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Summary 

An analysis of the resistivity-temperature relationship down to liquid helium 
temperatures of 17 platinum resistors as determined in various laboratories shows that 
deviations from Matthiessen's rule can be classed roughly into three groups. One 
of them follows the pattern predicted by Sondheimer and Wilson's theory. The other 
two cannot be fully explained in this way, and may be due to the sensitivity of the 
electronic band structure of transition metals to small concentrations of impurities. 
The behaviour of a resistor thus depends on the nature as well as the total amount of 
impurities and imperfection~. In low temperature platinum resistance thermometry 
the resistors should be selected with regard to the type of residual impurity as well as 
total impurity content. 

1. INTRODUCTION 

The electrical resistivity of metals arises from disturbances of the regular 
periodicity of the crystal lattice by thermal vibrations and static imperfections 
(impurities and physical defects). The thermal vibrations cause the" ideal" 
resistivity Pi if the lattice is otherwise perfect, the imperfections cause the 
" residual" resistivity p(O) at T=O. Matthiessen's rule states that the electrical 
resistivity at any temperature T is given by 

p(T)=P(O)+Pi(T), (1) 

where pi(T)-»-O as T-»-O and p(O) is independent of T. 

Matthiessen's rule, if strictly valid, would greatly facilitate resistance 
thermometry, for given the resistance-temperature curve of one resistor, that 
of another resistor could be deduced by calibration at two temperatures only. 
A number of calibration procedures were suggested which are essentially based 
on Matthiessen's rule, and these proved reasonably reliable down to liquid air 
temperatures, but failed at lower temperatures. For a review of platinum 
resistance thermometry at low temperatures see Barber (1960). 

It has become clear (e.g. Griineisen 1933) that the resistivity shows deviations 
from equation (1) such that 

p(T) = Pi(T) +p(O) +Ll(T), (2) 

where Ll(T) is a function of T and p(O), but also depends on the nature of the 
imperfections causing p(O) (Mott and Jones 1936, p. 289). 

* This work was carried out while the authors were working at the Division of Physics, 
Commonwealth Scientific and Industrial Research Organization, Sydney, where one of us (G.C.L.) 
was in receipt of a research grant from the C.S.I.R.O. 
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Matthiessen's rule is based on the proportionality of electrical resistance 
to the scattering probability of the conduction electrons, and positive deviations 
~(T) occur whenever two or more groups of electrons contribute to the con
ductivity, provided they are affected differently by the two scattering mechanisms. 
Specific theories of the deviation were advanced by Sondheimer and Wilson 
(1947), and by Sondheimer (1950). Sondheimer and Wilson's treatment is based 
on a two-band model, both bands contributing to the conductivity. For such a. 
model ~(T) must be positive for all values of T. The term ~(T) can be approxi
mated by 

~T=Pi' p(O)/[api+bp(O)], (3) 

where a, b are positive quantities of order unity (Wilson 1953, p. 312). It follows 
from (3) that ~(T)-+O as Pi-+O and, therefore, as T-+O, and also as p(O)-+O. 
At higher temperatures (above about 30 OK) where Pi>P(O), ~(T) approaches 
the constant value of p(O)/a and (1) appears to be satisfied, so explaining the 
fair degree of success achieved with the use of Matthiessen's rule in resistance 
thermometry above about 60 oK. 
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Fig. I.-Difference in w(T) between L6 and two other resistors 
according to Hoge and Brickwedde (1939). 

The relative simplicity of (3) encouraged further attempts to use regularities 
in the deviations from Matthiessen's rule for the purposes of low temperature 
precision resistance thermometry. Van Dijk (1952, 1958) derived a number of 
expressions for the calculations of temperature from platinum resistance which 
were based partly on the results of Van der Leeden (1941) and Los and Morrison 
(1951) (see also White and Woods 1957) and implicitly on an expected regularity 
·of the relation of ~(T) with certain measurable characteristics of resistors such 
as their p(O) values (obtainable by extrapolation from measurements at liquid 
helium temperatures) and also their ex: values, where ex: is defined by 
(R373-R273)/100R273, R being the resistance. This coefficient is the greater the 
purer the platinum and has long been accepted as a measure of the purity of 
platinum resistors; for, although p(O) is a more direct measure of purity than ex:, 
the former is measurable only in laboratories equipped for low temperature 
work. 

o 
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Roge and Brickwedde (1939) reported accurate measurements of the 
resistance-temperature relationship of six pure platinum resistors. Some of 
their results are given in Figure 1. The relative resistance w(T) is defined as 
R(T)/R(273), their purest resistor was L6, so that if it is assumed that LlL6(T) is 
very small then w -WL6 is a measure of the deviation of the other five resistors 
from Matthiessen's rule. It was pointed out by Schultz (1957) that this behaviour 
is in conformity with Sondheimer and Wilson's expression (3) for Ll(T). 

The apparent regularity of Ll(T) found by Van Dijk and Schultz is, however, 
not a general property of pure platinum resistors, but a consequence of the fact 
that in each case attention was focused on a group of resistors from the same 
source, and thus having impurities of similar nature. More recent measurements 
on a wider group of resistors, many of even greater purity, fail to yield similar 
regularities, and it is clear that the deviations from Matthiessen's rule depend not 
only on the residual resistivity but also on the nature of the principal impurities. 
This will now be discussed in detail. 

II. OBSERVED DEVIATIONS 

Equation (2) cannot be tested directly in the absence of an accepted pro
cedure for the determination of p,. In addition, the geometrical factor relating 
resistivity and measured resistance is different for each resistor and somewhat 
uncertain. The last-named difficulty can be overcome by using the relative 
resistances w(T). Thus using (2) and forming the difference between two resistors 
having relative resistances w(T) and w'(T), 

w(T)-w'(T) 
Pi(T) +p(O) +Ll(T) 

Pi(273) +p(O) +Ll(273) 
Pi(T) +p'(O) +Ll'(T) 

Pi(273) +p'(O) +Ll'(273)" 
(4) 

Omitting terms involving the squares of very small quantities, this difference 
becomes 

w(T) -w'(T) R!{w(O) -w'(O)}{l-wi(T)} +z(T) -z'(T) -wi(T){z(273) -z'(273)}, 
(5) 

where w i(T)=Pi(T)/Pi(273)R!Pi(T)/p(273), and 

Ll(T) Ll(T) 
z(T) = Pi(273) R! p(273)" 

The terms in w,(T) on the right-hand side of (5) arise because of the difference 
between p(273) and p'(273). They cannot be neglected unless wi(T)<:l, 
i.e. T<20 OK, or unless w(O)"-'W'(O). 

Equation (5) can be used to test relative deviations, though it must always 
be remembered that the significance of the results of such tests must depend 
greatly on the characteristics of the reference resistor. 

The resistors here considered are listed in Table 1. It will be seen from an 
inspection of their w(O) values that compared with more recently made resistors 
even the purest (116) of those used by Roge and Brickwedde (1939) is now relatively 
impure. The resistor T4 measured by Los and Morrison (1951) has one of the 
lowest residual resistivities, and it is reasonable to suppose that its values of Ll(T) 
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are also lower than those of resistors of substantially higher w(O).* This suggested 
the use of T4 as the standard of " quasi-ideal" resistor. Accordingly, 

w(T) -WT4(T) +w;(T){ w(O) -WT4(O)} 

has been plotted in Figure 2 as a function of T for most of the resistors listed in 
Table 1. The deviations of these curves from horizontal straight lines indicate 
the extent to which Matthiessen's rule is not obeyed, being a measure of the 
quantity 

z(T) -ZT4(T) -w;(T){z(273) -ZT4(273)}. (6) 

TABLE 1 
VALUES OF w(O), 0(, AND THE SONDHEIMER-WILSON PARAMETER l/a CALCULATED FROM EQUATION (7) 

FOR A NUMBER OF RESISTORS 

I Sondheimer-Wilson Parameter l/a 

I 
as a Function of Temperature 

Designation Reference* 10'w(0) 1060( 

50 oK 70 oK 90 oK 

T4 (1) 4·1 3926 - - -
G3 (2) 4·2 3927 - small -
Ch6 (3) 4·8t 3925t - small -
RS (2) 9·8 3924 0·1 0·1 0·11 
L6 (4) 24·0t 3917t 0·2 0·2 @·2; 

LIO (4) 24·8t 3914 0·3 0·4 0·4 

CTI5 (5) 6·0 3926 -0·4 -0·3 +0'4 
CT16 (5) 6·1 3926 -0·4 -0·3 +0·5 
CT18 (5) 8·5 3924 0·3 0·3 0·7 
L3 (4) 25'2t 3912 0·5 0·6 0·7 

G2 (2) 4·4 3925 3 4 6 
718157 (2) 5·1 3925 0·5 0·9 1·7 
PS (2) 5·9 3915 5·6 7·1 8·6· 
Al (2) 7·5 3923 0·9 1·0 I· 2; 

SI (2) 8·9 3921 1·0 1·2 1·4 
S2 (2) 8·9 3921 1·1 1·4 1·& 
RIO (5) 15·7 3911 1·5 1·8 2·3 

* References: (I) Los and Morrison (1951); (2) Barber (1958); (3) Chambre Centrale 
(1954); (4) Hoge and Brickwedde (1939); (5) Lowenthal, Kemp, and Harper (1958). 

t Obtained by extrapolation from 10 OK. 
t Estimated. 

The most striking feature of these curves is their variety in shape, giving a 
clear indication that the deviations do not arise from a single cause. Certainly, 
the two-band model of Sondheimer and Wilson cannot account by itself for these 
variations. More particularly, the fact that CT15 and to a lesser extent G3 
have negative values for (6) suggests that factors not considered by Sondheimer 

* It will be noted, though, that resistor G2 has nearly the same p(O) value as T4 but obviously 
very different Ll(T) values. 
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,and Wilson must be operative, since the two-band mechanism does not admit of 
negative values of /1(T). Of course, a negative value of (6) does not necessarily 
imply that either z(T) or ZT4(T) are negative anywhere. Firstly, it might merely 
,be a reflection of a peculiarity in T4; but this is unlikely because a curve of OT15 
versus G3 would also gives negative values. Secondly, however, is the objection 
that (6) may become negative because the last term might become larger in 
magnitude than z(T) -ZT4(T). This would be so if the ratio z(T)/z(273) was 
:smaller than wi(T) at low temperatures, but increased faster with T than wi(T) 
above about 70 oK, for at 273 oK both quantities are equal. It is readily shown, 
however, that with /1(T) due entirely to the two-band model (equation (3)), 
expression (6) would never be negative. 
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:Fig. 2.-Deviations from Matthiessen's rule relative to T4 as shown 
by the temperature variation of w(T)- W T4(T) +w,(T){w(O)---wT4(O)}. 
Designation of resistors as in Table 1. Curves have been omitted for 
Ch6 (close to T4 and G3), CT16 (close to CT15), S2 (close to S1), and 

RlO (beyond range of graph). 

III. OLASSIFICATION OF DEVIATIONS 

To get more direct information about the extent to which the Sondheimer
Wilson theory applies to the resistors listed in Table 1, one can assume that /1(T) 
is given by (3), so that for T>30 oK, where Pi>P(O), one obtains /1(T)~p(O)/a 
and therefore z(T)=z(273)~w(0)/a. Substituting this result into (5) leads to 

w(T) -WT4(T) ={w(O) -wT4(0)}{1-wi(T)}(1 + l/a), (7) 

and if /1(T) is indeed given by (3) than l/a as calculated from (7) would be 
constant. It will be seen that this is generally not so. Instead, the resistors 
fall into three more or less distinct groups which are separated in Table 1 by 
horizontal lines. Resistors in group 1 have l/a both small and constant, for 
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those in group 2 it is still small but increases with temperature, while those in 
group 3 have 1/0, values up to ten times greater than those in group 1 and 
increasing rather strongly with temperature. The divisions are, of course,. 
somewhat arbitrary, not least because the magnitudes of 1/0, depend on the 
characteristics of the resistor chosen as standard. Besides, some resistors are· 
clearly borderline cases: L3 and CT18 could have been classed into group 1-
while Al and possibly SI and S2 could have been classed into group 2. 

Clearly, the behaviour of d(T) or z(T) depends not only on p(O) or on ot •. 

It is seen from Table 1 that L6 and LI0, which are in group 1, have a much 
greater residual resistivity than each member of group 3. The ot values of L6 
and LI0, on the other hand, are higher than those of RIO and PS but lower 
than those of the other members of group 3. But within each group the resistors 
have similar deviations, and if resistors belonging to one particular group, say 
group 1, could be identified in a convenient way, a relatively simple formula 
would serve to predict their characteristics with accuracy over a wide range of 
temperatures. Such a formula was discussed by Schultz (1957) and an eveIl: 
simpler procedure was used by Lowenthal, Kemp, and Harper (1958) (see also 
Lowenthal and Harper 1960). 

The manner in which the groups of Table 1 have been obtained here is,. 
of course, much too cumbersome to effect identification for purposes of resistance 
thermometry. It is not difficult, however, to derive practical selection criteria. 
of the type which have long been familiar in thermometry and which are now an 
integral part of the International Practical Temperature Scale. One such 
criterion has been described elsewhere (I .. owenthal, Kemp, and Harper 1958). 

IV. REASONS FOR DEVIATIONS 

The origin of these various deviations from Matthiessen's rule is a rather
complex problem and no single completely satisfactory explanation appears to 
exist. It is believed, though, that variations in Pi due to variations in electron 
concentration are at least partly responsible for this effect. One would expect 
transition metals to be particularly sensitive to small changes in electron con
centrations. This would cause d(T) to be proportional to T at high te:qlperatures,. 
while the two-band mechanism and its various modifications predict that at 
high temperatures d(T) becomes constant. In terms of the relative resistivities 
w(T), both explanations lead to qualitatively the same behaviour. To distinguish 
with certainty between them would require the absolute measurement of d(T) 
and, therefore, accurate measurements of the specimen geometry. This, however
is very difficult to do. 

V. CONCLUSION 

The two-band model and its modification as proposed by Sondheimer and 
Wilson are not adequate by themselves to account for the three more or less 
distinct types of deviations from Matthiessen's rule found for " thermo-pure" 
platinum resistors, though it does account satisfactorily for one of these types 
(group 1). It would appear that the sensitivity of the electronic band structure 
of transition metals to small concentrations of impurities is a further mechanism 
producing significant deviations. 
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To effect precision low temperature resistance thermometry without 
extensive calibrations it would then be necessary to control not so much the 
amount of the residual resistivity but rather the nature of the impurities and 
imperfections which give rise to p(O). As a probably more practicable alternative 
a suitable selection procedure should be used to exclude all resistors with devia
tions from Matthiessen's rule differing from an agreed type of deviation such as 
for example from group 1 of Table 1. If this is done, it is readily shown (e.g. 
Lowenthal, Kemp, and Harper 1958) that all resistors satisfying such a require
ment have similar resistivity-temperature relationships which, therefore, are 
predictable over a wide range of temperatures. 
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