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.AN EXACT SOLUTION TO A PROBLEM IN HEAT TR.ANSFER* 

By C. H. J. JOHNSONt 

In order to determine the complete temperature history in problems 
concerning the transfer of heat from a moving fluid to a solid body one is obliged, 
in general, to solve both the flow and heat transport equations for the fluid 
and the heat conduction equation for the solid. Analytical solutions to this 
problem cannot in general be given owing to the (non-linear) way in which the 
flow and heat transport equations for the fluid are coupled. 

However, there is a class of problems of this kind for which an exact unsteady­
state solution can be given. These problems involve a symmetry which is such 
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that in the equation for the fluid the convection terms vanish identically. The 
result is that these equations are uncoupled in the sense that the flow velocity 
is independent of the temperature distribution and the temperature depends 
on the flow only through the viscous dissipation function. Under these conditions 
the problem reduces to solving the heat conduction problem for a composite 
body with heat generation in one body, the fluid. 

The problem we solve here concerns the parallel flow of fluid over a heat 
conducting half space, the motion being started impulsively. Other problems 
such as flow between parallel walls and flow round cylinders could be considered 
but not in the same way as the present problem. 

The statement of problem is as follows: The region z> ° is occupied by a 
viscous heat-conducting incompressible constant property fluid. The region 
z <0 is occupied by a heat-conducting solid. The initial temperature of the fluid 
is To, while that of the solid is zero. To determine the temperature distribution 
in the system subsequent to the uniform impulsive motion of the fluid in a 
direction parallel to the plane z=o. 

In the fluid, the pressure gradients being zero, we have 

ou/ot-viJ2u/oz2=0, z>O, t>O, (1) 

?lCIOTl/Ot-kl02Tl/OZ2= !l(~:) 2, Z>O, t>O, (2) 

and in the solid, 

?zc2oT2/0t-k2·02T2/0Z2=0, z<O, t>O, (3) 

with 
u=O, z=O, t>O, (4) 

u=U, z>O, t=O, (5) 

T 1=T2, z=O, t>O, (6) 

k1oT1/oz=k2oT2/oz, z=O, t>O, (7) 
T1=To, z>O, t=O, (8) 

T2=0, z<O, t=O, (9) 

with T 11 T 2' and u everywhere bounded. 

The subscript " 1 " refers to the fluid and the subscript " 2 " to the solid. 
The remaining symbols have their usual meanings. 

Introducing the dimensionless variable ~, ~=z. (4v1t)-I, the solution to 
equation (1) with (4) and (5) is 

u=erf ~. 

Writing vl=Tl/To and using (10), equation (2) becomes 

d2vl/d~2+2P.~.dvl/d~= -b. exp (_2~2), 

(10) 

(11) 

where P=v/k1 is the Prandtl number and b=(4/rc)PE, where the Eckert number 
E is given by E= U 2/(c1To). 
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Integrating equation (11) twice we find 

VI(~) = -d {~1;. exp (_pYJ2) . erfc {YJ(2 -P)l}dYJ -A . t(~/P)! . erfc (~l) +B, (12) 

where d=t . b . (~/(2 -P»! and A and B are constants of integration. In order 
to satisfy equation (8) we must have B=1. 

If v2=T2/To we have from equation (3) 

(13) 

where C is a constant to be determined. 
The constants A and C are to be determined from the two conditions (6) 

and (7), which in terms of the variable ~ become 

dVI dV2 
VI =V2, ~=O, } 

kld~ =k2d~' ~=O. 

Substituting (12) and (13) in (14) and solving for A and C we find 

A _I-d. 1(0, P) -del 
- t(~/P)l+e-l , 

C _1+d[t(~/P)!-I(O,P)] 
1 +e . l(~/P)! ' 

where 

and 

1(~, P)= f:1;. exp (_pYJ2) • erfc {YJ(2 -P)I}dYJ. 

We thus have 

Vl(~) =1-A . l . (~/P)i erfc (~i) -d . 1(~, P). 

The wall temperature is given by 

which is a constant. 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

The integral defining 1(~, P) cannot be evaluated in terms of elementary 
functions but the integral for 1(0, P) can be so evaluated. We find 

(20) 

whence 

(0) = 1 +d . (1/~P)! . tan- l {(2 -P)/PP 
VI 1 +e . t(~/P)! . 

(21) 
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On differentiating (18) it can be seen that the flux Q(t) across the boundary 
z=O is proportional to t- i • 

The parameter e: expresses the interaction between the solid and the fluid. 
Generally k2/kl is large compared to unity and so e: will be large (103.-.104). 

The large value of ks/kl' implies that when a given quantity of heat crosses the 

,·or---------------------, 

g 

Fig. 1.-Graph ofv1(1;) as a function of I; forP=O·7. 
;, 

boundary its effect after a given time is felt in the gas at a greater distance 
from the boundary than in the solid. The parameter d is usually much less 
than unity. 
, ., , Neglecting terms involving e:-1 we have for 

1Jl(~)=I-[I-d. 1(0, P)] erlc (~i)-d. 1(~, P), (22) 

where1(~,P)'isgi:ven by (17). In Figure 1 we give curves for vl(~)forP=0·7, 
for large e:, and' for two values of d • 

. , The author is indebted to the referee for pointing out an error in the original 
manuscript. . 
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