrating J(x,z) along a path cutting the surface 
at x, in a direction given by e and cp. The position coordinate s of any point on 
the path measures the distance from the surrace to that point along the path, 
and is taken as positive below the surface. This yields the relations 

z = -s cos 6, 1 
'. . ( ............... (14) 

~x= -s sm e cos cp. ) 

In a volume of the path ds at s, the radiation scattered or emitted into unit 
solid angle in the direction of the path is (1/4n)x(s),T(s)ds, where from (3) and (14) 

x(s)=Xoev8COS6[1+IXcosl(x-cs)], .......... (15) 

c representing sin e cos cp. Let <Ps(t) be the fraction of the radiation which 
has suffered no further scattering or absorption at a distance t from the surface. 
Then in a further distance -dt, 

d<P s(t) = -<Ps,(t)x(t)( .,-dt). 
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.After integrating this equation the fraction remainihg at the surface, $;(0), 
is found to be 

CI>.({)) ~exp( Xo' O[{l +occos Iji oos(lx+lji)} _eV8COS 6{1 +excos Iji cos(lx-lcs +~)}])" . . vcos 

............ (16)· 
. . 

where tan Iji==(ltv) tan O. Thus the directional intensity at the surface iii 

1 foo I(x,O,O,cp) = 47t 0 Cl>s(O)x(s)J(s)ds, .......... (17) 

where 

J(S)=A{i+~(eV8COSO-1)- ex e-p8cos6 cos l(X-CS)} .. (18) 
v 3/2+p/x.o 

from (14) and (11). 

Itwill be noted from (17) and (11) that the profiles ofI(x,O,O,cp) and J(x,z) 
depend only on the values chosen for the ratios x.o/v, v/l and on the value of ex . 
.Although the structure size of each profile depends on the actual values of 1 and v, 
every position coordinate in (17) and (11) is multiplied by 1 or v (or p, where 
p=!{ -v+V(v2 +4l2)}). Thus by specifying only the ratios v/l and Xo/l, and 
evaluating I at various values of lx, (17) may be applied to media of any structure 
size merely by using the appropriate value of l. 

VI. OALCULATIONS AND DISCUSSION 

In the special case of the normal intensity at the surface, O=cp=O and 
( 1 7) becomes 

A ( 1) A ex cos lx J 00 ( v ) -p/V 
I(x,O,O,O) = 47t i+ 1 +ex cos lx - 47t . 3/2 +p/x.o 0 e-'t" 7+1 d'!, 

............ (19) 

where x'=Xo(l+ex cos lx) and '!(s)=(x'/v)(eVS -1). The integral in (19) may 
be related to the incomplete gamma function. In three cases approximate 
forms are obtained. 

(i) If v/l>l, -p/v~ _(l/V)2~0, and 

5 A 
I~i2 7t(l-ex cos 1x). .. .............. (20) 

(ii) If v/l~l, -p/vro.J -l/v~ - 00, and 

.............. (21) 

(iii) If Xo/l~l, ex/(3/2 +p/Xo)~l, and 

5 A( 3 ) I~i2; 1- gex cos lx . .............. (22) 
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It is useful to denote the ratio of the fractional variation in the surface intensity, 
MIlo, to the fractional x-variation in attenuation coefficient, ee, by the symbol ~. 
Thus ~ describes 1 he relative contrast at the surface. In case (i) above, ~ =1· 0, 
while in (ii) and (ill), ~=o ·6. The case (iii) (Xoll~l) is important in astrophysics 
and it may seem surprising at first that ~ has the value 0·6 for all non-zero values 
of vll (the case vll~l and Xoll~1 is trivial). However, it will be shown th:1t, 
when the radiation emerges at an angle to the normal, the relative contrast 
decreases as vll decreases. 

(ii) 
9=15 0 

(i) 
(j =00 

0'12 (iii) 
(j =300 

0'10 

(v) 
e =600 

0'08 0,:----rr--";--2---rr-'-----3 7T...L,-/2------l2 7T 

Ix 
Fig. I.-The directional intensity at the surface, J(x,0,6,<p), 
against lx for <p=0 and (i) 6=0, (ii) 6=15°, (iii) 6=30°, 
(iv) 6=45°, (v) 6=60°. In all cases Xo/l=1O-5, v/l=l, and 

Q(=O·I. 

For all cases involving non-zero values of 6 and cp, l(x,0,6,cp) must be 
evaluated numerically for various values of the coordinates x, 6, and cp, and of 
the parameters of the medium xoll, vll, and ee. In Figures 1, 2, and 3, the results 
are shown for a typical case in which xoll=10- 5, vll=l, and ee=O·1. The 
directional intensity l(x,0,6,cp) is plotted against lx for various values of 6 and cp. 
The curves obtained are obviously periodic, with wavelength 21t1l. The 
characteristic features, the average intensity 10, the relative contrast ~, and the 
difference in phase between 1(6) and 1(0), ~, are recorded in Table 1 for the curves 
of Figure 1. Also tabulated is the" darkening ",10(6)/10(0), which is compared 
with Eddington's approximate relation 10(6)/10(0) =(2 +3 cos 6)/5. 
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The contrast decreases with 6, as expected. The phase difference between 
1(6) and 1(0) arises from the location of the source below the surface; it may 
easily be:shown to be consistent with a simple model in which the sources of radia-

0·14 

0=150 

(i) 
0=00 

(iii) 
0= 300 

0·10 

(v) 
0=600 

0·08 L-__ --I,.--__ -L ___ .L... __ --' 

o 1T/2 1T 31T/2 21T 

Ix 
Fig. 2.-As for Figure 1, but <p=45°. 

tion are distributed over a plane parallel to the surface at about unit optical depth, 
varying sinusoidally in one direction. .As cp--+90°, ~--+O, as expected. The 
value of xoll chosen in this case satisfies the condition for a continuously tapering 

TABLE 1 
FEATURES OF FIGURE 1 

6 0° 15° 30° 45° 60° 

10(6) 0·1333 0·1305 0·1222 0·1095 0·0930 

~ 0·615 0·590 0·442 0·292 0·124 

~/27t 0 0·45 1·01 1· 71 2·50 
10(6)fIo(0) 0·979 0·921 0·821 0·697 

(2+3 cos 6)/5 0·980 0·920 0·824 0·700 

medium. .As expected, almost identical curves are found for xoll =10-4 and 
10-6• 

To facilitate the extrapolation of the curves of Figures 1, 2, and 3 to other 
values of vll, many other cases have been evaluated. In Figure 4, ~ is plotted 
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against y, where y=lOglO viZ, for xo/l=10,5, ex==O'l, and various. values of 6. 
For all but large values of 6, the relative contrast ~ is approximately 0 ·6;wh¢11 

(i) 
0= 0° 

(ii) 
0·12 8= 15° 

(iii) 
0=30° 

(iv) 
0=45° 

0'10 

(v) 
0=60° 

0 0 08 0 ':--~-7T-J1!-2----L7T---3-7T"12------I2" 

Ix 

Fig. 3.-AR for Figure 1, but cp=90°. 

Fig. 4.-The graphs of ~ against y, where y=loglO viI for cp=Oo and (i) 6=8°, 
(ii) 6=15°, (iii) 6=30°, (iv) 6=60°. In these cases, cx;=0·1 and xo/l=10-5. 
The points plotted thus, 0, are values of ~ calculated for cx;=0·2, 6=15°, 

and xo/l= 10-5 • 

vll is large (i.e. small scale heights and coarse structures), but decreases to zero as 
vll decreases; the greater the value of 6, the greater the rate of decrease. Points 
have also been plotted for 6 =15 0 and ex =0·2. The values of ~ undergo little 
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change provided ~> O· 2. Thus the amplitude of the variations in intensity is 
directly proportional to the fractional variation in attenuation coefficient, (x, 

provided (X is small. 

VII. OONOLUSIONS 

The emission of radiation from the surface (z=O) of a semi-infinite medium, 
below which the attenuation coefficient takes the form (3), has been examined 
in the conservative case (radiative equilibrium) assuming constant flux across 
planes parallel to the surface. 

The total intensity is given by (12) and the variation in total intensity across 
the surface by (13). These expressions reduce to the form given by Giovanelli 
(1959) in the special case of a medium uniform with depth. 

The behaviour of the directional intensity across the surface may be 
described by the relative contrast ~ (~=(I/(X)(!llIIo))' The extent to which 
the increase in attenuation coefficient with depth affects ~ may be summarized 
thus: 

(i) For radiation normal to the surface, 0·6 < ~ <1, depending on the ratios 
xolZ and viZ. In the important case of a medium which tapers off continuously 
(XoIl<I), ~=0'6 for a.ll non-zero values of vll. 

(ii) The behaviour of radiation emerging obliquely is shown for a special 
case in Figures 1-3 and Table 1. Figure 4 shows that for a medium tapering O:ff 
continuously, 0 <~ <0·6. For sufficiently coarse structures and small scale 
heights (vIZ>I), ~ =0·6 for all but large angles of emergence, while in all cases, 
the relative contrast falls off as the angle of emergence increases. 
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