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A trajectory passing through a given point in a given direction is completely 
determined if its curvature and torsion are known functions of its arc length. 
Relativistic expressions for the curvature and torsion in terms of the electric 
and magnetic field distributions are derived below. Besides their intrinsic 
interest these expressions may be useful in the analytical solution of some simple 
trajectory problems. In more complicated problems the trajectories may be 
extrapolated from their origin by means of the canonical equations, see, for 
example, Weatherburn (1955), 

x=s-~3j6+ • •• , } 
Y=Xos2j2 +x083j6 + ... , 
z=Xo"Cos3j6 + ... , 

(1) 

where Xo and "Co are the curvature and torsion at the point 0 on the trajectory ; 
Xo is the rate of change of curvature with regard to arc length evaluated at 0 ; 
x, y, z are the rectangular Cartesian coordinates of the point at a distance s along 
the trajectory from 0 referred to the coordinate axes OX, OY, OZ which correspond 
respectively with the directions of the tangent, normal, and binormal to the 
trajectory at O. 

Trajectory plotting by means of the equations (1) terminated at terms of 
the second degree in s has been done automatically by Gabor (1937) and Langmuir 
(1937) for purely electrostatic fields and low particle velocities. In this case 
only the curvature need be known and is x= -En j2V where V is the potential 
at the point in question and En is the component of the electric field normal to 
the trajectory. The electrolytic tank analogue was used for the direct measure
ment of both V and En' If other than plane trajectories are to be plotted terms 
to at least the third degree in s must be used. Thus x, "C, and x' must be known 
in terms of the field distributions. Relativistic formulas for these three quantities 
are derived below by the methods of differential geometry using vector notation. 
Unit vectors in the directions of the tangent, normal, and binormal to the charged 
particle trajectory are denoted by t, D, and b respectively. Derivatives with 
regard to arc length are denoted by a superscript dash. 

Derivation of the Curvature 
The trajectory of a charged particle of charge q, mass m, and speed v in an 

electric field E and magnetic field B is described by 

vd(mvt)jds=q(E +vt x B). (2) 

* Manuscript received January 13, 1961. 
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In order to carry out the differentiation a convenient expression for m is sought. 
We have 

(3) 

as the energy equation. If we assume the particle, of charge q, had zero initial 
velocity in the region of zero potential, then the constant of (3) is zero. Note 
that for positive kinetic energy the product q V is negative. In what follows 
q and V will be treated as pure algebraic symbols so that both q and V may be 
of either sign but the product qV must be a negative quantity. 

Equation (3) may be written as 

m=mo(l- VjVo), (4) 

where Vo=moc2lq has the dimensions of electric potential. This" natural unit" 
of potential is approximately +930 X 10 6 volts for a proton and -0·5 X 10 6 volts 
for an electron. Writing ~=(1-VIVo) equation (2) becomes 

mo~v2xn+moWv2t+mo~vv't=q(E+vtx B), 

where we have used t'=xn. 
The normal component of (5) is 

mo~v2x=q(En+vt X Bon) 
=q(En-vBb), 

and the tangential component is 

moWv2 +mo~vv' =qE t) 

(5) 

(6) 

(7) 

where Et) En' and Eb are the tangential, normal, and binormal components of E 
etc. (7) is the energy equation while (6) is a trajectory equation. 

Making the following substitutions in (6) 

~=(1-VjVo)=(l-a), } 
v2=c2a( -2 +a)j(1-a)2, 
v= -ca1( -2 +a)!j(l-a), 

(8) 

gives for the curvature 

(9) 

Note that a is negative for positive kinetic energies. Thus cal is imaginary 
and x is real. 

For low energies a_O and (9) reduces to 

X=-HEn-(12!~ i) iBb}jV. (10) 

.Arc Rate of Ohange of Ourvature 

To find x', the rate of change of curvature with trajectory arc length, 
differentiate (5) with regard to 8. This gives 

(mo~v2x)'n+(mo~v2x)n' +(mo~'v2)t' +(moWv2)'t+(mo~vv')'t+(mo~vv')t' 
=q{E' +v't X B +v(t' X B +t X B')}. 
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The normal component of this is 

Whence 

(mo~v2x)' +(mOWv2)x+(mO~vv')x=q{(E')n+v't X B-n+vt X B' on} 
=q{(E')n -v'Bb -V(B')b}' 

x'= mo~v2{(E')n-V'Bb-V(B'h}-x{2r + 3:1 
Using the relations (8), together with 

W=EtfVo, } 
v' = -Etc8 i /{V(I-8)2( -2 +8)1}, 

in (11) gives 

(E')n(I-8) (B'hc8 i 2EtB bc8 i S II} 
x' V( -2 +8) + V( -2 +8)i - V(I-8)( -2 +8)1"( Vo + V( -2 +8) 

EtEn S 2 3} 
- V(-2+8)"(Vo+V(-2+8) • 

(11) 

(12) 

(13) 

Substituting c8 i =(qV/mo)1 and allowing 8--+0 in (13) we have for low energies 

x'=2~{ (I 2!~ I) \B')b-(E')n}+2i2{ (12!~ I) IBb_ 3:n}. (14) 

Torsion 
To find an expression for the torsion 't", take the vector product of (5) with t, 

whence 
-mo~v2xb=q{E X t+v(t X B) X t} 

=q{E X t+vB -vBtt}. 

Differentiating with regard to s gives 

(-mo~v2x)'b+mo~v2y't"n=q{E' xt+E xnx+v'B+vB' -(vBt)'t-vBtxn}. 

The normal component of this is 

mo~v2x't"=q{E' X t-n+xE X n-n+v'Bn+v(B')n-vBtx} 
=q{ (E'h +v'Bn +v( B')n -vBtx}. 

Thus either v2x=0 or 

't"=JLS (E')b + v'Bn + (B')n _ B t} 
mo"( ~V2X ~V2X ~vx ~v 

=_q_ S (E'h + v'Bn+ (B') } _ qBt . 
mo~vx"( v V n mo~v 

Substituting from (8) and (12) in (16) gives 

(15) 

(16) 

(E'h(I-8) -EtBnc8!/{V(I-8)( -2 +8)li} -(B')nc81( -2 +8)1 + B tc8! 
't" En(I-8) +BbC81( -2 +8)1 V( -2 +8)1" 

(17) 
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For low energies, 8_0, we have either 

(E') _ E;Bn(12QV I)i +(B') (12QV 1)1 i 
't' b 2V mo n mo +Bt (12QV I) (18) 

E -B (12QV I)! 2V mo 
n b mo 

or x=O. 

Oonclusion 
In the absence of magnetic fields and for low energies 

(19) 

Note that in all the above expressions for x, x', and 't' the potential V is 
positive or negative according to whether Q is negative or positive. 
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