
SHORT OOMMUNIOATIONS 

THERMALLY AOTIV ATED FERROMAGNETIC DOMAIN WALL MOTION* 

By F. D. STACEyt 

The properties of small ferromagnetic domains are influenced strongly by 
thermal agitation if the energies involved in transitions between different states 
of magnetization (rotations and domain wall movements) are only a few times kT 
(k being Boltzmann's constant and T the absolute temperature). The study 
of such small-scale magnetic phenomena, now known as "micromagnetics" 
(see, for example, Brown 1959a), has developed rapidly in recent years in response 
to commercial interests in fine powder permanent magnets and thin film memory 
cores. The possibility of observing directly thermally induced domain wall 
movements is therefore a matter of some interest. It appears that Olmen and 
Mitchell (1959) have made such an observation, although they did not specifically 
claim to have done so. The purpose of this note is to present an elementary 
theory of thermally activated domain wall motion and to show that the results 
reported by Ohnen and Mitchell are in agreement with it. 

The delayed response of magnetic domains to changes in external field is 
termed "magnetic viscosity" but some ambiguity has arisen from the two 
different physical processes involved. Domain wall velocities have been observed 
in metals by Sixtus and Tonks (1931, 1932) and in ferrites by Galt (1954). In 
both cases the velocity v in a field H is 

v=G(H-Ho), 

Ho being a critical field (static coercive force) and G is a constant of the order 
104 cm sec-I oersted-I. In metals the velocity is limited principally by eddy 
currents. Galt explained the velocities observed in ferrites in terms of the 
dissipation of anisotropy energy during ionic reordering in moving walls. Galt 
(1954) and George (1959) have referred to this latter process as magnetic viscosity. 

The expression is also used for much slower changes in magnetic domains, 
such as were observed by Street and Woolley (1949) in" Alnico" and subsequently 
recognized as important phenomena in rock magnetism (e.g. by Neel 1955)· 
This longer period magnetic viscosity is controlled by thermal activation, which 
must be invoked to explain the slow domain wall motion observed by Olmen 
and Mitchell. 

Oonsider a domain wall crossing a sequence of potential barriers, which will 
be assumed for simplicity to have equal heights Eo. In the presence of a field H 
in the direction of the expanding domain, the energy which must be supplied to 
the wall in order to impel it across a barrier is 

E=Eo-rt.II, .................... (1) 

* Manuscript received March 22, 1960. 
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where energy (ocH) is supplied by the field during penetration of or " climbing 
up" the barrier. The wall can move freely only if E<,O, but if E>O, movement 
can be induced thermally. The probability P of the wall acquiring in unit time 
sufficient thermal energy to cross a barrier is 

P=O exp (-EjkT). . ................. (2) 

.Alternatively, P is the number of occasions per second on which the wall acquires 
thermal energy E which could impel it across the barrier. There are several 
calculations of the frequency factor O. Neel (1955) suggested 109 to 1010 sec-1 ; 
Stacey (1959a) obtained 0 =6 x 1012 sec-1 at room temperature, but this must be 
regarded as an upper limit, as it expresses the probability of sufficient energy 
becoming instantaneously available rather than the probability that the wall 
will move sufficiently rapidly to make use of it (Stacey 1959b). A completely 
different formula for specific application to single domains has been given by 
Brown (1959b). In the following calculation two alternatives are assumed: 
(i) 0 is a large but arbitrary constant with negligible dependence upon parameters 
such as temperature. This leads to equations (5A) and (6A). (ii) 0 is pro
portional to T, as suggested by Stacey (1959a). This leads to the alternative 
equations (58) and (68). The difference is not very significant in the present 
case. 

If the average separation of potential barriers in the direction of motion is d, 
then, assuming that the delay of the wall at each barrier is much greater than the 
time taken to move between barriers, the wall velocity v is given by 

v=Pd=Odexp {-(Eo-ocH)jkT}. .. .......... (3) 

Putting Od=A, ocjk=B, and Eolk=BHo, we obtain a simpler form 

v=A exp {(BjT)(H -Ho)}. . ................. (4) 

Equation (4) has the exponential dependence of wall velocity upon applied field 
which is required by the observations of Olmen and Mitchell. It must be noted 
that H -Ho is necessarily negative in the range of interest as A is a large constant. 

The temperature range of the observations was too limited to allow detailed 
comparison with (4) but the variation of v with T can be used to estimate the 
constant Ho, which is the field required to move the wall at 0 OK, or to move it 
very rapidly at any temperature. By differentiating equation (4) we obtain 

d(lnv)jdT=-B(H-Ho)jT2 ............ (5A) 

if the frequency factor 0 is independent of T, or 

d(ln v)jdT= -B(H -Ho)IT2+1IT ........ (58) 
if 0 is proportional to T. 

Examination of the data of Olmen and Mitchell shows that for their film 
d(ln v)/dT=0'09 degC-1 at T=320 OK and H =4·0 oersteds and that 
BIT=8'80ersted-\ so that from (5A) Ho=7'30ersteds, and from (58) 
Ho=7 .1 6 oersteds. It is not possible to distinguish experimentally between these 
alternatives but, as the coercive force of the film when measured at 60 cis was 
7 oersteds and would therefore be slightly higher still at even more rapid switching, 
this must be regarded as an excellent agreement with the theoretical estimates 
of Ho' 
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Having determined H o, the absolute values of measured velocity may be 
used to estimate A. From Olmen and Mitchell's data, at 4·0 oersteds switching 
field and 320 oK., spike velocity is 3 X 10-2 cm/sec. Taking true wall velocity as 
one-seventh of this, as noted by Olmen and Mitchell, we find 

A =Od =1· 7 X 1010 cm/sec 
if 0 is independent of T, or 

A =Od =0·5 X 1010 cm/sec 
if 0 is proportional to T. 

(6A) 

(6B) 

At this point an inadequacy of the simple theory must be noted. It has 
been assumed that the wall is inflexible and that it only meets one barrier at a 
time, neither of which can be true. Rather we should expect the wall to encounter 
a more or less straight line of elementary barriers and tend to fold round each of 
the barriers, making individual jumps past them. In this case the wall would 
effectively be divided into a large but unknown number of semi-independent 
sections, each opposed by a single elementary barrier. This allows a physically 
reasonable interpretation of the constant tX in equation (3), since we may put 

tX=2atIs , 

where Is is the saturation magnetization of the film, a is the average wall area 
of each effectively independent section of wall, and t is the effective half-thickness 
of the elementary potential barriers. However, this does not alter the foregoing 
equations, since we can consider the wall velocity of each section of wall separately 
in terms of the same equations. 

If a direct microscopic observation could be made of the individual jumps 
of a slow-moving domain wall, so that d would be measured, the fundamental 
constant 0 could be estimated from equations (6). It may be noted as a pre
liminary result that a value of 0 as low as 1010 sec-1 does not appear to be con
sistent with the above figures, as it gives much too large a value of d. Taking 
the theoretical upper limit, 0=6 X1012 sec-1 (at room temperature) we would 
expect to find d'""10-3 cm. It therefore appears possible that such an observation 
could be made. 

The helpfulness of suggestions by Dr. P. Gaunt of Sheffield University and 
Dr. W. A. Rachinger of the Aeronautical Research Laboratories, Melbourne, is 
gratefully acknowledged. 
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