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Summary 

In an earlier paper the author provided a method for estimating the maximum 
temperature in a steady-state, centrally constricted, highly ionized deuterium discharge 
between electrodes. The analysis applied to discharges not too long, so that 
bremsstrahlung loss could be neglected compared to the main heat loss by conduction 
to the electrodes, and thermoelectric effects were not included. 

Here the analysis is generalized to include thermoelectric effects, and carried through 
for strictly longitudinal flow, for which at every point within the discharge the heat flux 
vector q and the current density vector j are parallel to the magnetic field H. 

Again a simple continuity argument shows that q + Vj =0, where V is the electric 
potential, but now the equipotential surface on which q = V = 0 is displaced from midway 
between the electrodes nearly to the cathode. In the linear case the maximunl temper
ature is displaced somewhat from the midway position towards the anode. A similar 
remark applies to the constricted discharge. The important influence of inclusion of 
thermoelectric effects is that the maximum temperature is increased by approximately 
14% for about the same applied voltage producing a given current in a particular 
discharge geometry. The characteristic relating the maximum temperature and 
resistance ratio e; and the radial compression ratio v obtained in the earlier paper is 
not changed by thermoelectric effects. Comparison of voltage and also temperature 
versus distance characteristics for linear and constricted discharges without and with 
thermoelectric effects is given by means of graphs. 

1. INTRODUCTION 

In an earlier paper (Seymour 1961), referred to hereafter as S, a method 
was given for estimating the maximum temperature in a steady non-equilibrium 
state, centrally constricted, substantially ionized deuterium discharge between 
electrodes. The free boundary surface of the plasma was assumed thermally 
insulated when isolated from the walls of the discharge tube, and cooling was 
therefore by heat conduction to the electrodes, compared to which the 
bremsstrahlung loss was shown to be negligible if the discharge was not too long. 
Neglect of thermoelectric and other effects led to symmetry of the distributions 
of temperature and voltage about a median plane normal to the longitudinal 
axis of the discharge, on which the plasma temperature was assumed constant 
at its maximum value T m' 

With w. the electron gyrofrequency and 't'. the electron collision time, the 
estimation of maximum temperature in discharges having straight and hyperbolic 

* Research School of Physical Sciences, Australian National University, Canberra. 



280 P. W. SEYMOUR 

current streamlines was made via a vector analysis for Cile"e<l, and a tensor 
analysis for Cile"e~1. For flow having q and j parallel to the magnetic field H 
at every point within the discharge (strictly longitudinal flow), it was seen that 
the results obtained for Cile"e<l applied for all Cile"e' 

In this paper we examine the same cases as above, under the same approxi
mations, except that we include thermoelectric effects by generalizing the previous 
analysis, which destroys the symmetry of the temperature and voltage distribu
tions about the median plane. Since strictly longitudinal flow is considered, it 
is convenient and sufficient to employ a vector method only. 

Initial consideration of the problem suggested that for simplicity thermo
electric effects should be excluded in the first attempt at solution, and included 
later if possible. 

This solution procedure proved satisfactory, and showed that it was not 
desirable to combine the separate results obtained, hence the presentation of 
results in separate papers. 

II. ISOTROPIC FORMS OF j AND q (SEEBECK AND PELTIER EFFECTS 

ONLY INCLUDED) 

When the magnetic field H is negligible or parallel to the electric field E 
and the temperature gradient VT, the general equations for j and q include only 
the Seebeck and Peltier effects respectively, as in (3.8) and (3.9) of S. For 
CiI."e<l these equations reduce to the isotropic forms 

j=O'E+ex.VT, (2.1) 
and 

q=-KVT,-~E, (2.2) 

where 0' and K are the scalars obtained in Section IV (a) of S, and we have 
replaced Marshall's (1957) cp and ~ by Spitzer and Harm's (1953) ex. and -~ 
respectively, and used Table 1 (constructed from pp. 67 and 69 of Marshall's 
report) to show that ex.I=ex.II=ex., ex.III,....,O; ~I=~II=~, ~III,....,O, when CiI."e<1. 

TABLE 1 

COMPONENTS OF THE THERMOELECTRIC TENSORS 

Components of [IX] Components of [~] 

[ 
2 2 

~ - 2 00.". 4 4 2 2 
III __ knee"eT 1'25000"0+7.627] 

me 000"0+6.282000"0+ O· 933 



THERMOELECTRIC EFFECTS IN A CONSTRICTED GAS DISCHARGE 281 

Comparing IX and ~ with their values in a Lorentz gas, we find from Spitzer 
and Harm that when the atomic number Z =1, 

(
2)3/2 k5/2T3/2 

1X=3 - Yr 
7t 1/231 ~ , me e n /I. 

(2.3) 

and 

(
2)3/2 k5/2T5/2 

"'=8 - aE t-' 7t 1/2 3 1 ~ , me e n /I. 

(2.4) 

where the electron charge e has been taken in e.s.u. Here IX and ~ for an actual 
gas have been expressed in terms of their values in a Lorentz gas by means of 
the transport coefficients Yr and aE , given by Spitzer and Harm as Yr=0'2727, 
aE=o ,4652. Spitzer and Harm's IX and ~ agree closely with those of Marshall, 
who, however, does not specifically relate actual and Lorentz gas values. 

Writing (2.3) as 

and (2.4) as 

we obtain by inserting numerical values 

and 

and 

lXo=9 ·285 X 10-9 A cm-l deg-5 / 2, 

~o=4' 223 X 10-8 J V-I cm-l S-1 deg-5 / 2• 

To complete these equations we recall from S, Section V, that 

a=aoT3/2jln A, 

where 

and 
ao=1·53 X 10-4 a-I cm-l deg-3 /2 , 

Ko=4 ·396 X 10-12 J S-1 cm-l deg- 7 / 2• 

III. SOLUTION OF THE PLASMA ENERGY EQUATION FOR STRICTLY 

LONGITUDINAL FLOW 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

Again, the analysis of a general, constricted discharge having geometric 
symmetry about a chosen plane is conveniently handled by introduction of an 
orthogonal curvilinear coordinate system, which can be specialized later to deal 
with linear discharges and those having hyperbolic streamlines. Before 
developing these solutions, however, the form of the differential equation for 
strictly longitudinal flow to be finally integrated can readily be obtained by a 
simple continuity argument. 

(a) Ourved Stream Tube of a Oonstricted Discharge 
Figure 1 shows a curved current stream tube possessing geometric symmetry 

about a chosen plane. Suppose also that there exists an equipotential surface, 
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normal to the curved axis of the tube, and nearer its lower end in Figure 1, on 
which q =0 and on which it is convenient to take the constant electric potential 
as zero. Then, on that surface, with the notation of (5.15) of S, we have 

M=q+Vj=O, (3.1.1) 

and since from (5.14) M is solenoidal, it follows that M vanishes identically 
at every point within the discharge, and the flow is longitudinal. Inserting (2.1) 
and (2.2) in (3.1.1), and using E= -VV, together with (2.5), (2.6), (2.9), and 
(2.10) above, we obtain 

VT/VV =(~oT -aoV)/(KoT -!Xo V). (3.1.2) 

From the mode of derivation we see that this equation is valid for all values 
of we're if q and j are at every point parallel to H, i.e. if the flow is strictly 
longitudinal. 
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Fig. l.-Curved stream tube of a constricted discharge. 

(b) Solution of a Simplified Form of the Plasma Energy Equation using 
Oomplex Variables 

For the detailed mathematical analyses of longitudinal flow the plasma 
energy equation, div q =j . E, is again simplified initially by introduction of the 
orthog()nal curvilinear coordinates, tV (the current stream function), ql, and V; 
and by consideration of ax i-symmetric flow, as in S, Section VI (b). Integration 
leads to (-

(3.2.1) 

which is a convenient form of (3.1.2). 
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.A method of integrating (3.2.1) runs as follows: first introduce a parameter 
p, such that 

oT/op=~oT-croV, 

oV/op=KoT-a.oV• 
(3.2.2) 
(3.2.3) 

Assume now that the physical temperatUre and electric potential are the 
imaginary parts of complex quantities T and V respectively, so that, if 1m is 
the imaginary part operator, 

and 

Further, assume that 

and 

where m is a complex quantity. 

Then 

T=ImT, 

V=Im V. 

mA =~oA -croB, 

mB =K.,A -txoB. 

Combination of (3.2.8) and (3.2.9) yields 

and hence, from the right-hand side equation, 

(3.2.4) 

(3.2.5) 

(3.2.6) 

(3.2.7) 

(3.2.8) 
(3.2.9) 

(3.2.10) 

(3.2.11) 

where 4Kocro-(a.o+~O)2>0, and the positive square root has been chosen for 
convenience of solution. 

Writing 
(3.2.12) . 

{3.2.11) becomes 

(3.2.13) 

We now define a variable (} in terms of p as 

(3.2.14) 

and then, on the permissible assumption that B is a real constant, write (3.2.7) as 

(3.2.15) 

and, with the aid of (3.2.10), write (3.2.6) as 

(3.2.16) 
FF 
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Using (3.2.11), it is a simple proposition to show that 

where 

Hence, using (3.2.17), we may write (3.2.16) in the form 

T = (Go/ Ko)! . Bea6ei (6+E). 

(3.2.17) 

(3.2.18) 

(3.2.19) 

Application of the operator 1m to the equations (3.2.15) and (3.2.19) yields 
the physical electric potential and temperature expressions 

V =Bea6 sin 8, (3.2.20) 
and 

(3.2.21) 

To determine the real constant B, we observe that when aT/a8=0, T=Tm , 

the maximum temperature, and 8=8m• From (3.2.21), aT/a8=0 gives 

(3.2.22) 

Since e: and a can be calculated from the available data, 8m is determined by 
(3.2.22). B is therefore obtained from (3.2.21) as 

B (3.2.23) 

Proceeding numerically, use of equations (2.7), (2.8), (2.11), and (2.12) in 
(3.2.12) and (3.2.18) gives 

a=5 '446, -~ 
e:=0 ·1169 radians (6' 7°). j 

Insertion of these results into (3.2.22) gives 

8m =2 ·8431 radians (162 '9°), 

and so, using (2.11), (2.12), (3.2.24), and (3.2.25), (3.2.23) gives 

B=1·7713 X 10-10T m deg-1 V, 

and the factor (Go/Ko)lB becomes 

(Go/Ko)lB=1·045 X 10-6T m' 

(3.2.24) 

(3.2.25 ) 

(3.2.26) 

(3.2.27) 

Substitution of these results in (3.2.20) and (3.2.21) yields the numerical 
forms 

V =1· 7713 X 10-10T me5'4466 sin 8 V deg-I, (3.2.28) 

and 
T =1· 045 X 10-6T me5-4466 sin (8 +0 '1169). (3.2.29) 
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If the thermoelectric coefficients 0(0 and ~o are excluded from (3.2.12) and 
(3.2.18), 

and hence, from (3.2.22), 

a=O, 1 
e=in,j 

8m =0. 

With these results the expression (3.2.23) for B becomes simply, 

B=(Ko/crO)iTm' 

and accordingly (3.2.20) and (3.2.21) reduce respectively to 

V=(Ko/cro)iTm sin 8, 
and 

T=Tm cos 8, 

which can be combined to give 

T2 + (cro/ Ko) V2 = T;, 

as obtained in S, Section VI (a). 

(3.2.30) 

(3.2.31) 

(3.2.32) 

(3.2.33) 

(3.2.34) 

To complete the detailed mathematical analyses of non-constricted and 
constricted axi-symmetric discharges, we follow the procedure adopted in Section 
VI (d) of S, and introduce a more general orthogonal curvilinear coordinate system" 
w, v, u, and assume henceforth that V and T are functions of u only. Again" 
the only non-zero component of j is ju, which, from (2.1), (2.5), (2.9), (3.2.14)~ 

(3.2.2), and (3.2.3), is given in curvilinear form as 

or 

. 2 (O(o~o - Kocro) T 5 /2 a8 
JIl={4Kocro-(0(0+~0)2}' (h3ln A) au' 

where the notation adopted here is illustrated in Figure 2. 

(3.2.35) 

(3.2.36) 

Integration of the steady-state form of the electrical equation of continuity, 
div j =0, gives, for axi-symmetric flow, 

(3.2.37) 

Combination of (3.2.35) and (3.2.37) results in 

(3.2.38) 

where we assume that the electrodes are held at T=O, so that from (3.2.21) 

81 (at cathode) = -0 ·1169 radians (-6.7°), 1 
82 (at anode) = +3 ·0246 radians (+173 ·3°). j (3.2.39). 
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Equation (3.2.38) can be readily solved if the variables in hs/(~h2) are 
separable. We now consider its application to (1) the linear, (2) the constricted 
discharge. 

(e) Specialization of Results for a Linear Discharge 
The cross section in the p-z plane for this case is shown in Figure 3 (a). 

Using cylindrical coordinates, with w=p, v=cp, u=z, we have ~=h3=1, 
h2 =p, and V=V(z), T=T(z), ~=~(p). Thus, in Figure 3 (a) the streamlines 
are paraliel to oz, and the equipotential lines are normal to oz. Using the above 
scale factors, (3.2.36) and (3.2.37) yield 

jz=G(z) =F(p)/ P = const. , 

and since (3.2.21) and (3.2.23) combine to give 

T (exp a6) sin (6 +e) 
T m = (exp a6m ) sin (6m +e)' 

use of the scale factors and these results in (3.2.38) gives 

(3.3.1) 

z- 2(0(0~0-Ko(jo) T;:{2 f6 (exp a6') sin (6' +e) )5/2d6" (3.3.2) 
-{4Ko(jo-(0(0+~0)2P jzlnA 6. (expa6 m ) sin (6m +e) 

or, using the earlier results for 0(0' ~o, (jo, K o, and taking In 1.=10, 

Z= _ o· 9273 Tm.5/2 f6 (exp a~') si.n (6' +e») 512dCl , .A cm-1 de -;;12. 
10 8 Jz 6. (exp aOm ) sm (6 m +e) v g (3.3.3) 

The value of the integral in the right-hand side of (3.3.3) can be obtained 
for chosen values of 6 in the range 61 <6 <;62 by numerical integration, since a, 
e, and 6m are known. In particular, the length of the discharge, z.> 0, corresponds 
to 6=62, and (3.3.3) then leads to 

!..=_1 __ f6 (exp a6') sin (6' +e») 512d6, 
z, 0·293 6. (expa6 m ) sin (6 m +e) . (3.3.4) 

Equation (3.3.4) gives the fraction zlz, for each value of 6 chosen, and 
therefore, using (3.2.28) and (3.2.29), VITm and TITm can be plotted against 
z/z" as in Figure 4 (b). With reference to S, Section VI (d), we also include for 
comparison Figure 4 (a), which shows VITm and TITm plotted against z/zo when 
thermoelectric effects are excluded. 

Examination of (3.2.35) for this case suggests the form jz= -j, where j>O. 
Using this result, the maximum temperature is derived from (3.3.3) as 

(3.3.5) 

where I(Pl)=nprj, and the semi-length, tz" has been introduced to facilitate 
comparison of the above result with S, (6.4.14). 

From (3.2.28) and (3.2.;., " we have at the anode of the discharge, 

(3.3.6) 
and at the cathode, 

VI = -1 ·0933 X 10-11T m V deg-1• (3.3.7) 
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Fig. 4.-Temperature v. distance, voltage v. distance characteristics 
for linear discharge of circular cross section. (a) Thermoelectric 

effects excluded, (b) thermoelectric effects included. 

The latter result shows that for values of T m likely to be attained in practice, 
Vl,--,O, and accordingly the zero of potential may be conveniently considered 
located at the cathode. Then V2 is the voltage across the discharge, and so, 
varying the subscript to L, 

(3.3.8) 
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Combination of (3.3.5) and (3.3.8) results in 

V,=O '656(!Z,~~pl)r15 A-215 cm215 V. 

(d) Specialization of Results for a Discharge having Hyperbolic 
Streamlines 

(3.3.9) 

The cross section in the p-z plane for this case is shown in Figure 3 (b). 
The short solenoid producing the constricting, or guiding, magnetic field has 
axis oz, and is assumed centrally located between anode and cathode of the 
discharge. With V = V(u), t.jJ=t.jJ(w), we can again approximate the current 
streamlines by hyperbolae to represent the practical situation. Mathematically, 
we relate u and w to p and z by the conformal transformation 

p+i(z-!z,)=k cosh (u+iw), k defined below, 

which expands to give 

P =k cosh u cos w, 
and 

z-lz,=k sinh u sin w. 
Then 

and 

(3.4.1) 

(3.4.2) 

(3.4.3) 

(3.4.4) 

(3.4.5) 

As in S, Section VI (d), Case 2, we see that in the p-z plane the curves 
u=const., w=const. form a family of confocal ellipses and hyperbolae, here 
with common foci at (±k, +tz,). Again, for the scale factors we have 

and 
h2=k cosh u cos w, 

and accordingly, from (3.2.36), (3.2.37), and the above two equations 

G(u) cosh u=F'(w)/k cos w=const.=A. 

Following the procedure of S, Section VI (d), we can establish 

-I*(wb)=27tkA(I-sin wb ). 

From Figure 3 (b) and equations (3.4.2), (3.4.3) 

Po=k cos wb, } 

Pl=k cosh ue cos wb, 

lz, =k sinh u., 
where u=±u. gives the electrodes. 

t The star superscript is used when necessary to indicate a Section III (d) quantity. 

(3.4.6) 

(3.4.7) 

(3.4.8) 

(3.4.9)t 

(3.4.10) 
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Fig. 5.-Voltage versus distance characteristics with radial com
pression ratio v as parlUneter. (a) Thermoelectric effects excluded, 

(b) thermoelectric effects included. 

By proper choice of the left-hand side integral limits in (3.2.38), and use of 
(3.2.21), (3.2.23), and (3.4.6) to (3.4.9), is obtained 

tan-1 (sinh u)+tan-1 (sinh u.)= 

47tk(KoO"o -OCo~o)(l-sin W b)T;:/2f6 

In AI*(wb){4KoO"o-(0C0+~O)2}l 6, 
( (exp a6') sin (6' +0:) ) 6/2 de' 
(exp a6m) sin (6m +0:) . 

(3.4.11) 
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With U= +u. corresponding to 6=62, application to (3.4.11) of the steps that 
led to (3.3.4) yields 

tan-1 (sinh u) +tan-1 (sinh u.) 
2 tan 1 (sinh u.) 

1 I6 ((exp as') sin (6' +e) )5J2d6'_R 
0·293 61 (expa6m) sin (6m +e) - say. 

*E 
f-

I> 

1-0 

-1-0 -0-8 -0-6 -0-4 -0-2 0 +0-2 +0-4 +0-6 +0-8 +1-0 
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1 -0 
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o 0·1 
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z/zo 

0-5 0-6 0-7 0-8 

z/z, 
o-g 1-0 

Fig. 6.-Temperature versus distance characteristics with radial. 
compression ratio v as parameter. (a) Thermoelectric effects 

excluded, (b) thermoelectric effects included. 

(3.4.12) 

When w=!n we see from (3.4.2) and (3.4.3) that, as u varies, the point 
defined by the coordinates P and z moves along the symmetry axis ozJin 
Figure 3 (b). Then, rearranging (3.4.12) and using (3.4.3) and the last equation 
of (3.4.10), we obtain 

z/z,=![I+{I/(v2-1)i} tan {(2R-l) tan-1 (v2-1)!}], (3.4.13) 

where V=Pl/PO is the radial compression ratio. Clearly, v=1 reduces this 
equation to (3.3.4) as required. 
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Using appropriate numerical techniques we can obtain from (3.4.13) the 
fraction zlz, for each value of 8 chosen, with v as a parameter, and hence, with 
the further aid of (3.2.28) and (3.2.29), VIT;" and TIT;" can be plotted versus 
zlz, for suitable values of v, as in Figures 5 (b) and 6 (b) respectively. Similarly, 
with reference to S, (6.4.33), and the associated expressions T=T;" cos 8, 
V = (Ko/Q'o)!T;" sin 8, -t7t<8 < +t7t, we can calculate for comparison the 
characteristics of Figures 5 (a) and 6 (a), which show respectively VIT;" and 
TIT;" versus zlzo when thermoelectric effects are excluded. 

Using the corresponding values U= +ue and 8=82, the maximum temperature 
is derived from (3.4.11) as 

T* = (In )J*(wb){4KoQ'o-(IXO+~O)2}! tan-1 (sinh U e ))2/S 
m (0' 293)27tk(l-sin wb)(KoQ'o -lXo~O) . 

(3.4.14) 

The results (3.4.10) can be interpreted geometrically with the aid of Figure 
3 (b) as in S, Section VI (d), and (3.4.14) accordingly becomes 

T* = ( In )J*(wb){4KoQ'o-(lXo+~o)2}!(v2-1)!; tar1 (v2-1)t )2/S 
m (0 '293)27t(tz,)(KoQ'o-lXo~o)[I-{I-(p1Itz,)2v-2(v2-1)P] . (3.4.15) 

Again referring to (2.7), (2.8), (2.11), (2.12); taking In ),,=10, and from 
physical considerations, (p1Hz,)2<{1, (3.4.15) reduces to the more attractive form 

{
1Z I *( )}2/S{ 2 t n-1 (2 1)!}2/S T* =2228 "2, Wb v a v - A-2/5 2/5 d 

m 2 (2 l)l cm ego PI v - , 
(3.4.16) 

Combining (3.4.16) with (3.3.8), which is also applicable here, 

{
1Z I *( )}2/S{ 2t -1 (2 1)!12/S V'=0'656 "2, Wb v an v -. '. A-2/s 2/SV , pi (v2 -1)! \ cm. (3.4.17) 

IV. DISCUSSION OF RESULTS 

To estimat~ the influence of thermoelectric effects, we first take from S the 
results (6.4.38) and (6.4.40), and combine them with (3.4.16) and (3.4.17) above 
to obtain for a given discharge the ratios 

T;"IT;"=1·136, (4.1)t 
and 

(4.2) 

Comparing Figures 4 (a) and 4 (b), we observe that, for the linear discharge, 
inclusion of thermoelectric effects results in a displacement of the zero of the heat 
flux vector and electric potential from midway between the electrodes virtually 
to the cathode. Also, in Figure 4 (b) it is evident that the slope of the electric 

t The curly bar is used when necessary to indicate a thermoelectric case quantity. 
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potential characteristic changes sign near the anode, and so, from (2.1), we see 
that in this region the constant current density j of the linear discharge is main
tained by the term rxVT acting against erE. By forming the scalar product j. E, 
we see that the Joule heating per unit volume in this region is made up of a 
cooling term, rxE' VT, and a smaller heating term, erE2. Considering the nature 
of the Seebeck and Peltier effects included in the basic equations (2.1) and (2.2) 
for j and q, this is perhaps not a surprising result. 

Since, for the linear discharge, qz+ Vjz=O, where the current density 
jz= -j,j>O, is a constant, it is of interest to note that the voltage characteristics 
of Figures 4 (a) and 4 (b) also represent the heat flux characteristics qz!(jTm) 
plotted against z!zo and z!z, respectively. 

Further comparison of Figures 4 (a) and 4 (b) shows that thermoelectric 
effects displace the temperature maximum from midway between the electrodes 
towards the anode, but here the displacement is not marked. 

When the discharge is constricted at the plane of geometric symmetry and 
thermoelectric effects are excluded, the shape of the temperature versus distance 
characteristic varies with increase of radial compression ratio, as shown in 
Figure 6 (a). Since the central constriction produces an increase of plasma 
temperature at and near the plane of symmetry, the narrowing of the peaks of 
the characteristics in Figure 6 (a) with increase of radial compression ratio can 
be readily understood physically. 

Figure 6 (b) gives corresponding characteristics when thermoelectric effects 
are included. Broadly, the above remark on Figure 6 (a) applies here, and, 
as would also be expected from physical reasoning, the displaced temperature 
maximum of the linear discharge tends to return towards the plane of geometric 
symmetry as the radial compression ratio assumes values greater than unity. 

As can be verified by means of (3.2.36), (3.4.8), and S, (6.4.22), when the 
discharge is centrally constricted the current density is no longer constant, 
but becomes a function of wand u. 'rhis remark also applies when thermo
electric effects are excluded, as can be seen from S, (6.4.5), (6.4.22), and (6.4.26). 
These and other facts complicate the possibility of obtaining a simple physical 
explanation of the trend of the voltage against distance characteristics of Figures 
5 (a) and 5 (b) as radial compression increases. 

The important conclusion that can be drawn from equation (4.1) is that the 

maximum temperature 'T:n is raised above T:n by some 14 % due to thermoelectric 

effects. However, by forming the temperature ratio, T:n!T m' from (3.4.16) 
,.. -

and (3.3.5); and the resistance ratio, R* !R, from (3.4.17) and (3.3.9) for conditions 
outlined in S, Section VII, it is immediately evident that the characteristic 
of Figure 7 of that paper is also applicable when thermoelectric effects are 
included. 

Equation (4.2) shows that the total voltage required to produce a given 
current in a particular geometry of discharge is about the same without and with 
thermoelectric effects. 
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