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Summary 

The equation of radiative transfer in a form suitable for non-uniform semi-infinite 
media in radiative equilibrium is solved for the attenuation coefficient x compatible 
with models for total intensity J as functions of two variables, subject to the boundary 
condition of zero inward flux at the surface. 

The method is tested in a case where a solution has been previously obtained and 
then applied to an axially symmetric medium. 

I. INTRODUCTION 

Recent studies of solar granulation and sunspot phenomena have emphasized 
the importance of solutions of the equation of radiative transfer for non-uniform 
media. Giovanelli (1959) produced the approximate form of the transfer 
equation, suitable for non-uniform media in radiative equilibrium, 

1 
\l2J=_\lJ'\lx, 

x 
(1) 

where J, the total intensity of radiation, and x, the attenuation coefficient of 
the medium, are both functions of position. 

This equation is usually solved subject to the boundary condition that the 
inward flux is zero at the surface. In Cartesian or cylindrical polar coordinates, 
if the z-axis is normal to the surface z=O, and positive outwards, this takes the 
form 

when z=O. 

2 dJ 
xJ+3 dz =0, (2) 

In the customary method of solution of (1) and (2), a particular model for 
the attenuation coefficient x is assumed and (1) is solved for J subject to (2). 
Giovanelli (1959) considered the model semi-infinite medium 

x=Xo(1 +(X cos lx) 
=0 

(z<O), 
(z>O), 

where Xo, (x, and l are constants. Assuming (X small, he obtained the approximate 
solution 

J(x,z)=Az+B+Oelz cos lx, 
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where A, B, and C are constants determined by the boundary condition, and 
CIA is small. Higher harmonic terms are assumed negligible. Wilson (1960), 
using the model 

x=xoe-VZ(l+(X. cos lx) 

=0 
(z<O), 
(z>O), 

where v is constant, obtained a similar solution 

where 

and CIA is small. 

(3) 

(4) 

(5) 

As a first step towards the study of radiative transfer in non-uniform regions 
of the solar atmosphere, this method of solution of (1) has the disadvantage 
that it is necessary to propose a model for the attenuation coefficient, and assess 
its likelihood by comparing the solution of (1) for J with the information which 
can be obtained from observations of the directional intensity at the surface. 
In all but the simplest cases, it is by no means obvious how best to choose the 
models for x. 

In the present paper a new and, for many purposes, more direct approach 
to equation (1) is suggested and is tested by application to the sinusoidal case 
(equations (3), (4), and (5)) which has already been studied. It is then applied 
to an exponential medium exhibiting axial symmetry. 

II. THE SOLUTION OF THE TRANSFER EQUATION 

Although the total intensity J is not directly observable, its variation near 
the surface z=O in a direction parallel with the surface must be closely related 
to the variation in directional intensity at z=O. It is therefore logical to assume 
a model for J throughout the medium, based on observations, and use equations 
(1) and (2) to find the attenuation coefficient x required to produce such radiation. 

Assuming J and x to be point functions of two variables (e.g. x and z, or, 
using cylindrical polar coordinates for an axially symmetric model, rand z), 
equation (1) may be written 

~ (~OJ) ~(~ OJ)_O 
ox x ox + OZ x oz - , 

which is a necessary and sufficient condition for the existence of a function 
qJ(x,z) such that 

(6) 

OqJ 1 OJ 
-=-- -+'IJ(x), 
ox x oz 

(7) 

where y;(z) and 't](x) are arbitrary functions of one variable. Thus if cp(x,z) 
can be found, x(x,z) can be determined from (6) and (7), y;(z) and 'Y)(x) being 
chosen so that x is unique. 
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Eliminating x from (7) yields 

0<1>/0<1> OJ/OJ 
oz ax = - ax oz' 

where o<l>joz=ocpjoz-!fi(z) and o<l>jox=ocpjox-Yj(x). 

Thus 
<I>(x,z) = cp(x,z) + X(x) +Z(z), 

where X and Z are again arbitrary functions of one variable. 

Equation (8) yields 

or 

0<1> OJ + 0<1> OJ = 0 
ax ax oz oz ' 
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(8) 

(9) 

(10) 

whence, if J(x,z)=constant defines a family of curves in the x,z plane, 
<I>(x,z)=constant defines an orthogonal family. Given J(x,z), therefore, we 
may always find <I> and hence cp(x,z) to within arbitrary functions of one variable, 
and an accurate solution of (1) is thus available. It is emphasized, however, 
that any solution of (1) is subject to the boundary condition (2), and that if the 
accurate solution fails on the boundary, it is necessary to consider approximate 
solutions which satisfy (1) and (2) to the same order of accuracy. 

III. APPLICATION TO THE SINUSOIDAL CASE 

It is instructive to apply this method to the model for J given by equation 
(5), i.e. 

J(x,z) =Ae-vz+B +Oepz cos 1x. 

'The family of curves J(x,z)=constant has gradient given by 

dx Ave-vz-Opepz cos lx 
dz = - Olepz sin lx 

Hence the differential equation for the orthogonal family is 

dz Av-Ope(p+v)zcos lx 
dx = Ole(p +v)z sin lx 

:Substituting ~ =e(P+v)z yields 

d~ fL 
-d +lA~ cot lx = -. -l-' 

X SID x 

where A=p(p+v)jl2, and fL=Av(p+v)jOl. 

This equation has the solution 

~(sin lx)"A= I fL(sin lx)"A-1dx+<I>, 

(11) 
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and the family of curves CP=constant is given by 

CP(x,z) =e(p+v)Z(sin Ix)).. - f [L(sin Ix))..-ldx, (12) 

whence rp(x,z) is determined to within arbitrary functions of one variable. Sub
stitution in (7) yields 

CI e-VZ(sin IX)l-).. 
x= (p +'1) [1 +(CIIA '1)"t)(x)(sin IX)l )../{1-(CpIA'I)e(P+v)z cos Ix} J' (13) 

while from (6) 

CI e-vz(sin IX)l-).. 
x=-- . 

(p +'1) {I +tJ;(z)e-(p+v)zl(p +'1)(sin Ix))..} 
(14) 

A unique function for x is obtained if the arbitrary functions "t)(x) and t.!;(z) 
are taken to be zero. Thus 

(15) 

where x.o=CII(p +'1). 

Ifp2+'1p-12=0, as in (5), 1-1-=0 and (15) becomes 

x=x.oe- VZ. (16) 

Applying the boundary condition (2) to the solution (16) at z=O and cos Ix= ±1 
yields 

(x.o- ~'1)A+XOB+(x.o+~P)C=O'} 
(xo- ~'1)A+XoB-( xo+? )C=O, 

(17) 

which may be satisfied only if C is zero. If the ratio C I (A + B) is smail, (17) is 
satisfied only if first-order terms are ignored. Thus (16), although an accurate 
solution to (1), is not a satisfactory solution to the problem and it is necessary 
to consider approximate solutions. 

As a first approximation the ratio CIA is assumed small and in (13) non-zero 
values of "t)(x) are investigated. Provided "t)(x) is of order not greater than unity, 
(13) yields an approximation correct to first order terms 

or 
(18) 

where (X is of order CIA and "t)(x) is arbitrary but of order not greater than unity. 
The boundary conditions suggest the choice 

"t)(x) =cos lx, 
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and in this case (2) is satisfied correct to the first order provided 

o ( 2P ) ot=A+B 1+3Xo ' (19) 

and B is related to A by 

'2v ) 
B=A(3Xo -1 . 

As (18) also satisfies equation (1) to the same order, it is with (4) a satisfactory 
first-order solution to the problem. Equation (14) has not been used to obtain 
this approximate solution, since partial differentiation has eliminated the leading 
constant A. 

This method verifies the solutions (3) and (4) previously obtained, but 
provides a more detailed account of the approximations used. 

IV. APPLICATION TO AN AxIALLy SYMMETRIC MEDIUM 

As a first step towards a solution of the problem of radiative transfer in the 
neighbourhood of a sunspot, an axially symmetric model of J(r,z) is chosen which 
has a minimum value at r=O and increases to a finite limit as r approaches 
infinity, the dependence of J(r,z) on r decreasing with depth. A function having 
these properties is 

(20) 

where A must be positive, 0 negative, and P and k must be positive. Equations 
(6) et seq. apply provided cylindrical polar coordinates are used, a; being replaced 
by r, and x(r,z) being assumed independent of 6. 

Proceeding as before, the function ~ is found to be given by 

~=rAe(p+v)z+R(r) +Z(z), 

where A -pep +v)/2k, and this yields the accurate solution of (1) for x, 

x=Xorl-Ae-vz-kr', 

where Xo=20k/(p+v). 

In the special case p2+pv-2k=O, 1-)..=0, and the solution becomes 

Applying the boundary condition (2) at z=O yields 

2 
Xoe-kr'(A +B +Oe-kr')+3( -Av +Ope-kr' ) =0. 

(21) 

(22) 

(23) 

For a first-order solution, the boundary condition must be satisfied at two values 
{)f the horizontal coordinate. At r=O (23) yields 

(24) 

and at any finite value r=R, 

(25) 
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Thus, provided the ratios CIA andB/A satisfy (24) and (25), (20) and (22) forma. 
first-order solution of (1) and (2) in the axially symmetric case. Since the 
features of the total intensity J are determined by the attenuation coefficient 
and the boundary condition, it is to be expected that the solution imposes the 
restrictions (24) and (25) on the values of A, B, and C. The absolute magni.tude 
of A is determined by the net flux at Z= - 00, and Xo is given by (21). 

A difficulty arises, however, in considering the limit as r approaches infinity. 
Equation (2) becomes 

which entails the solution 

wnereas in (22) the limit of Xoe-vz- kr' is zero. However, equation (25) requires 
A=O when R approaches infinity, and the case is trivial. Thus the first-order 
solution given by (22) is available only over a restricted range of the horizontal 
coordinate. 

An approximate solution may be obtained over the range O<r<oo by 
considering the discontinuous function 

x=Xoe-vz - kr', 

x=x'e-vz, 
0<r<R,1 

r>R,5 
(26) 

On the boundary z=O, equations (24) and (25) hold for the range O<r<R, 
while at r= 00 equation (2) yields 

x'(A+B)-iAv=O, 
therefore 

x'=jv/(l+B/A). 

The solution is continuous at r=R provided R is chosen to satisfy 

The partial derivative ox/or is discontinuous at this point, but the discontinuity 
is small if R is large. 

As an alternative approximate solution which is analytic at all points in 
the range O<r<oo, equations (26) suggest 

(27) 

where ~ is a constant. On the boundary z=o this solution yields consistent 
equations at r=O, r=R, and r= 00. Equation (1) is satisfied correct to first-order 
terms in CIA when r is small and when r is large. For values of r of order unity, 
however, it is satisfied only provided terms of order CIA may be ignored. 

v. CONCLUSION 

Giovanelli's form of the transfer equation for non-uniform media has been 
shown to be readily soluble for the attenuation coefficient x, given the total 
intensity J as a function of two coordinates. 



RADIATIVE TRANSFER FOR NON-UNIFORM MEDIA 63 

The method has been applied to the case 

with boundary condition at z=O 

xJ +idJjdz=O, 

and the approximate solution, correct to first-order terms, is found to be :in 
agreement with a previous solution (Wilson 1960). 

The axially symmetric case for which 

J =Ae-vz+B +OePz - kr' 

with a similar boundary condition at z=O yields the solution 

x=Xoe-vz- kr', 

which satisfies the boundary condition to the first order over a finite range of 1', 
provided two relations hold between A, B, and O. This indicates the approximate 
solution in the range 0<1'<00 of the form 

where, if R satisfies 

x=xoe-vz-kr', O<r<R, 

x=x' e-vz, r>R, 

xoe-kR'=ivj(l +BjA), 

x is continuous for O<r<oo, but axja1':s discontinuous at r=R. 
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