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Summary 
This paper investigates how mathematical approximations and statistical errors 

are transmitted into computed cross sections in the analysis of experimental 
bremsstrahlung yield data. The resolution of bremsstrahlung experiments is defined 
in analogy with optical resolution and an expression for the practical evaluation of 
resolution is derived. Methods of cross-section computation, and smoothing and 
curve-fitting are discussed. 

1. ERROR INHERENT IN THE YIELD ANALYSIS 

The bremsstrahlung experiment measures the yield of a photonuclear 
reaction. The corresponding cross section is derived by a transformation 
calculation. This investigation is concerned with how approximations in the 
transformation calculation and standard errors of the original discrete set of 
experimental yield ordinates are propagated into the computed cross section, 
and how well the computed cross section portrays the true (exact) cross section. 
It is assumed that the bremsstrahlung spectrum is known and that experimental 
yield ordinates contain no other than truly statistical errors. 

Yield y(EOk ) and cross section s(E) are related through the normalized 
bremsstrahlung distribution function P(E,Eok ) by the integral equation 

IEOk 

y(EOk )= P(E,Eok)s(E)dE. 
Eth 

(1) 

EOk is the maximum energy of the speetrum, E=hv the energy of a photon 
interacting with a nucleus, and E th the reaction threshold. 

Experimental yield data are invariably given as a discrete set of yield 
values only and not as a continuous function. Thus the knowledge about the 
yield function is restricted to that of a finite number of yield ordinates, and 
nothing is known a priori about the behaviour of the function between these 
ordinates. If y(EOl ), y(E02 )" ., y(EOk )' ... , y(Eop) are the yield values corres
ponding to energies EOl1 E 02' ••• , E Ok' ••• , E op, then the equation 

k 
y(EOk )= z: P(Ei,Eok)S(Ei)tlTiJi; k=l, 2, ... , p, (2) 

i=1 

must be substituted as an optimum approximation for (1). Here M i =Eoi -Eo,i-l1 

Ei=Eoi-ttlE;, and s(Ei ); i=l, 2, .. 'J p 

represents a discrete set of cross-section ordinates which are to approximate 
ordinates S(Ei) of the exact cross section s(E). Any approximation other than 
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(2) would make assumptions about y(EOk ) and seE), i.e. about the" smoothness" 
of y(EOk )' which are not contained in the experimental data. 

(2) represents a system of p linear equations in the p unknowns s(Ej); 
i=l, 2, ... , p, and thus in general has a unique solution and any exact method 
to solve (2) will give the same unique solution. Existing methods are the total 
spectrum method (Johns et al. 1950), the photon difference method (Katz and 
Cameron 1951), and the modified total spectrum method of Penfold and IJeiss 
(1958). An iteration method is used by Carver and Lokan (1957). 

It is convenient to choose a constant energy interval 

IlEj=IlEA , 

and write (2) in matrix form, namely, 

yo=IlEAP's, 
Here 

YO= YOl P=Pw 0 0 0 0 
Y02 P 2,] P 2,2 0 0 0 

0 0 P 0 YO,p-1 IPp - 1,1 P p-J,2 p--1,p-1 
}fo,p !!P,1 P p,2 P p'P-1 PP'L 

and the following abbreviations are used 

y(EOk)=YOk' P(EHEok)=Pk,j, si=s(E;). 
Defining 

o 
o 

o 
o 

o 
°p-1,P-1 
°p'P_1 

solve (3) for s, by premultiplying each side of (3) by (l/IlEA)C. 
Thus, 

s=(l/IlEA)C· Yo, 

which is equivalent to the p equations 

- 1 i 
S(Ei) = AE l: 0ionYOn; i=l, 2, ... , p. 

Ll A n=l 

(3) 

s= S1 
S2 

S/J-1 
!p 

(4) 

(5) 

(6) 

From (6) each ordinate s(Ei) can be evaluated directly, independently of other 
ordinates s(Ej)' j oj=.i. The coefficients 0ion are related to the coefficients B im 
of Penfold and Leiss (1958) by 

(7) 

Values of B im for several values of ilEA and for Eop up to 1 BeV are tabulated 
by Penfold and Leiss (1958) for an integrated-over-angles Schiff spectrum (Schiff 
1951). 
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If y(EOk ) is given as a continuous function and fl.EA is chosen smaller thanEth! 
the summation (2) may be started at any energy value Eoo between 0 and 
fl.EA (Eoo=EOl -fl.EA)· Each corresponding set of ordinates y(EOk ) will define a 
set of ordinates §(Ei), and all the sets y(EOk ) will define a continuous function 
§(E), where §(E) approximates s(E). Any discrete set §(Ei ), i=l, 2, 3, ... , P 
will lie on §(E) rather than on s(E). 

The difference s(E) -§(E), which is the error introduced by replacing the 
integration in (1) by the summation of finite difference of (2), will now be com
puted. It is assumed that P(E,Eok)S(E) may be expanded by its Taylor series 
in any energy interval fl.E A' 

Using the notation 

o~[P(E,Eok)S(E)h=E, = [P k,iSiJ', 

and similarly for higher derivatives, the Taylor expansion of [P(E,Eok)S(E)] 
for the energy interval 

becomes 

P(E,Eok)S(E)=PbiSi + ;![Pk,;Si] '(E -Ei) + :! [Pk,iSi]"(E -Ei)2+. (8) 

With (8) the p yield ordinates YOk; k=l, 2, .. 'J p, may be expressed through 
the p equations 

Performing the integration, one obtains 

where the nth term in the bracket is of order 

.}dE] ; 
(9) 

i.e. the series are strongly convergent, and a sufficiently good approximation is 

Here 

Writing 
oP(E,Eok ) 

dE 
=P~,i ; 

os(E) 
aE =si, 

E~EI 

(10) 
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and defining the matrices 

P'=p' 1,1 0 0 0 0 s'- -, - SI 

P 2,1 P2,2 0 0 0 S2 

0 0 

P;-I,1 P;-1,2 P~-I'P-l 0 S;-1 
~;,1 P;,2 P;,p-l P;''L -.!~ 

and analogously for higher derivatives, and derivative matrices, the p equations 
(10) may be written as one matrix equation 

Yo~LlEAP.S+(LlE~/24){P".s+2P'.s' +P.s"}. (11) 

Premultiplying each side of (11) by (1/LlE1A )C, one obtains with (4) and (5) 

s -8= -(LlE1/24){ C.P".s +2C.P'.s' +s"}. 

Numerical coefficients of the matrices C.P" and 2C.P' were computed using the 
spectral distribution function of Penfold and Leiss (1958). It was found that in 
practical cases an error smaller than 20% in the values of elements of s-s is 
introduced if the further approximation 

s-s~ -(LlE1/24)s" (12) 

is used. Equation (12) defines p ordinates S(Ei) -S(Ei); i=l, 2, ... , p, but 
as the summation (9) may be started at any energy Eoo between 0 and M,l) 
all the sets S(Ei) -s(E i ), corresponding to all the values Eoo define a continuous 
function s(E) -s(E), where 

(E) _ -(E) = _ 0E1 a2s(E) 
s 8 24 aE2· (13) 

Assume, for example, that s(E) is a resonance of height S and half-width r, 
and has a Gaussian shape symmetric about EM' i.e. 

s(E)=S exp [ -4(ln 2)(E~~M)} 
and then with (13) 

" 1\- LlE1 d2s(E) 
, (E l-s(E) + 24 dE2 

=s(E) t 1-0 . 230Ll~1 + 1. 281Ll~1 (E -t\r) 2}. 

s(E) has very nearly Gaussian shape, with height ff and half-width F, where 

S=S(I-0·230LlE1/r2 ), (14) 

- r r =--------;;-----------,-----

(1--0 ·230LlE1/r2 -o ·043LlE~/r4+. .) 
(15) 

Thus, if r> LlE.1' it is a very good approximation to write 

sr=sr. 
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Equations (14) and (15) may be used to estimate the error in 8(E) for the case 
of a non-symmetric resonance. If r,....,l~EA' the resonance is "smoothed out" 
in 8(E). The" smoothing" effect due to the use of finite differences (with 
intervals ~EA) is demonstrated by an example in Figure 1. 
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i= 
u 
w 
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0: 
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L-~--L-~~--------~~~~----~E~N~E~RG~y~E 

I. 
Fig. I.-Smoothing effect due to the use of finite differences 
in the yield analysis of a Gaussian resonance. (~E A = O· 83r). 

seE) =8 exp[ -4(ln 2)(E-EM )2/r2], s(E) =s(E) + (~E1124){d2s(E)/dE2}. 

It has been suggested (Cook 1957) that integrated cross sections be computed 
directly, and that cross sections be found by differentiation. If 10k is the directly 
computed integrated cross section ordinate, corresponding to the exact ordinate 
1(Eok), it is 

r"~f" =~EA 1 0 0 0 0 81 =~EAD.s 
102 1 1 0 0 0 82 

I {Q:P-1 
0 

1 1 1 0 8p_1 
!..OP _ 1 1 1 1 !.P 

and with (5) 
io=D.C·yo=F·yo· 

It is easily verified that, as long as (13) is valid, l ok=1ok ' However, as long as 
no a priori assumption is made about the smoothness of the exact continuous 
integrated cross section 1(E), the cross section derived from the discrete set of 
ordinates 10k will be in error again by an amount as given by (13). Unless one 
is particularly interested in the integrated cross section itself, its computation 
is thus only an unnecessary complication in cross-section computations. 

II. STATISTICAL ERRORS 

In general the discrete set of exact yield ordinates y(EOk )' k=l, 2, ... , P 
is not known. The experiment rather supplies a discrete set of yield ordinates 

~(EOk) ±st m(EOk)]; k=l, 2, •.• p, 

where st [~(EOk)] denotes the standard error in ~(EOk)' If the set of cross-
section ordinates 
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is computed from (6), by using in place of ordinates YOk the ordinates lJ(EOk)=lJOk' 
the standard error st[ik] can be computed from (6) by the law of propagation of 
errors, namely, 

The coefficients 0k.i decrease rapidly with decreasing i. Then if St[lJOi] does not 
vary much for neighbouring values of EOk' a good approximation is 

_ 1 (Ie 2)l! 
st[Sk]~L\E}t[lJOk] i~l Ok,i • 

The square root in (16) was computed for the energy interval 

5 MeV <Eop<25 MeV 

(16) 

for several values of M A • It was found that (16) may be approximated for 
this energy interval by 

- -3/2 st[Sk]~L\EA 'EOk st[lJOk] ·const. (17) 

The error in st[ik] due to this approximation is smaller than 20 %, even in extreme 
cases. 

III. EXPERIMENTAL RESOLUTION 

Suppose a cross section s(E) contains several maxima. If s(E) were known, 
it would be possible in principle to calculate the probability that two particular 
maxima of s(E) are resolved with statistical significance through a discrete set 
of experimental cross-section ordinates 

ik±st[Sk]; k=1, 2, .. . ,p. 

As s(E) is unknown in practice, it is convenient to use a hypothetical function 
Rs(E) as a standard analytical function, which contains two maxima, and to 
investigate under which conditions for p, St[RlJOk]' and L\EA these maxima would 
be resolved through the corresponding discrete set of computed cross-section 
ordinates )ik±st[RSk]' Then a quantitative criterion is obtained which indicates 
the minimum distance between two maxima in a standard function Rs(E), for 
which the information contained in the corresponding set R~±st[Rik] is sufficient 
to resolve these maxima with statistical significance. This criterion will enable 
one to decide, at least with reasonable assurance, whether two maxima apparent 
from some set of experimental ordinates ~±st[~] are real, or are only apparent 
owing to statistical fluctuations. The procedure is analogous to the definition 
of resolution in the optical case. Here one examines a standard image inter
ference pattern as seen by the imperfect optical system with its finite resolution, 
and which corresponds to two image points of a perfect optical system, having 
infinite resolving power. 

A function which is the superposition of two symmetric Gaussian resonances, 
each with height S and half-width r is ehosen for the standard function Rs(E), 
that is, 

RS(E)=S{ exp [ -"-4 (In 2)(E-~Ml)] +exp [ -4(ln 2)(E-~M2r]}. (18) 
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The two maxima at EMl and EM2 shall be separated by (see Fig. 2) 

d=EM2 -EMl =1·41165r~V2.r. 

The dip at E=t(EMl +EM2) is exactly lS. The corresponding function Rs(E) 
is computed, by making use of equation (13). For the interval 

EMl <E <EM2' 

equation (18) may be approximated by 

Rs(E)~!S+!S cos [(27tjd)(E-EMl)]' 
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Fig. 2 (a).-Standard cross-section R8(E). (Superposition of two 
Gaussian resonances.) 

R8(E)=S{exp[ -4(ln 2)(E-EM1)2/PHexp[ -4(ln 2)(E-EM2}2/r2]}. 

Fig. 2 (b).-Smoothing effect due to the use of finite differences in 
the yield analysis on R8(E) of Figure 2 (a). (~EA=O·83r). 

~(E)=R8(E)+(M~/24){d2R8(E)/dE2}. 

and with (13) the corresponding approximation for Rs(E) becomes 

(19) 

(20) 

In interval (19) the error due to this approximation is smaller than 0'4% for 
Rs(E) and smaller than 1·5% for Rs(E) for Mx<r. Rs(E) and Rs(E) for r -,1'2t1EA 

are shown on Figure 2. The dip in Rs(E) will disappear for M A>l·lr. 
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Suppose now from yield ordinates of a hypothetical experiment cross
section ordinates with standard errors 

RSk±st[RSk]; k=l, 2, •.. , p, 

were computed, and that of the p ordinates, g ordinates 

RS,±st[Ri ,]; j=l, 2, ... , g, 

lie in the interval defined by (19). If ~E.=E'+1-E" 

g·M.~EM2-EMI=d. (21) 

Me need not be equal to M A, but MA has to be an integral multiple of ~Ee' 
For example, EOk may have values 8 '00, 8 '25, 8 '50, 8 '75, ... ,18 ·00 MeV. 
Then one may split the corresponding yield ordinates into two groups, one at 
energies 8 '00, 8 '50, 9 '00, ... ,18 ·00 MeV (group I) and the second one at 
energies 8 '25, 8 '75, 9 '25, ... ,17 '75 MeV (group II), and analyse group I 
and group II independently with M A=0·5 MeV. (Here then M e=0·25 MeV 
and M A=2Me.) 

It follows from (20) that R8(E) has to be of the form 

R8(E)=AI +Ag cos [(27t/d)(E-EM1 )], (22) 

where Al and A2 are constants. To reconstruct R8(E) for the interval (19) from 
the set of ordinates RS,±St[~,] ; j=l, 2, ... , g, one has to fit by a Gaussian 
least square fit to R;;,; j=l, 2, ... , g, a function 

(23) 

The fitting of a curve here is unambiguous, as the analytical form of #(E) is 
known. Then 

ls=~ f R5,COS [2d7t(Ef -EM1 )], 
g'-l 

• I\. • 1\ 
and by the law of propagatIOn of errors, the standard error st[AI] III As becomes 

A _ 

st[A2] =(2/g)tSt[RIl'i]. (24) 

In equation (24) it is assumed, for the sake of simplicity, that standard errors 
st[Ri ,] are approximately equal to St[RS], 

A 

Only if Ag is positive will the dip be apparent from (23). 
If 

(25) 

the chance that the dip is apparent from (23) is ~pproximately 62% for y=l, 
86% for y=1·5, etc. With (20) and (22) 

(26) 

Thus the condition that the dip is seen with a chance corresponding to y is, 
with (24), (25), and (26), 

(2)1 - [ M~ 4~] Y g st[~]=iS 1-2"4 d2 . (27) 

L 
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Reversing the argument, if st [RS] , 8, and M A are given, d of (27) is then the minimum 
separation of two maxima in a cross section of form (18) for which the dip is 
apparent with statistical significance form Sk ±st[ik]; k=l, 2, ... , p. The 
resolution r(y, b.EA) is then defined by 

(28) 

Through (27), d and r(y, b.EA) are given as function of y, g, st[R'i], and M A. 
From experimental data st[ikJ =st[i] may be computed from (17), but is still 
a function of b.EA. It is convenient to express st[i] in terms of a fixed reference 
value b.EA•1 (e.g. b.EA•1 =1 MeV). Then with (17) 

(29) 

where st[ih is the standard error computed from experimental data with b.EA•1• 

A parameter which is characteristic of the amount of information contained in 
a discrete set of experimental yield ordinates ~Ok±stmOk] is then given by 

S:1 =y8-1 st[i]1b.E1~i(2b.Ee)!. (30) 

Using (27) with (21), (28), (29), and (30) as an equation for r(y, b.EA ) in terms of 
b.EA, one obtains 

r2(y, b.EA ) + 24S:~/2{r(y, b.EA)}! 24 2' 
7t2b.EA 47t2b.EA 

(31) 

Equation (31) is a quartic equation in {r(y, b.EA)}', in which the parameter S:1 
is independent of b.EA. Solutions of d and r(y, b.EA) as function of b.EA and S:1 
may be interpolated from Figure 3. 

The resolution r(y, b.EA) depends on the choice of b.EA in the following way. 
If b.EA is chosen large, the smoothing effect due to the replacement of integration 
by summation of finite differences (equation (2) replaces (1)) becomes large, 
and apparent statistical errors (equation (29)) are small. If b.EA is chosen small 
the smoothing effect becomes negligible, but apparent statistical errors become 
excessively large. 

The condition that the resolution r(y, M A ) has a maximum (rmax.), and d 
has a minimum (dmin.) is 

From equation (31), the value b.EA=b.Eopt., corresponding to rmax. and dm1n., 
is given by 

LU'iopt. =2· 236S:1 , AU! 1/2 } 
rmax.=O ·2282s:11/2=0 . 5104b.Eo;l, 
dnnn.=1·959b.Eopt.=4·472s:t!2. 

(32) 

If a cross section has exactly the shape of Rs(E) (Fig. 2), the choice of 
b.E A =b.Eopt• would give maximum resolution, but, as in practice s(E) may have 
a shape quite different from Rs(E), the use of b.Eopt• for the cross-section com
putation need not necessarily ascertain that the maximum amount of information 
contained in the set ~ok±stmod is expressed in the corresponding set sk±st[ik]. 
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The choice of M A is limited to two or three values in any case if the tabulated 
values B im of Penfold and Leiss (1958) (equations (6) and (7)) are used for the 
yield analysis. It is recommended that cross sections be computed twice 
independently with the two available values D.E A nearest to M opt •• 

D.Ee is inversely proportional to p, the number of yield ordinates llOk' st[lIik] 
is inversely proportional to the square root of the number of counts (events) 
taken, to measure one ordinate llOk' Then with (30), <:1 is inversely proportional 
to the total number of counts taken, to measure all ordinates llOk' and hence 
with (32) 

<i. 
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~ 
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LL 
o 
Z 
o 
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w 

rmax.=l/dmln. cx:(total number of counts)!. 

; o'31~ ___ -
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PARAMETER OF EXPERIMENTAL ACCURACY, £, (MEV)2 

(32a) 

2 3 4 56 

Fig. 3.-Experimental resolution of bremsstrahlung experiments r(y, l'>EA ), equation (28), as 
function of experimental accuracy (parameter 0:10 equation (30)). 

E1 = y st[lIiJ1l'>E!:r(2l'>li7e)!jS (MeV)2. 

Suppose, for example, in a bremsstrahlung experiment yield ordinateI'! were 
measured at 0 ·25 MeV intervals (D.Ee=O ·25 MeV), and with D.EA =D.Eopt.=l MeV 
for the yield analysis the cross section showed evidence for two resonances, 
2 MeV apart. If the experimental resolution here was [2 MeV]-I, (d=2 MeV), 
one would have reasonable assurance that the two observed resonances are real 
and not due to statistical fluctuations. If in an improved experiment one wants 
to make certain that the resonances are real one may endeavour to double the 
experimental resolution. According to (32a), here the total number of counts of 
the improved experiment has to be 16 times that of the initial experiment. This 
may be achieved by again measuring yield ordinates at 0 ·25 MeV intervals, but 
increasing the number of counts taken to measure individual yield ordinates by 
a factor of 16. An equivalent alternative would be to measure yield ordinates 
at for example 0·1 MeV intervals (D.Ee=O·1 MeV) and increase the number of 
counts of individual yield ordinates by a factor of 6 ,4. According to (30) and 
(32) the optimum value of D.EA to be chosen for the yield analysis would be the 
same in either case (here D.EA=Mopt.=0·5 MeV). 

LL 
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IV. SMOOTIDNG AND OURVE-FITTING 

When a physical interpretation is to be given to a discrete set of ordinates 
with their errors, one will fit subjectively a smooth curve to the set of ordinates. 
As a matter of fact this process may often consist merely in picturing where the 
smooth curve would lie without actually drawing the curve. This subjective 
type of interpolation is not unambiguous if proportional errors are large and the 
ordinates are spaced widely. The following simple procedure is then often 
employed. One draws" by eye" a smooth curve with minimum curvature such 
that the smooth curve cuts only approximately two-thirds of the error bars. 
This method " smooths out" statistical fluctuations, but may also smooth out 
a certain amount of information contained in the experimental data. 

In the analysis of experimental data, " smoothing by eye" may be applied 
to yield ordinates, yield first-difference ordinates, integrated cross-section 
ordinates, or cross-section ordinates. Whichever method is used, finally a 

1\ 

continuous "smooth" cross section i(E) is obtained, but the statistical 
1\ 

uncertainty in $(E) is only known vaguely (and for this reason is usually not 
stated in the literature). 

The fitting of a " smooth" continuous function may be done analytically, 
by making a Gaussian least square fit of a set of known functions to the discrete 
set of ordinates. The statistical uncertainty in the resulting continuous function 
can be computed in this case. 

Suppose, for example, that a set of functions is to be fitted analytically to 
a discrete set of cross-section ordinates ~±st[ik]; k=l, 2, ... , p. For the 
sake of simplicity it will be assumed that all standard errors are equal,* and that 
"f(E); r=l, 2, . ., the set of functions to be fitted, is orthonormal in the energy 
interval 

(33) 
that is, 

(34) 

'-k} ; =F k (closure property) (35) 

If the firs:: q functions "f(E) are fitted by a Gaussian least square fit to the p 

ordinates Sk' 
~ q 

qs(E) = ~ "alf(E). (36) 
,,=1 

The constants 'Ta, which are the same for all values q due to (34), are then found 

from 
(37) 

* If st[Sk] varies smoothly (or approximately smoothly) with E k , the case may be reduced 
to the above one, by forming the function 

zk ±st[Zk]= sk/st[iikHstGik]/st[Sk] ; 

k= 1, 2, ... , p, and treating Zk as above. 
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and by the law of propagation of errors, the standard error st[fa] in fa becomes, 
with (34) and (37), 

(38) 

A 

and, with (35), (36), and (38), the standard error st[qij in each of the p ordinates 
A A 

qi(Ek ) =qik becomes 
A 

st[qi] =st[Z] (q/p )i. 

A A 

Then if q=p, the function qi(E) =PZ(E) will pass exactly through ordinates s~ 
~ -and standard errors st[PZ] are identical with st[Z], the experimental standard 

A A 

errors. If q <p, qi(E) is "smoother" than pi(E) , i.e. it contains less detail, 
. A 

but the standard errors in the p ordinates q~ are smaller by a factor of (q/p) i - ~ than the original standard error st[Z]. In the extreme case q=l, lz(E) is just a 
straight line parallel to the E-axis, at average cross-section height, with 

~ -st[lZ] =p-! st[Z]. 

One requires the highest value of q for which the fitted continuous curve 
A 

qi(E) does not show yet apparent detail which is due to statistical fiuctuations r 

and not originally contained in s(E). This value of q may be found rigorously 
A A 

by applying chi-square tests to sets of qs,., st[qikJ, and i k for successive values of q. 
An adequate criterion is to ascertain that for none of the coefficients fa used, 

A 

st(fa] ;> ra. A curve qz(E) fitted analytically with the highest permissible q 
value ideally will extract the maximum amount of information contained in the 
original data, and will in general show more genuine detail than a curve fitted 
"by eye with minimum curvature". However, analytical curve fitting may 
not be used unless the permissible number of curves is sufficiently large (say 
greater than five), and it is ascertained that boundary conditions at the limits of 

A 

interval (33) do not introduce systematic distortions. qi(E) does not approximate 
A 

s(E) but rather a function qs(E), which would be obtained by fitting q functions 
to the "exact" ordinates Sk; k=l, 2, ... , p. For q <p the function q§(E) 
will be smoother again, in general, than s(E). This smoothing effect is very 
similar to the smoothing introduced by using a large !1EA in the yield analysis 
(there s(E)--+s(E), see Fig. 2). 

A 

To indicate the statistical accuracy of a continuous function qi(E), draw the 
A A A A 

smooth curves qi(E) +st[qS] and qi(E) -st[qi]. These curves enclose what 
A 

shall be defined as the " area of statistical variation" of qi(E). The meaning 
of this area of statistical variation is the following. 

A 

Approximately 62 % linearly independent points of qS(E) should lie less 
A A 

than st[qi] above or below qs(E). In the energy interval (33), the number of 
A 

linearly independent points of qi(E) is q. This may be indicated, e.g. by drawing 
A A 

q error bars with st[qS] =st[i] (q/p) i equidistant on qi(E). Only such q points 
can vary independently within statistical limits, and all other points are linearly 



186 H. H. THIES 

A 

-dependent. This means effeetively that qS(E) has to remain smooth between 
A 

the q points, and that q'i(E) preserves the number of its maxima, minima, and 
turning points, as the set s:; k=l, 2, ... , P is varied within statistieallimits. 

It is of interest to know whieh value of (q/p) i eorresponds approximately 
to the amount of smoothing introduced in " smoothing by eye with minimum 
curvature". It was found empirically from examples that this value is of order! 
(see Fig. 4). It appears that the value (q/p)i,.....,! is rather the same, whether 
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l"ig. 4.-Empirical test of " smoothing by eye with minimum curvature" of yield ordinates. 
Six" experimental" sets of yield ordinates were produced from an assumed (" exact ") set of 
yield ordinates by a Monte Oarlo process. Oross sections 1-6 were obtained by fitting " by eye 
with minimum curvature" smooth yield curves through the" experimental" yield ordinates and 

using for the yield analysis the Penfold-Leiss method. 

," smoothing by eye with minimum curvature" was applied to yield ordinates or 
cross-section ordinates, and thus there seems to be no preference for either 
method. One may obtain an estimate of the statistical accuracy of earlier 
-published cross-section data, if one estimates st[SkJ from standard errors of 
,corresponding yield data, and draws an "approximate area of statistical 
variation" with !st[~J above and below the published cross-section curve. 
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